• Nenhum resultado encontrado

Efeito de preparações de produtos naturais (cravo da índia e tomate) e de um produto sintético na marcação de constituintes sangüineos com tecnécio-99m e na morfologia de hemácias isoladas de sangue de ratos wistar

N/A
N/A
Protected

Academic year: 2017

Share "Efeito de preparações de produtos naturais (cravo da índia e tomate) e de um produto sintético na marcação de constituintes sangüineos com tecnécio-99m e na morfologia de hemácias isoladas de sangue de ratos wistar"

Copied!
62
0
0

Texto

(1)

I

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

EFEITO DE PREPARAÇÕES DE PRODUTOS NATURAIS (CRAVO DA ÍNDIA E TOMATE) E DE UM PRODUTO SINTÉTICO NA MARCAÇÃO DE CONSTITUINTES

SANGÜINEOS COM TECNÉCIO-99m E NA MORFOLOGIA DE HEMÁCIAS ISOLADAS DE SANGUE DE RATOS Wistar

SEVERO DE PAOLI

(2)

II

EFEITO DE PREPARAÇÕES DE PRODUTOS NATURAIS (CRAVO DA ÍNDIA E TOMATE) E DE UM PRODUTO SINTÉTICO NA MARCAÇÃO DE CONSTITUINTES

SANGÜINEOS COM TECNÉCIO-99m E NA MORFOLOGIA DE HEMÁCIAS ISOLADAS DE SANGUE DE RATOS Wistar

SEVERO DE PAOLI

Tese apresentada à Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde, Coordenação do Programa de pós-graduação em Ciências da Saúde para obtenção do título de Doutor em Ciências da Saúde.

Orientador: Mario Bernardo Filho Co-orientador: Aldo da Cunha Medeiros

(3)
(4)

III

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

Professor Doutor Aldo da Cunha Medeiros

Coordenador do Programa de Pós-graduação em Ciências da Saúde

(5)

IV

SEVERO DE PAOLI

EFEITO DE PREPARAÇÕES DE PRODUTOS NATURAIS (CRAVO DA ÍNDIA E TOMATE) E DE UM PRODUTO SINTÉTICO NA MARCAÇÃO DE CONSTITUINTES

SANGÜINEOS COM TECNÉCIO-99m E NA MORFOLOGIA DE HEMÁCIAS ISOLADAS DE SANGUE DE RATOS Wistar

PRESIDENTE DA BANCA: Prof. Dr. Mário Bernardo Filho – Universidade do Estado do Rio de Janeiro

Prof. Dr. Geraldo Barroso Cavalcanti Junior – Universidade Federal do Rio Grande do Norte

Prof. Dr. Adenilson de Souza da Fonseca – Universidade do Estado do Rio de Janeiro

Prof ª. Drª. Lúcia Maria da Cunha Galvão – Universidade Federal do Rio Grande do Norte

Prof ª. Drª. Ivonete Batista de Araujo – Universidade Federal do Rio Grande do Norte

Natal / RN

(6)

V

DEDICATÓRIA

In memoriam, dedico este título aos meus pais Vincenzo de Paoli e Assunta Siciliano de Paoli que ensinaram a ter persistência, paciência e determinação, com o foco humanitário sempre ao alcance dos sonhos.

(7)

VI

AGRADECIMENTOS

Ao Professor Mário Bernardo Filho, que como amigo e orientador soube indicar caminhos e sugerir soluções para que esta caminhada pudesse ter êxito, minha amizade, respeito e admiração.

Aos amigos Giuseppe Antonio Presta, Tânia Santos Giani, Adalgisa Ieda Maiworm e Sebastião David dos Santos Filhos meus irmãos na ciência, em todos os momentos difíceis e nos momentos de alegria muito obrigado.

Aos amigos e Professores Laucyr Pires Domingues, Miguel Haroldo Guida, Roberto da Silva Hertal, Edson Gomes de Souza, Eduardo Moiolli e Jayme Leão Guitman, pelos estímulos constantes no magistério e na odontologia.

Aos Amigos e colegas Carlos Guilherme Correa, Neide Lemos de Azevedo, Jorge José de Carvalho, Octávio Marinho Falcão Filho, Tereza Hucks Gallo, Walker André Chagas, Jorge Mamede de Almeida, Luiz Carlos Nogueira, Gilberto Soares Vargas, Raquel Mattos Bernardo e Adenilson de Souza Fonseca meus agradecimentos pela ajuda e compreensão que tiveram para que este sonho fosse realizado.

Ao Professor Doutor Aldo da Cunha Medeiros e ao Professor Doutor José Brandão Neto pelo sempre carinhoso recebimento em Natal e pela atenção constante com nossas necessidades. Minha profunda gratidão

À Doutora Lúcia de Fátima Amorim por toda a ajuda dada aos contatos com a Universidade Federal do Rio Grande do Norte e a hospitalidade carinhosa de seu recebimento em Natal.

(8)

VII

LISTA DE ABREVIAÇÕES, SIGLAS E SÍMBOLOS. %ATI Porcentagem de radioatividade

°C Graus Celcius

μg Micrograma

µl Microlitro

99Mo/99mTc Isótopo do elemento molibdênio de número de massa 99/ isótopo metaéstavel do elemento tecnécio de número de massa 99

99mTc Isótopo metaéstavel do elemento tecnécio de número de massa 99 99mTc-RBC Células vermelhas do sangue marcadas com tecnécio-99m

ANOVA Análise de variância

C Células cm Centímetro

CS Células sangüíneas

FI-C Fração insolúvel da célula FS-P Fração solúvel da célula g Grama

kg Quilograma

LDL Lipoproteína de baixa densidade

MBq Mega Bequerel (unidade de atividade de amostra radioativa no Sistema Internacional, sendo que 1 Bq equivale a uma desintegração por segundo)

mg Miligrama

min Minutos

ml Mililitro

Na99mTcO4 Pertecnetato de sodio NaCl Cloreto de sodio

ηm Nanometro

OZE Òxido-de-zinco-eugenol P Plasma

CVS Células vermelhas do sangue

rpm Rotações por minuto

Sn+2 Ion estanoso SnCl2 Cloreto estanoso

(9)

VIII SUMÁRIO

Lista de abreviações………...………....viii

Resumo………...Ix 1. Introdução...01

2. Revisão de literatura...03

3. Indexação de Artigos ...06

3.1. Manuscritos aceitos para publicação...06

3.2 Manuscrito submetido para publicação... 29

4. Comentários, críticas e conclusões... 44

5. Anexos...46

6. Referências...47

(10)

IX RESUMO

(11)

X

(12)

1. INTRODUÇÃO

O interesse da comunidade cientifica em estudar efeitos biológicos de produtos naturais e sintéticos vem crescendo ao longo dos tempos. Modelos experimentais empregando radionuclídeos têm sido largamente utilizados nos estudos de fenômenos de natureza biológica, assim como na clínica, na terapia e/ou diagnóstico de doenças (1,2,3)

Em Medicina Nuclear são utilizados radiofármacos, sendo que o radionuclídeo tecnécio-99m (99mTc) tem sido o mais empregado na obtenção de radiobiocomplexos que são usados para auxiliar no diagnóstico de doenças. Constituintes sangüíneos marcados com 99mTc, como hemácias e proteínas plasmáticas, têm sido utilizados como radiofármacos. Tem sido descrito que produtos naturais e sintéticos podem alterar a marcação desses componentes sangüíneos (4,5).

Estudos foram realizados com sangue de ratos Wistar (i) com um extrato de cravo-da-índia (Caryophyllus aromaticus L) que possui eugenol na sua constituição, com (ii) a droga sintética usada como cimento em diversas especialidades odontológicas, o OZE (óxido-de-zinco-eugenol) e (iii) com um extrato de tomate (Solanum lycopersicum) que contém licopeno. (6,7,8)

O objetivo da presente pesquisa foi avaliar com um extrato de cravo da índia e com uma preparação de OZE o efeito desses produtos na marcação de constituintes sangüíneos com 99mTc e na morfologia de hemácias obtidas do sangue de ratos Wistar. Com o extrato de tomate, verificar a ação do mesmo na marcação de constituintes sangüíneos com 99mTc.

(13)
(14)

2. REVISÃO DA LITERATURA

O tecnécio-99m – (99mTc) é um radionuclídeo, isótopo do tecnécio que é classificado como um metal de transição do grupo VII. Possui uma meia-vida de 6 horas, emissão de radiação gama de 140 keV de energia e apresenta estados de oxidação que variam de –1 a +7. (15.16)

As características físico-químicas do 99mTc, como pertecnetato de sódio, têm permitido a marcação de inúmeras estruturas celulares e moleculares com esse radionuclídeo que são empregados como radiofármacos e também denominados radiobiocomplexos (3,5) Radiobiocomplexos são traçadores radioativos empregados na medicina nuclear para ajudar no diagnóstico e/ou no tratamento das doenças. Células vermelhas do sangue marcadas com 99mTc (99mTc- CVS) são radiobiocomplexos usados freqüentemente na medicina nuclear, para diversas e importantes aplicações clínicas (2,5,9,10).

O desenvolvimento de modelos biológicos para o estudo da influência de drogas medicamentosas na marcação de constituintes sangüíneos com 99mTc é relevante para a pesquisa básica e aplicada. Pode-se estimar a capacidade redutora ou oxidante de substâncias quando o processo de marcação dos componentes sangüíneos com 99mTc é empregado. Da mesma forma, a capacidade de determinadas drogas de alterar a permeabilidade da membrana eritrocitária também tem sido avaliada por esse modelo experimental (9,10,11)

(15)

A ligação do 99mTc aos elementos sangüíneos pode ser alterada pela presença de produtos sintéticos e também naturais (13-18). Alguns estudos têm relatado que quando doses clínicas de propranolol, verapamil, clorotiazida são incubadas com sangue, uma redução na eficiência de marcação das hemácias é observada. Drogas anticonvulsivantes como fenitoína e fenobarbital, bem como o ácido acetil salicílico, reduzem a marcação de constituintes sangüíneos (16,17,19).

Existem alguns estudos sobre o efeito de produtos naturais na marcação de hemácias e proteínas plasmáticas e celulares com tecnécio-99m. Extratos de Nicotiana tabacum (15), Shechium edule (18), Maytenus ilicifolia (20), Hiperycum perforatum (21) e Psydium guajava (22) foram capazes de alterar a marcação de constituites sangüíneos com 99mTc.

O OZE é um medicamento largamente utilizado na Medicina e na Odontologia, com propriedades: antiinflamatória, anestésica, germicida, regenerador tecidual e como material cimentante de canais e obturações. (7,28)

(16)

O tomate (Solanum lycopersicum) é um fruto rico em ácido ascórbico, beta-caroteno, licopeno (aproximadamente 3,5mg/100g) e sais minerais (cobre, por volta de 3,5mg/100g), sendo consumido cru, cozido, condimentado e em conserva, em larga escala no mundo (8). Sua qualidade precisa ser muito bem avaliada, devido aos pesticidas e às técnicas de agricultura, evitando acréscimos indesejáveis de subtâncias tóxicas ao produto. Diversos estudos demonstram que o licopeno apresenta um efeito preventivo no câncer sendo inversamente proporcional aos fatores de crescimento dos níveis insulínicos no câncer de próstata (24,25).

(17)

3. INDEXAÇÃO DE ARTIGOS 3.1 MANUSCRITOS ACEITOS PARA PUBLICAÇÃO

Manuscrito 1:

Effects of clove (

Caryophyllus aromaticus

L

.

) on the labeling

of blood constituents with Technetium-99m and on the

morphology of red blood cells

Severo de Paoli.1,2,4,5*, Tania Santos Giani1,2,4, Giuseppe Antonio Presta 1,2, Marcia Oliveira Pereira2,4, Adenilson de Souza da Fonseca2,5, Sebastião David Santos-Filho 1,2 and Mário Bernardo-Filho2,3.

1Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências da Saúde, Avenida

General Gustavo Cordeiro de Farias, s/n, CEP 59 010 180, Natal, RN, Brasil, severodepaoli@gmail.com

2Universidade do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofísica e

Biometria, Avenida 28 de Setembro, 87 fundos, 4o andar, Vila Isabel, CEP 20 551 030, Rio de Janeiro

3Instituto Nacional do Câncer, Coordenadoria de Pesquisa Básica, Praça Cruz Vermelha, 23, Centro, CEP 20 230

130 Rio de Janeiro, Brasil

4Universidade Estácio de Sá, Rua do Bispo, 83, Rio Comprido, CEP 20 261 063, Rio de Janeiro, Brasil

5Centro Universitário Fundação Educacional Serra dos Órgãos, Faculdades de Odontologia e Fisioterapia,

Avenida Alberto Torres 111, Alto, CEP 25 964 004, Teresópolis, Rio de Janeiro, Brasil

ABSTRACT

Clove (Caryophyllus aromaticus L.) has been used for clinical procedures. Blood constituents labeled with technetium-99m (99mTc) are used in nuclear medicine. The aim of this work was to evaluate the effects of clove extract on the labeling blood constituents with 99mTc and on the morphologic red blood cells. Blood samples were incubated with clove, stannous chloride and 99mTc. Plasma, blood cells, insoluble fractions of plasma and blood cells were separated. The radioactivity was counted and percentage of radioactivity (%ATI) to each blood fraction was calculated. The shape and morphometric parameter (perimeter/area ratio) were evaluated. Clove extract altered significantly (p<0.05) the %ATI of blood constituents and the shape of red blood cells without modifying the perimeter/area ratio. The results indicate that clove extract present chemical compounds that interfere with the radiolabeling of blood constituents and alter the morphology of red blood cells by oxidative/chelating actions or interacting with the cellular membrane structure.

Key words: Technetium-99m, Blood constituents, Red blood cells, Morphology, Caryophyllus aromaticus L.

INTRODUCTION

Cloves (Caryophyllus aromaticus L, or

Syzygium aromaticum) are the aromatic dried flower buds of a tree belonging to the family Myrtaceae. It is native to Indonesia and used as a spice.

The clove tree is an evergreen that grows to a height ranging from 10-20 meters having large oval leaves and crimson flowers in numerous

groups of terminal clusters. The flower buds are at first of a pale color and gradually becoming green, after which they develop into a bright red, when they are ready for collecting. Cloves are harvested when 1.5-2 cm long, and consist of a long calyx, terminating in four spreading sepals, and four unopened petals which form a small ball in the center (Bisset, 2001).

(18)

of gastrointestinal, due to increase hydrochloric acid in the stomach and to improve peristalsis (Kumari, 1991), circulatory disturbances (Saeed and Gilani, 1994) and as anti-carcinogen agent (Banerjee et al., 2006).

Clove has been used in humans for dentistry applications for over two thousand years to alleviate the pain of toothache and also widely used to disinfect root canals in temporary fillings and as an oral anesthetic (Duke, 1985).

Eugenol has pronounced antiseptic and anaesthetic properties (Chaieb et al., 2007). Other constituents of the clove are acetyl eugenol, beta-caryophylline, vanillin, crategolic acid, tannins, gallotannic acid, methyl salicylate, flavanoids (eugenin, kaempferol, rhamnetin, and eugenitin), triterpenoids (oleanolic acid, stigmasterol and campesterol) and several sesquiterpenes (Kramer, 1985; Musenga et al., 2006).

Eugenol is known to inhibit the growth of bacteria and is a natural antibiotic (Suresh-Babu and Madhavi, 2001) with broad antimicrobial activities against gram-positive, gram-negative and acid fast bacteria, as well as fungi (Bisset, 1994; Lueng and Foster, 1996).

Red blood cells labeled with technetium-99m (technetium-99mTc-RBC) are widely used in clinical nuclear medicine for several important applications (Wong et al., 2004; Jin et al., 2004; Zaman et al., 2004; Artiko et al., 2004; Harel et al., 2005; Verdu et al., 2005; Olds et al., 2005).

The labeling of RBC with 99mTc has been used as assay to evaluate the properties of different chemical agents (Abreu et al., 2006; Fonseca et al., 2007). The radiolabeling depends of the presence of a reducing agent and stannous chloride is widely utilized. This technique is easily carried out and produces a better and well-controlled product (Harbert et al., 1996; Saha, 2004).

The morphological analysis of the RBC has been of importance in the investigations of diseases (Bielory, 2004) and to evaluate the effects of natural products on membrane structures (Oliveira et al., 2003).

The aim of this work was to evaluate in vitro, the effects of clove on the labeling blood constituents with 99mTc and on the morphology red blood cell.

MATERIALS AND METHODS Animals

All the experimental procedures followed the Ethical Guidelines of the Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro with the protocol number CEA/116/2006.

The animals were kept under environmental conditions (25±2°C, 12h of light/dark cycle), water ad libitum and normal diet. Heparinized whole blood was withdrawn by cardiac puncture from adult male Wistar rats under anesthesia by sodium thiopental, 40mg/kg of weight (n=12, 3 months, 245±35g).

Clove extract preparation

Dry clove flowers (Caryophyllus aromaticus L) (1g) (Fumel Comercial e Industrial Ltda., lot number 12, December 2006, validity December 2007) were triturated and 1g of the triturate was mixed with 10ml of 0.9% NaCl solution (saline). After that, the mixture was boiled at 100ºC and filtered through filter paper (Aldrich Chemical Co, 11cm, Lot number k932). The filtered solution was considered 100mg/ml of aqueous clove extract.

Spectrophotometric measurements

A spectrophotometric analysis (Analyser, 800M, São Paulo, Brazil) of the extract at 10 mg/ml was carried out. The absorbance at 480 nm was considered the marker of the quality control of this extract. All the prepared extracts to be used in the experimental procedures had an optical density of 0.49±0.01 (Figure 1).

Labeling of blood constituents with 99mTc

Samples of whole blood (0.5ml) were incubated with 100µl clove extract at different

concentrations (0, 6.5, 12.5, 25, 50 and 100mg/ml) for 1 hour. After that, 0.5ml of a freshly prepared stannous chloride solution (SnCl2, 1.2μg/ml,

(19)

and soluble (SF) and insoluble (IF) fractions were obtained. The radioactivity (% ATI) in P, BC, IF-P, SF-IF-P, IF-BC and SF-BC was determined in a well gamma counter (Clinigamma, gamma counter, Packard Instrument Company, mod C5002, USA). The percentage of incorporated radioactivity (%ATI) was calculated as described previously (Bernardo-Filho et al, 1986).

Morphological evaluation

Blood samples (n=5) for each extract concentration) were incubated with clove extract at different concentrations (6.5, 12.5, 25, 50 and 100mg/ml) for 1 hour. After that, blood smears (n=5, for each extract concentration) were prepared, dried at room temperature and stained by May-Grünwald-Giemsa method. Briefly, the blood smears were fixed with methanol for 5 minutes, then stained with Giemsa (azure eosin methylene blue solution) for 10 minutes and washed in water to remove excess of stain. The slides were dried at room temperature. These stained glass slides were analyzed by optical microscopy, morphometric measurements (perimeter and area) were performed by a software Image pro plus (Cibernetics, USA) to a total of five fields per each slide and the perimeter/area ratios were calculated.

Statistical analysis

Data are reported as means ± standard deviation of %ATI and perimeter/area ratio and they were compared between the treated and control group by One-way analysis of variance - ANOVA, followed by Bonferroni post test with a

p<0.05 as significant level. InStat Graphpad software was used to perform statistical analysis (GraphPad InStat version 3.00 for Windows 95, GraphPad Software, San Diego, California, USA). RESULTS

Figure 1 shows the absorption spectrum of the clove extract used in the experiments. The pattern of the absorption spectra presents the highest measure of the optical density (0.489±0.013) at 480 nm. This parameter has permitted to control the conditions to prepare the extracts and has been used as a marker.

Figure 1: Absorption spectrum of the clove extract.

Table 1 shows the effect of different concentrations of the clove extract on the distribution of radioactivity between cellular and plasma compartments. The clove extract used decreased significantly (p<0.05) the %ATI on the cellular compartment from 96.96±1.06 to 44.45±2.87.

Table 1 – Effect of different concentrations of a clove extract on the distribution of radioactivity in

cellular compartment

Clove extract (mg/ml) %ATI in Cellular compartment

0.0 96.96±1.06

6.5 56.89±3.66

12.5 55.67±4.95 25 54.21±1.86 50 53.94±0.80 100 44.45±2.87*

Blood samples were incubated with clove extract at different concentrations. After that, the labeling of blood constituents with 99mTc was performed. The samples were centrifuged and aliquots of blood cells were separated. The radioactivity in these fractions was determined and the percentage of incorporated radioactivity (%ATI) was determined. (*) p<0.05 when compared to control.

Table 2 shows the effect of different concentrations of the clove extract on the fixation of 99mTc on plasma proteins. The clove extract decreased significantly (p<0.05) the fixation of the 99mTc on the plasma proteins from 64.28±7.55 to 15.11±0.63. 0.00 0.10 0.20 0.30 0.40 0.50 0.60

400 440 480 520 560 600 640 680

Wavelength (nm)

A

b

sor

b

(20)

Table 2 – Effect of different concentrations of the clove extract on the labeling of plasma proteins Clove extract (mg/ml) %ATI in Plasma proteins

0.00 73.94±1.04

6.5 33.09±2.82

12.5 33.04±3.97 25 28.15±3.17 50 19.59±5.75 100 15.11±0.63* Blood samples were incubated with clove extract for 1 hour. After

that, the labeling of blood constituents with 99mTc was performed. Aliquots of plasma were precipitated in trichloroacetic acid. The radioactivity in these fractions was determined and the percentage of incorporated radioactivity (%ATI) was determined. (*) p<0.05 when compared to control.

Table 3 shows the effect of different concentrations of clove extract on the fixation of

99mTc on proteins of blood cells. The results show

that the clove extract decreased significantly (p<0.05) the radioactivity fixation on the cellular proteins from 91.39 ±1.17 to 71.16±3.87.

Table 3 - Effect of different concentrations of the clove solution on the labeling of cells proteins

Clove extract (mg/ml) %ATI in proteins of blood cells

0.0 91.39±1.17

6.5 82.03±3.38 12.5 79.65±2.27

25 76.01±3.05

50 73.53±3.47

100 71.16±3.87*

Blood samples were incubated with clove extract for 1 hour. After that, the labeling of blood constituents with 99mTc was performed. Aliquots of blood cells were precipitated in trichloroacetic acid. The radioactivity in these fractions was determined and the percentage of incorporated radioactivity (%ATI) was determined. (*) p<0.05 when compared to control.

Figures 2 and 3 represent the photomicrographies of blood smears from blood samples treated with saline (0.9% NaCl) and clove extract at the higher concentration used (100mg/ml), respectively. The qualitative comparison between these figures indicates that clove extract alters the morphology of RBC.

Figure 2: Photomicrography of blood smear from blood incubated with saline (control). Blood samples were incubated with 0.9% NaCl for 1 hour. Blood smears were prepared and stained by May-Grünwald-Giemsa method. The slides were analyzed by optical microscopy (x1000).

Figure 3: Photomicrography of blood smear from blood incubated with clove extract. Blood samples were incubated with clove extract (100mg/ml) for 1 hour. Blood smears were prepared and stained by May-Grünwald-Giemsa method. The slides were analyzed by optical microscopy (x1000).

(21)

0.00 0.20 0.40 0.60 0.80

0.0 6.5 12.5 25.0 50.0 100.0

Clove Extract (mg/ml)

Peri m eter/ area Rati o (1/µµµµ m)

Figure 4 - Effect of clove extract on the perimeter/area ratio of RBC. Morphometric measurements of perimeter/area of RBC from blood smears with a total of five fields per each slide and five slides to each extract were evaluated. The software Image pro plus, media Cibernetics, USA) was used to these evaluations.

DISCUSSION

Some authors have reported that nuclear medicine procedures could be altered by medication treatments that the patient is undergoing. (Hesslewood and Leung, 1994; Owunwanne et al., 1995; Sampson, 1999). Blood constituents labeled with 99mTc have been used in several clinical examinations (Saha, 2004) and also as an experimental assay on an attempt to verify the effect of drugs (Fonseca et al., 2007). This experimental model has permitted to obtain relevant information about properties of various chemical compounds (synthetic and natural) (Abreu et al., 2006; Fonseca et al., 2007).

The analysis of the results shown in tables 1, 2 and 3 indicates that there was an important alteration on the labeling of the blood constituents with 99mTc when the incubation with clove extract

was made in vitro at highest concentration used. These results could be explained, at least in part, by a possible oxidant and citotoxic property of the chemical compounds that are present in the clove solution (Schmalz et al.,

2000). These compounds could oxidize the stannous ions that are necessary to the reduction of the pertechnetate ion, as suggested by other authors to several natural products, as Maytemus icilifolia (Oliveira et al., 2000), Ginkgo biloba

(Moreno et al., 2002), Paullinia cupana (Oliveira

et al., 2002) and Mentha crispa (Santos-Filho et al, 2004).

Other possible explications would be the actions of the clove on the ions transport systems and alteration of the RBC membrane structure. In fact, some flavoids were described as capable of interacting with ions transport channels in membrane (Morales et al., 1994; Re et al., 1999). Bratel et al., (1998) have reported that extractable components of some commonly used root canal sealing materials may interfere with immunocompetent cells in vitro. In addition, the antibacterial effect of compounds presents in clove extract could be related to action on bacterial membrane.

Changes in the optic disc structure and thickness of retinal nerve fiber layer in chronic ocular hypertensive monkeys (Shimazawa et al.,

2006), the relationship between infarct-related artery stenosis and capillary density (Prech et al.,

2005) and the effects of two sex hormones on normal mammal gland of female rats (Pompei et al., 2005) are several important findings obtained by morphometric measurements. Oliveira et al.

(2003) showed possible alterations by morphometric analysis of RBC from blood treated with natural products.

The qualitative morphologic analysis indicated that clove extract induce alterations on shape of RBC (Figure 2). However, this finding was not confirmed by quantitative analysis by mophometric measurements indicating no effect of clove extract at the higher concentration (100mg/ml) on the perimeter/area ratio of RBC (Figure 3).

The morphology of RBC is influenced by function of ion transport systems in membrane (Lew and Bookchin, 2005). Chemical compounds in clove extract may interact with these systems and alter the morphology of RBC observed in this study. This hypothesis could be in agreement with the results of the distribution of radioactivity in cellular compartment (Table 1).

(22)

ACKNOWLEDGEMENTS

We are grateful for the biologist Mario Pereira (UERJ) for his technical support and to Mr. Carlos Brown Scavarda (B. A., University of Michigan) for the English language revision. Financial support: CNPq, CAPES and UERJ.

RESUMO

Cravo-da-índia (Caryophyllus aromaticus L.) tem sido usado em tratamentos clínicos. Constituintes sangüíneos marcados com tecnécio-99m (tecnécio-99mTc) são usados em medicina nuclear O objetivo foi avaliar os efeitos de um extrato de cravo-da-índia na marcação de constituintes sangüíneos com 99mTc e na morfologia das hemácias. Amostras de sangue foram incubadas com cravo-da-índia, cloreto estanoso e 99mTc. Plasma, células sangüíneas, frações insolúveis do plasma e das células sangüíneas foram separadas. A porcentagem de radioatividade incorporada (%ATI) nestas frações foi calculada. Forma e relação perímetro/área das hemácias foram avaliadas. O extrato de cravo-da-índia alterou significativamente (p<0,05) a radiomarcação de constituintes sangüíneos e qualitativamente a forma das hemácias. Não foram obtidas alterações na relação perímetro/área hemácias. Os resultados indicam que o extrato de cravo-da-índia apresenta compostos que interferem com a radiomarcação de constituintes sangüíneos e alteram a morfologia de CS através de ações oxidativas/quelantes ou interagindo com a estrutura da membrana celular.

REFERENCES

Abreu, P. R.; Almeida, M. C.; Bernardo, R. M.; Bernardo, L. C.; Brito, L. C.; Garcia, E. A.; Fonseca, A. S. and Bernardo-Filho, M. (2007), Guava extract (Psidium guajava) alters the labelling of blood constituents with technetium-99m. J Zhejiang Univ Sci B7, 429-35

Artiko, V.; Obradovic, V.; Petrovic, M.; Perisic-Savic, M. and Suvajdzic,N. (2004), Hemangioma of the spleen confirmed by blood pool scintigraphy. Clin Nucl Med 29, 670-1

Banerjee, S.; Panda, C. K. and Das, S. (2006), Clove (Syzygium aromaticum L.), A potential chemopreventive agent for lung cancer.

Carcinogenesis.8, 1645-1654

Bernardo-Filho, M.; Caniné, M. S.; Lopes, R. L. F. and Boasquevisque, E. M. (1986). Effect of temperature on the “in vitro” labeling of red blood cells with

technetium-99m. Braz.Arch. Biol. Technol. 29, 407-412

Bielory, L. (2004), Complementary and alternative interventions in asthma, allergy and immunology;

Ann. Allergy. Asthma. Immunol.93, 45-54

Bisset, N. G. (1994), Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice. Translad, ed. Boca Raton CRC Press, London, pp 566 Bisset, N. G. (2001), Herbal Drugs and

Phytopharmaceuticals: A Handbook for Practice, ed. CRC Press, London, pp. 566

Bratel, J.; Jontell, M.; Dahlgren, U. and Bergenholt, G. (1998), Effects of root canal sealers on immunocompetent cells in vitro and in vivo. Int. Endod. J.31, 178-88

Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi A. B.; Rouabhia, M.; Mahdouani, K. and Bakhrouf, A. (2007), The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review.

Phytother. Res. 6, 501-6

Duke, J. A. (1985), Handbook of Medicinal Herbs, ed. CRC Press, New York, pp. 468 – 469

Fonseca, A. S.; Frydman, J. N.; Rocha, V. C. and Bernardo-Filho, M. (2007), Acetylsalicylic acid decreases the labeling of blood constituents with technetium-99M. Acta Biol Hung. 2, 187-98

Harbert, J. C.; Eckelman, W. C. and Neumann, R. D. (1996), Nuclear Medicine of Diagnosis and Therapy, ed. Thieme, New York

Harel, F.; Dupuis, J.; Benelfassi, A.; Ruel, N. and Gregoire, J. (2005), Radionuclide plethysmography for non-invasive evaluation of peripheral arterial blood flow. Am. J. Physiol Heart. Circ. Physiol. 289, 258-262

Hesslewood, S. and Leung, E. (1994), Drug interactions with radiopharmaceuticals. Eur. J. Nucl. Med. 21, 348-56

Jin, R. B.; Ma, X. L.; Wen, J. L. and Tang, W. J. (2004), Application of radionuclide imaging to hepatic impact injury in rabbits. Chin. J. Traumatol.7, 45-48

Kramer, R. E. (1985), Antioxidants in clove. J. Am. Oil Chem. Soc.62, 111-113

Kumari, M. V. (1991), Modulatory influences of clove (Caryophyllus aromaticus, L) on hepatic detoxification systems and bone marrow genotoxicity in male Swiss albino mice. Cancer Lett.60, 67-73 Lew, V. L. And Bookchin, R. M. (2005), Ion transport

pathology in the mechanism of sickle cell dehydration. Physiol Rev. 1, 179-200

Lueng, A. Y.; and Foster, S. (1996), Encyclopedia of common natural ingredients: used in food, drugs and cosmetic, ed.John Wiley& Sons, New York

(23)

properties of Psidium guajava L. Arch Med Res. 25, 17-21

Moreno, S. R. F.; Diré, G.; Freitas R. S.; Farah, M. B. Lima-Filho, G. L.; Rocha, E. K.; Jales, R. L. C. and Bernardo-Filho, M. (2002), Effect of Ginkgo biloba on the labeling of blood elements with technetium-99m: in vitro study. Rev. Bras. Farmacogn. 12, 62-63

Musenga, A.; Ferranti, A.; Saracino, M. A.; Fanali, S. and Raggi, M. A. (2006), Simultaneous determination of aromatic and terpenic constituents of cloves by means of HPLC with diode array detection. J Sep. Sci.9, 1251-8

Olds, G. D.; Cooper, G. S.; Chak, A.; Sivak, M. V. J.; Chitale, A. A. and Wong, R. C. (2005), The yield of bleeding scans in acute lower gastrointestinal hemorrhage. J. Clin. Gastroenterol. 39, 273-7

Oliveira, J. F.; Braga, A. C. S.; Ávila, A. S. R. Araújo, A. C.; Cardoso, V. N.; Bezerra, R. J. A .C.; and Bernardo-Filho, M. (2000), Assessment of the effect of Maytemus icilifolia extracts on the labeling of red blood cells and plasma proteins with technetium-99m. J.Ethnopharmacol.72, 179-184 Oliveira, J. F.; Ávila, A. S.; Braga, A. C. S.; Oliveira,

M. B. N.; Boasquevisque, E. M.; Jales, R. L.; Cardoso, V. N. and Bernardo-Filho, M. (2002). Effect of extract of medicinal plants on the labeling of blood elements with Technetium-99m and on the morphology of red blood cells: a study with Paullinia cupana. Fitoterapia. 73, 305-312

Oliveira, J. F.; Oliveira, M. B.; Ávila, A. S.; Braga, A. C. S.; Catanho, M, T. J. A.; Jales, R. L. C.; Cardoso, V. N. and Bernardo-Filho, M. (2003), Assessment of the effect of Fucus vesiculosos extract on the labeling of blood constituents with technetium-99m and the histological modifications on the shape of the red blood cells.Food. Chem. Toxicol. 41, 15-20

Owunwanne, A.; Patel, M. and Sade, K. S. (1995), The Handbook of Radiopharmaceuticals, ed. Chapman & Hall, London

Pompei, L. M.; Carvalho, F. M.; Ortiz, S. C.; Motta, M. C.; Cruz, R. J. and Melo, N. R. (2005), Morphometric evaluation of effects of two sex steroids on mammary gland of female rats. Maturitas. 5, 370-9

Prech, M.; Grajek, S.; Marszalek, A.; Lesiak, M.; Jemielity, M.; Araszkiewicz, A.;

Mularek-Kubzdela, T. and Cieslinski, A. (2005), Chronic infarct-related artery occlusion is associated with a reduction in capillary density. Effects on infarct healing. Eur. J. Heart. Fai.l. 8, 373-80 Re, L.; Barocci, S.; Capitani, C.; Vivani, C.; Ricci, M.;

Rinaldi, L.; Paolucci, G.; Scarpantonio, A.; Leon-Fernandez, O. S. and Morales, M. A. (1999), Effects of some natural extracts on the acetylcholine release at the mouse neuromuscular junction. Pharmacol Res. 39, 239-245

Saeed, S. and Gilani, A. H. (1994), Antithrombotic activity of clove oil. J Pak Med Assoc. 44, 112-115 Saha, G. B. (2004), Fundamentals of nuclear pharmacy,

ed. Springer, New York

Sampson, C. B. (1999), Textbook of Radiopharmacy Theory and Practice, ed. Gordon and Breach, Amsterdam

Santos-Filho, S. D.; Diré, G. L.; Lima, E.; Oliveira, M. N. and Bernardo-Filho, M. (2004), Effect of Mentha crispa extract on the labeling of blood elements with technetium-99m: A possible evaluation of free radicals. J. Biol. Sci.8, 266-70

Schmalz, G.; Hoffmann, M.; Weis, K. and Schweikl, H. (2000), Influence of albumin and collagen on the cell mortality evoked by zinc oxide-eugenol in vitro J Endod. 2, 284-287

Shimazawa, M.; Taniguchi, T.; Sasaoka, M. and Hara, H. (2006), Nerve fiber layer measurement using scanning laser polarimetry with fixed corneal compensator in normal cynomolgus monkey eyes.

Ophthalmic Res.38, 1-7

Suresh-Babu, S. and Madhavi (2001) Green Remedies,

ed. Pustak Mahal, Delhi, pp. 74 -75

Verdu, J.; Martinez, A.; Anton, M. A.; Munozm J. M.; Riera, M.; Jover, R. and Caballero, O. (2005), Increased thallium-201 uptake and Tc-99m red blood cell accumulation in hemangioma. Clin. Nucl. Med.

30, 25-6

Wong, K. T.; Beauvais, M. M.; Melchior, W. R. and Snyder, S. P. (2004), Enhanced liver uptake of Tc-99m-labelled RBCs during gastrointestinal bleed scintigraphy using transfused RBCs compared with autologous RBCs. Clin. Nucl. Med.29, 522-3

(24)

Manuscrito 2:

Effects of a Tomato (

Solanum lycopersicum

) Extract on the Labeling of

Blood Constituents with Technetium-99m

Severo de Paoli1, 2, 3, 4*, Aline P.M. Dias4, 5, Priscila V.S.Z. Capriles4, 5, Tadeu E.M.M. Costa4,5, Adenilson S. Fonseca4 and Mario Bernardo-Filho4, 5

1Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências da

Saúde, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180, Natal, RN, Brasil.

2Universidade Estácio de Sá, Rua do Bispo, 83, 20261-063, Rio Comprido, Rio de Janeiro, Brasil, 3Centro Universitário Fundação Educacional Serra dos Órgãos, Faculdades de Odontologia e Fisioterapia,

Avenida Alberto Torres 111, Alto, 25964-004, Teresópolis, Rio de Janeiro, Brasil,

4Universidade do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes,

Departamento de Biofísica e Biometria, Avenida 28 de Setembro, 87 fundos, Vila Isabel, 20551-030, Rio de Janeiro, Brasil,

5Instituto Nacional do Câncer, Coordenadoria de Pesquisa Básica, Praça Cruz Vermelha, 23,

20230130, Rio de Janeiro, Brasil

Abstract

Tomato (Solanum lycopersicum) is the second most produced and consumed vegetable in the world. It has been indicated in the prevention and treatment of cancer, asthma and atherosclerosis. Blood constituents labeled with radionuclides have been used in procedures in nuclear medicine. Data have shown that food and drugs can alter the labeling of blood constituents with technetium-99m (99mTc). This study evaluated the

influence of a tomato extract on this radiolabeling procedure. Heparinized blood (Wistar rats) was incubated in vitro with different concentrations of a tomato extract and 99mTc-labeling was performed. Plasma (P) and blood cells (BC) were separated following soluble (SF-P/SF-BC) and insoluble (IF-P/IF-BC) fractions isolation by precipitation and centrifugation. The radioactivities on blood constituents (P, BC, IF-P, SF-P, IF-BC and SF-BC) were determined and the percentage of radioactivity (%ATI) calculated. The tomato extract used at the highest concentrations (2.00 and 4.00g/ml), reduced significantly (p<0.05) the %ATI in IF-P, although this extract did not modify the radiolabeling on BC, neither the radioactivity fixation on IF-BC. In conclusion, our data suggest that the chemical compounds present in the aqueous tomato extract could have some properties capable of change the fixation of 99mTc on plasma proteins.

(25)

Resumo

Efeitos de um extrato de tomate (Solanum lycopersicum) na marcação de constituintes sangüíneos

com tecnécio-99m. Tomate (Solanum lycopersicum) é o segundo vegetal mais produzido e consumido no mundo. Tem sido indicado para prevenção e tratamento de câncer, asma e arteriosclerose. Constituintes sangüíneos marcados com radionuclídeos têm sido usados em procedimentos na medicina nuclear. Dados têm mostrado que alimentos e drogas podem alterar a marcação de constituintes sangüíneos com tecnécio-99m (99mTc). Este estudo avaliou a influência de um extrato de tomate neste procedimento de radiomarcação. Sangue heparinizado (Wistar rats) foi incubado in vitro com diferentes concentrações de um extrato de tomate e a marcação com 99mTc foi realizada. Plasma (P) e células sangüíneas (CS) foram separadas permitindo o

isolamento das frações solúveis (SF-P/SF-CS) e insolúveis (IF-P/IF-CS) por precipitação e centrifugação. A radioatividade nos constituintes sangüíneos (P, CS, IF-P, SF-P, IF-CS e SF-CS) foi determinada e a porcentagem de radioatividade (%ATI), calculada. O extrato de tomate usado, nas maiores concentrações (2.00 and 4.00g/ml), reduziu significativamente (p<0.05) a %ATI na IF-P, embora este extrato não tenha modificado a radiomarcação da CS e fixação da radioatividade na IF-CS. Em conclusão, nossos dados sugerem que os compostos químicos presentes no extrato aquoso do extrato teria algumas propriedades capazes de alterar a fixação do 99mTc nas

proteínas plasmáticas.

Unitermos: Constituintes sangüíneos, Solanum lycopersicum, tecnécio-99m

Introduction

(26)

(Rissanen et al., 2002; Frederiksen et al., 2007), reduction of asthma symptoms (Neuman et al., 2000; Wood et al., 2004) and decrease of DNA strand breakages of cells of the immune system (Riso et al., 1999; Porrini et al.; 2005, Riso et al., 2006).

The tomato effects may be related mainly to lycopene which acts on biological mechanisms altering the oxidant status and could be responsible for its positive protective actions (Everson and McQueen 2004; Bose and Agrawal, 2007). Normally, the amount of lycopene in the tomatoes is not always the same and it can vary from 5 mg/kg in the yellow tomatoes to 50 mg/kg in yhe red tomatoes. Reddish foods, such as watermelon, papaya and pink grapefruit may also contain lycopene, but at lower concentrations than in tomatoes (Boyle et al., 2003).

Several theories are being explored to explain the lycopene effects on the prevention of cancer. Lycopene consumption is inversely related to insulin growth factor levels, a factor linked to a greater risk of prostate cancer (Boyle et al., 2003; Jatoi et al., 2007). A second proposed mechanism of lycopene action includes both inhibition of tumor growth by decrease or loss in junctional cell communication (Kucuk et al., 2002; Telef et al., 2006). However, the most widely accepted theory is the antioxidant effects of lycopene acting as a scavenger for singlet oxygen, hydrogen peroxide and nitrogen dioxide that are associated with DNA damage and the development of cancer (Hadley et al., 2002; Bose and Agrawal, 2007). This theory is also used to explain the beneficial effects of lycopene on asthma and atherosclerosis (Neuman et al., 2000, Rissanen et al., 2002; Frederiksen et al., 2007).

(27)

Labeled red blood cells (RBC) with 99mTc has come into wide use in clinical nuclear medicine for several important applications, including imaging of cardiovascular system (Niemeyer et al., 1995), peripheral arterial blood flow (Harel et al., 2005), evaluation of gastrointestinal bleeding (Wong et al., 2004, Zaman et al., 2004, Olds et al., 2005), measurement of red cell volume (Hladik III et al., 1987), hepatic hemangiomas (Artiko et al., 2004, Verdu et al., 2005), renal carcinoma (Cortes et al., 2003) and splenic reticuloendothelial system (Jin et al., 2004, Slart et al., 2004).

The use of medicinal plants or natural products for treatment of various diseases has increased in the last decades (Everson and McQueen 2004), justifying the use of accepted experimental models to study some biological properties of various natural products (Reiniger et al., 1999; Fonseca et al., 2005; Freitas et al., 2007).

Natural or synthetic drugs, as well as labeling conditions, can have effect on the labeling of blood constituents (Lima et al., 2002, Frydman et al., 2004, Fonseca et al., 2005, Jesus et al., 2006, Fonseca et al., 2007). The aim of this study is to evaluate the interference of different concentrations of an aqueous tomato extract on the labeling of blood constituents with 99mTc.

Materials and Methods

Animals

Adult male Wistar rats (3-4 months, 250-350g) were maintained in a controlled environment. The animals had free access to water and food and ambient temperature was kept at 25 ± 2ºC. The experimental protocol was approved (CEA/115/2006) by the Ethical

(28)

Preparation of tomato extract

Tomato, as fruit, was purchased in a local supermarket. To prepare the extract, 4g of tomatoes (without bark and seeds) were ground in 1ml NaCl 0.9%. The crude extract was filtered and centrifuged (clinical centrifuge, 2000rpm, 10min) to obtain the final extract. This fraction of the extract was considered 4g/ml.

A spectrophotometric analysis (Analyser, 800M, São Paulo, Brazil) of the extract was carried out. The absorbance at 455 nm was considered the marker of the quality control of this extract. All the prepared extracts to be used in the experiments must had the optical density of 0.05±0.004 (Figure 1).

In vitro Radiolabeling of Blood Constituents

Heparinized blood (500µl) was withdrawn by heart puncture from Wistar rats and

incubated with 100µl of different concentrations of a tomato extract (0.05, 0.50, 1.00, 2.00

and 4.00g/ml) or with a saline solution (0.9% NaCl) alone, as control, for 1 hour (room temperature). Afterwards, 500 µl of stannous chloride (1.20 µg/ml) was added and the

incubation continued for further 1 hour. After this period of time, 100 μl of 99mTc (3.7MBq) as sodium pertechnetate (Na99mTcO4), recently milked from a 99Mo/99mTc generator (Instituto

de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, Brazil) were added and the incubation was continued for 10 minutes. These samples were centrifuged in a clinical centrifuge (1500rpm, 5min) and aliquots of 20 µl of plasma (P) and

blood cells (BC) were isolated. Another aliquots of 20 µl of P and BC were separated and

(29)

(Bernardo-Statistical analysis

Data were reported as (means ± standart deviation) of %ATI and compared to the treated (n=10 for each extract concentration) and control group (n=10) by One way analysis of variance - ANOVA, followed by Bonferroni post test, with a p<0.05 as significant level. InStat Graphpad software was used to perform statistical analysis (GraphPad InStat version 3.00 for Windows 95, GraphPad Software, San Diego California, USA).

Results

The figure 1 shows the absorption spectrum of the tomato extract used in the experiments. The pattern of the absorption spectrum presents the highest measure of the optical density (0.055±0.004) at 455 ηm. This parameter has allowed us controlling the experimental

conditions of preparation of the extracts and used as markers. <Figure 1>

The Figure 2 shows the ATI% in blood cells (BC) and plasma (P) compartments from blood treated with different concentrations of tomato extract. The analysis of these data indicates that tomato extract has not altered the distribution of radioactivity in these two compartments (BC and P).

<Figure 2>

The Figure 3 shows the ATI% in insoluble (IF-P) and soluble (SF-P) fractions isolated from plasma separated from whole blood treated with different concentrations of tomato extract. The analysis of this data indicates that tomato extract has significantly (p<0.05) reduced the radioactivity fixation in IF-P in the two highest concentration studied (2.00 and 4.00g/ml).

(30)

The Figure 4 shows the ATI% in insoluble (IF-BC) and soluble (SF-BC) fractions isolated from blood cells separated from blood treated with different concentrations of tomato extract. The analysis of this data indicates that tomato extract has not significantly modified the radioactivity fixation in insoluble blood cells fraction.

<Figure 4>

Discussion

It has been described that food and also natural and synthetic drugs can alter the labeling procedure with a radionuclide causing an unexpected behavior of the labeling of the blood constituents with the radiopharmaceutical (Hesslewood & Leung 1994; Sampson, 1999; Gomes et al., 2002).

The changes in the pattern observed when binding the radionuclide 99mTc have been possible through studies carried out with natural or synthetic products interaction (Fonseca et al., 2005). It seems that natural products (terpenoids, isoflavonoids, abajeru) or synthetic drugs (acethylsalicic acid, zinc oxide, eugenol,) as well as food (tomatoes, clove), are capable of modifying the blood constituents labeled with radionuclides (Hesslewood & Leung 1994; Sampson, 1999; Gomes et al., 2002).

(31)

The data obtained in this work shown that the tomato extract has reduced the radioactivity fixation on plasma proteins (Figure 3). Yet, the tomato extract has not modified the distribution of radioactivity between plasma and blood cells compartments (Figure 2) neither the fixation of 99mTc on the blood cells proteins (Figure 4). Stannous ion (Sn+2) is used as reducing agent in the 99mTc-labeling of blood constituents and compounds or conditions that interfere with its action can alter the fixation of 99mTc on these constituents (Hladik III et al., 1987; Bernardo-Filho et al., 1994; Moreno et al, 2002). The effect of tomato extract on labeling of plasma proteins could be related to its antioxidant property disturbing the action of Sn+2 on 99mTc and decreasing the radioactivity uptake by plasma proteins. In fact, data have demonstrated that tomato constituents (as lycopene and vitamin C) have antioxidant effects (Hadley et al., 2002; Rissanen et al., 2002; Everson & McQueen 2004; Bose and Agrawal, 2007) and this may explain the alterations of 99mTc-labeling plasma proteins obtained in this work.

On the other hand, in the blood, carotenoids transported by lipoproteins and, more substantially, by low density lipoproteins (LDL), suggest that the increase in LDL resistance to oxidation during consumption of tomato juice may be, at least, partly due to increased content of lycopene (Erdman et al., 1993; Upritchard et al., 2000). In addition, It has been also related a protective effect of beta-carotene and lycopene entrapped in human albumin against the oxidative attack of electronically excited molecular oxygen on 2'-deoxyguanosine (dGuo) (Yamaguchi et al., 1999). So, these interaction between plasma proteins and tomato constituents could decrease the number of the binding sites of 99mTc with plasma proteins and this could be related with the decrease of the radiolabeling of these proteins.

Conclusion

(32)

occurs due to chemical substances of the tomato extract that could have action on reducing agent (stannous ion) used in the labeling process and/or the ability to interact with plasma proteins, occupying its binding sites. Although these experiments were performed in rats, the results suggest that caution should be taken with the interpretation of the data obtained from nuclear medical diagnosis and tests when patients consume tomato extracts or its derivatives in food.

Acknowledgements

This research was supported by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Universidade do Estado do Rio de Janeiro (UERJ).

References

- Abreu PR, Almeida MC, Bernardo RM, Bernardo LC, Brito LC, Garcia EA, Fonseca AS, Bernardo-Filho

M 2007. Guava extract (Psidium guajava) alters the labelling of blood constituents with technetium-99m. J

Zhejiang Univ Sci B 7: 429-35.

- Artiko V, Obradovic V, Petrovic M, Perisic-Savic M, Suvajdzic N. 2004. Hemangioma of the spleen

confirmed by blood pool scintigraphy. Clin Nucl Med 29: 670-71.

- Bernardo-Filho M, Gutfilen B, Maciel OS. 1994. Technetium-99m binding on plasma proteins and red

blood cells: role of various precipitating agents. Biomed Letters 50: 17-24.

- Bose KS, Agrawal BK 2007. Effect of lycopene from cooked tomatoes on serum antioxidant

enzymes, lipid peroxidation rate and lipid profile in coronary heart disease. Singapore Med J. 48:

415-20.

(33)

- Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW Jr 2007.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate

adenocarcinomas. Cancer Res 2:836-43.

- Cortes J, Alonso JI, Ruiz-Oliva F, Alvarez S, Ormijana JS, Caton B, Alcorta P 2003. Renal cell

carcinoma detected on Tc-99m-labeled red blood cell imaging. Clin Nucl Med 28: 920-2.

- Early PJ, Sodee DB. 1995. Principles and Practice of Nuclear Medicine. Missouri, USA 2nd edition.

Mosby,.

- Erdman JW Jr, Bierer TL, Gugger ET 1993. Absorption and transport of carotenoids. Ann N Y Acad

Sci 691: 76–85.

- Etmina M, Takkouche B, Caamaño-Isorna F 2004. The role of tomato products and lycopene in the

prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers

Prev 13: 340-5.

- Everson KM, McQueen CE 2004. Lycopene for prevention and treatment of prostate cancer. Am J

Health-Syst Pharm 61: 1564-6.

- Fonseca AS, Frydman JNG, Santos R, Bernardo-Filho M 2005. Influence of antipyretic drugs on the

labeling of blood elements with technetium-99m. Acta Biol Hung 56: 275-82.

- Fonseca AS, Frydman JNG, Rocha VC, Bernardo-Filho M 2007. acetylsalicylic acid decreases the

labeling of blood constituents with technetium-99m. Acta Biol Hung 58: 187-98.

- Frederiksen H, Rasmussen SE, Schroder M, Bysted A, Jakobsen J, Frandsen H, Ravn-Haren G,

Mortensen A 2007. Dietary supplementation with an extract of lycopene-rich tomatoes does not

reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Br J Nutr 1:6-10

- Freitas RS, Moreno SR, Lima-Filho GL, Fonseca AS, Bernardo-Filho M 2007. Effect of a

commercial extract of Paullinia cupana (guarana) on the binding of 99mTc-DMSA on blood

(34)

- Frydman JNG, Oliveira MBN, Santos AEO, Fonseca AS, Santos R, Bernardo-Filho M 2004. Influence of

methylxanthines on the labeling of blood elements with 99mTechnetium. Pak J Biol Sci 4: 521-4

- Gomes ML, Oliveira MBN, Bernardo-Filho M 2002. Drug interaction with radiopharmaceuticals:

effects on the labeling of red blood cells with technetium-99m and on the bioavailability of

radiopharmaceuticals. Braz Arch Biol Technol 45: 143-9.

- Hadley CW, Miller EC, Schwartz SJ, Clinton SK 2002. Tomatoes, lycopene, and prostate cancer:

progress and promise. Exp Biol Med (Maywood) 227: 869-80.

- Harbert JC, Eckelman WC, and Neumann RD 1996. Nuclear Medicine in Diagnosis and Therapy.

New York, USA, Thieme Medical Publishers.

- Harel F, Dupuis J, Benelfassi A, Ruel N, Gregoire J 2005. Radionuclide plethysmography for

non-invasive evaluation of peripheral arterial blood flow. Am J Physiol Heart Circ Physiol 289:

H258-H262.

- Hesslewood S, Leung E 1994. Drug Interactions with radiopharmaceuticals. Eur J Nucl Med 21:

348-56.

- Hladik III, WB Ponto JA, Lentle BC, Laven Dl 1987. Iatrogenic alterations in the biodistribution of

radiotracers as a result of drug therapy: reported instances. In: Essentials of Nuclear Medicine

Sciences.Sidney, Australia, Williams and Wilkins.

- Jatoi A, Burch P, Hillman D, Vanyo JM, Dakhil S, Nikcevich D, Rowland K, Morton R, Flynn PJ,

Young C, Tan W 2007. North Central Cancer Treatment Group. A tomato-based, lycopene-containing

intervention for androgen-independent prostate cancer: results of a Phase II study from the North

Central Cancer Treatment Group. Urology 2:289-94.

- Jesus LM, Abreu, PR Almeida, MC, Brito LC Soares SF, de Souza DE, Bernardo LC, Fonseca AS,

Bernardo-Filho M 2006. A propolis extract and the labeling of blood constituents with

(35)

- Jin RB, Ma XL, Wen JL, Tang WJ 2004. Application of radionuclide imaging to hepatic impact

injury in rabbits. Chin J Traumatol 7: 45-8.

- Kucuk O, Sarkar FH, Djuric Z, Sakr W, Pollak MN, Khachik F, Banerjee M, Bertram JS, Wood

DPJr 2002. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol

Med (Maywood) 227: 881-5.

- Lima EA, Dire G, Mattos DM, Freitas RS, Gomes ML, de Oliveira MB, Faria MV, Jales RL,

Bernardo-Filho, M 2002. Effect of an extract of cauliflower (leaf) on the labeling of blood elements

with technetium-99m and on the survival of Escherichia coli AB1157 submitted to the treatment with

stannous chloride. Food Chem Toxicol 40: 919-23.

- Moreno SRF, Diré G, Freitas RS, Farah MB, Lima-Filho GL, Rocha EK, Jales RLC,

Bernardo-Filho. M 2002. Effect of Ginkgo biloba on the labeling of blood elements with technetium-99m: in

vitro study. Rev Bras Farmacogn. 12:62-63.

- Neuman I, Nahum H, Ben-Amotz A 2000. Reduction of exercise-induced asthma oxidative stress by

lycopene, a natural antioxidant. Allergy 55: 1184-9.

- Niemeyer MG, van der Wall EE, Kuijper AF, Cleophas AT, Pauwels EK 1995. Nuclear cardiology,

current applications in clinical practice. Angiology 46: 591-602.

- Olds GD, Cooper GS, Chak A, Sivak MVJ, Chitale AA, Wong RC 2005. The yield of bleeding scans in

acute lower gastrointestinal hemorrhage. J Clin Gastroenterol 39: 273-7.

- Oliveira MB, Fonseca AS, Bernardo-Filho M, Santos R 2002. Study of the biodistribution of the

amantadine labelled with technetium-99m in Wistar female rats. Cell Mol Biol (Noisy-le-grand) 48:

767-9.

- Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F 2005. Daily intake of a formulated

tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular

(36)

- Reiniger IW, Silva CR, Felzenszwalb, I, Mattos, JCP, Oliveira JF, Dantas FJS, Bezerra RJAC,

Caldeira-de-Araújo A, Bernardo-Filho, M 1999. Boldine action against the stannous chloride effect. J

Ethnopharmacol. 68: 345-8.

- Riso P, Pinder A, Santangelo A, Porrini M 1999. Does tomato consumption effectively increase the

resistance of lymphocyte DNA to oxidative damage? Am J Clin Nutr 69: 712-8.

- Riso P, Visioli F, Grande S, Guarnieri S, Gardana C, Simonetti P, Porrini M 2006. Effect of a

tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric

Food Chem 7:2563-6.

- Rissanen T, Voutilainen S, Nyyssonen K, Salonen JT 2002. Lycopene, atherosclerosis, and coronary

heart disease. Exp Biol Med (Maywood) 227: 900-7.

- Sampson CB 1999. Textbook of Radiopharmacy: Theory and Practice. Amsterdan, Netherlands,

Gordon and Breach Science Publishers

- Slart RH, Phan TT, Talsma MD, Jager PL 2004. Different splenic uptake of 99m sulfur colloid and

Tc-99m heat-denatured red blood cells in an infant with complete situs inversus. Clin Nucl Med 29: 590-1.

- Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P 2006.

Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 3

:453-69.

- Thomson M, Ali M 2003. Garlic [Aliium sativum]: a review of its potential use as an anti-cancer

agent. Curr Cancer Drug Targets 3: 67-81.

- Upritchard JE, Sutherland WH, Mann JI 2000. Effect of supplementation with tomato juice, vitamin

E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes

Care 23: 733-8.

- Verdu J, Martinez A, Anton MA Munoz JM, Riera M, Jover R Caballero O 2005. Increased thallium-201

(37)

- Welling MM, Mongera S, Lupetti A, Balter HS, Bonetto V, Mazzi U, Pauwels EK, Nibbering PH 2002.

Radiochemical and biological characteristics of 99mTc-UBI 29-41 for imaging of bacterial infections. Nucl

Med Biol 29: 413-22.

- Willcox JK, Catignani GL, Lazarus S 2003. Tomatoes and cardiovascular health. Crit Rev Food Sci

Nutr 43: 1-18.

- Wong KT, Beauvais MM, Melchior WR, Snyder SP 2004. Enhanced liver uptake of Tc-99m-labeled

RBCs during gastrointestinal bleed scintigraphy using transfused RBCs compared with autologous

RBCs. Clin Nucl Med 29: 522-3.

- Wood LG, Garg ML, Blake RJ, Gibson PG 2004. Carotenoid concentrations in asthmatics versus

healthy controls. Asia Pac J Clin Nutr 13(Suppl): S74.

- Yamaguchi LF, Martinez GR, Catalani LH, Medeiros MH, Di Mascio P 1999. Lycopene entrapped

in human albumin protects 2'-deoxyguanosine against singlet oxygen damage. Arch Latinoam Nutr 49:

12S-20S.

- Zaman MU, Hussain R, Sajjad Z, Ahmad MN 2004. Localization of upper GI bleed on delayed

(38)

FIGURE 1

FIGURE 2

400 420 440 460 480 500 520 540

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Abs

or

ban

ce

Wavelenght (nm)

0.00 0.05 0.50 1.00 2.00 4.00

0 10 20 30 40 50 60 70 80 90 100

%A

TI

TOMATO EXTRACT CONCENTRATION (g/ml)

P

(39)

FIGURE 3

FIGURE 4

0.00 0.05 0.50 1.00 2.00 4.00

0 10 20 30 40 50 60 70 80 90 100

%A

TI

TOMATO EXTRACT CONCENTRATION (g/ml)

0.00 0.05 0.50 1.00 2.00 4.00

0 10 20 30 40 50 60 70 80 90 100

***

***

***

***

%ATI

(40)

3.2. MANUSCRITO SUBMETIDO PARA PUBLICAÇÃO

Zinc-oxide-eugenol alters the labeling of blood constituents with

technetium-99m and the shape of the red blood cells.

S.Paoli MD1, T.S.Giani MD2, G.A.Presta MD3, C.G.Correa4, A.I.Maiworm5, S.D.Santos-Filho MD6 and M.Bernardo-Filho PhD7.

1. Dentistry; Professor, Faculdade de Odontologia (FONF) de Nova Friburgo, Nova Friburgo, RJ, and Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brazil; Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em Ciências da Saúde, Natal, RN, Brazil;

2. Physiotherapist, Professor, Universidade Estácio de Sá, UFRN, Programa de Pós-Graduação em Ciências da Saúde, Natal, RN, Brazil.

3. Medical Doctor; Professor and researcher, UFRN, Programa de Pós-Graduação em Ciências da Saúde, Natal, RN, Brazil.

4. Biologist; Professor and researcher in FONF, Nova Friburgo, RJ, and UNIFESO, Teresópolis, RJ, Brazil. 5. Physiotherapist; Head of the Physiotherapy Department, UFRN, Programa de Pós-Graduação em Ciências da Saúde, Natal, RN, Brazil.

6. Biologist and Physiotherapist Professor in UNIFOA, Volta Redonda, RJ, Brazil; UFRN, Programa de Pós-Graduação em Ciências da Saúde, Natal, RN, Brazil;

7. Biomedical an Physiotherapist, PhD, Instituto Nacional do Câncer, Rio de Janeiro, RJ, Brazil and Universidade do Estado do Rio de Janeiro, Departamento de Biofísica e Biometria. Rio de Janeiro, RJ, Brazil.

Correspondence to author: Severo de Paoli

Universidade do Estado do Rio de Janeiro Instituto de Biologia Roberto Alcantara Gomes Departamento de Biofísica e Biometria Laboratório de Radiofarmácia Experimental Av. 28 de Setembro, 87, Vila Isabel 20551-030, Rio de Janeiro, Brasil

(41)

ABSTRACT. (170 words)

Zinc oxide and eugenol (OZE) mixture produces a cement utilized in almost all the specialities in dentistry all over the world. Blood constituents are labeled with technetium-99m (99mTc) and used in nuclear medicine. Rationale and Objectives: The aim of this work was to study the effect of an OZE solution on the labeling of blood constituents with 99mTc and on the qualitative and quantitative evaluation of the shape of the red blood cells (RBC). Materials and Methods: Blood (Wistar rats) was incubated with OZE, stannous chloride and

99mTc. Samples of blood were isolated and fractions were separated. The percentage of

radioactivity (%ATI) was calculated and the morphology and morphological parameter were evaluated. Results: The %ATI on the blood constituents decreased significantly (p<0.05) due to the treatment with OZE. Qualitative and quantitative alterations were found. Conclusion: Although the experiments had been performed with rats, it is suggested precaution in the interpretation of the examinations of the nuclear medicine in patients that have been treated with OZE in the dentistry procedures.

Keywords: zinc oxide eugenol, dentistry, technetium-99m, blood constituents, red blood cell.

INTRODUCTION

(42)

general, this cement is used in procedures of the dentistry in the proportion of 1 g of zinc oxide and up to 0.25 ml of eugenol [5].

OZE has several pharmacological and/or biological properties including: (i) non toxic in vivo and toxic in vitro, (ii) adherent to tissues, (iii) mucostatic or mucocodisplacive (depending on brand used), (iv) good surface detail in thin section, (v) good dimensional stability (little or no dimensional change on setting, 0.1% dimensional change during setting), (vi) can be added to with fresh OZE and (vii) stable on storage and good shelf life. [8]

Radiobiocomplexes, known as radiopharmaceuticals, are radioactive tracers employed in nuclear medicine to help in the diagnosis and/or treatment of diseases. [9, 10]

Red blood cells labeled with 99mTc (99mTc RBC) are radiobiocomplexes widely used in clinical nuclear medicine for several important applications. [11, 12] The labeling of blood constituents with 99mTc depends on the presence of a reducing agent and stannous chloride is widely utilized. The in vitro technique is easily carried out and produces a better and well controlled product. [9]

Some authors have reported that the presence of natural or synthetic drugs might alter the labeling of blood constituents with 99mTc. [13-17] The morphological analysis of RBC has been of importance on the clinical and on the laboratory investigations and has contributed to evaluate possible alterations in the area, shape, volume and perimeter/area ratio of this kind of cellular structure. [18]

(43)

MATERIALS AND METHODS Animals

In our laboratory, the experiments have been carried out with rats that are maintained in a controlled environment. The animals had free access to water and food and ambient temperature was kept at 25 ± 2ºC. Heparinized whole blood was withdrawn by cardiac

puncture from adult male Wistar rats (3-4 months of age, 250±15g of weight) and a pool of blood from 6 animals was obtained. The animals are under anesthesia by sodic thiopental 40mg/kg. The protocols of the experiments were performed without sacrificing the animals and was approved (CEA/115/2006) by the Ethical Committee of the Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro.

Zinc oxide eugenol cement preparation

The zinc oxide (500 mg) (Super Dentaria Leão Ltda, Rio de Janeiro, Brazil, lot number 3/058, May 2002, validity May 2008) was mixed with eugenol 100 mg (Biodinâmica Química e Farmacêutica Ltda, Rio de Janeiro, Brazil, lot number 765/00, November/ 2002, validity November/2008) in a glass plaque to obtain a similar cement glass mass [19,20]. This cement was separated in 4 parts of 150 mg. One part was put in 0.9% NaCl (15 ml). After that, it was triturated and mixed in a vortex for 2 minutes. After filtration with a qualitative filter paper (Aldrich Chemical Co, 11cm, Lot number k932), the filtered solution was considered to be 10 mg/ml.

Labeling of blood constituents with 99mTc

(44)

sequence, 99mTc (3.7 MBq) was added, as sodium pertechnetate (99Molibdenium/99mTechnetium generator, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, Brazil) and the incubation continued for another 10 min. These samples were centrifuged (clinical centrifuge, 1500 rpm, 5 min and aliquots (20

µl) of plasma (P) and blood cells (BC) were separated. Aliquots (20 μl) of P and BC were also

precipitated in trichloroacetic acid (5%) and soluble (SF) and insoluble fractions (IF) of P and BC were separated. The radioactivity in P, BC, IF-P, SF-P, IF-BC and SF-BC were determined in a well counter (Packard Instrument Company, mod C5002, USA). After that, the percentage of radioactivity (%ATI) was calculated as described previously [21]. All experiments were repeated at least three times.

After the incubation with 99mTc, one drop of each sample was smeared in glass slides (5 slides for each sample) and the May-Grünwald-Giemsa (MGG) method was performed. The smear blood was fixed with methanol (Vetec, Brazil) for 5 min, then stained with Giemsa (azure eosin methylene blue solution, Isofar, Brazil) for 10min and washed in methanol to remove excess of stain. The glass slides were stayed at room temperature to dry. The stained glass slides with MGG were analyzed by optical microscopy and morphometric parameter (perimeter/area ratio) of a total of five fields per each glass slide were evaluated (Software image pro-plus, media Cybernetics, USA).

Statistical analysis

(45)

RESULTS

The table 1 shows the effect of different concentrations of the OZE solution on the distribution of the radioactivity between cellular and plasma compartments of the Wistar rats’ blood. The studied OZE solution decreased significantly (p<0.05) the radioactivity on the cellular compartment from 96.00±3.31 to 85.11±1.74.

The table 2 shows the effect of different concentrations of the OZE solution on the fixation of the radioactivity in the soluble and insoluble fraction of the plasma of the Wistar rats’ blood. The studied OZE solution decreased significantly (p<0.05) the fixation of the 99mTc on IF-P from 73.94±1.04 to 62.54±3.34.

The table 3 shows the effect of different concentrations of the OZE solution on the fixation of the radioactivity in the insoluble and soluble fraction of the blood cells obtained from the blood treated with OZE solution. The studied OZE solution decreased significantly (p<0.05) the radioactivity fixation on IF-BC from 91.30±1.17 to 71.16±3.87.

Imagem

Figure 1 shows the absorption spectrum of  the clove extract used in the experiments. The  pattern of the absorption spectra presents the  highest measure of the optical density  (0.489±0.013) at 480 nm
Figure 2: Photomicrography of blood smear from blood incubated  with saline (control)
Figure 4 - Effect of clove extract on the  perimeter/area ratio of RBC. Morphometric  measurements of perimeter/area of RBC from  blood smears with a total of five fields per each  slide and five slides to each extract were  evaluated
FIGURE 1  FIGURE 2 400420440460480 500 520 5400,000,010,020,030,040,050,060,070,080,090,10AbsorbanceWavelenght (nm) 0.00 0.05 0.50 1.00 2.00 4.000102030405060708090100%ATI
+4

Referências

Documentos relacionados

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

Dos objectivos traçados no nosso trabalho, verificamos que da análise quantitativa da transição das Lux GAAP para as IFRS nas diferentes rubricas, bem como nos

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Por essa razão, a proposição de um sistema informatizado de apoio ao monitoramento dessas pragas de eucalipto, que fazem uso de cartões-armadilha adesivos amarelos, auxiliaria