• Nenhum resultado encontrado

Validation of an indirect data collection method to assess airport pavement condition

N/A
N/A
Protected

Academic year: 2021

Share "Validation of an indirect data collection method to assess airport pavement condition"

Copied!
8
0
0

Texto

(1)

Short

communication

Validation

of

an

indirect

data

collection

method

to

assess

airport

pavement

condition

Bertha

Santos

a,

*

,

Pedro

G.

Almeida

b

,

Ianca

Feitosa

c

,

Débora

Lima

d

aUniversityofBeiraInterior,DepartmentofCivilEngineeringandArchitecture,6200-358,Covilhã,PortugalandCERIS(ECI/04625),Civil

EngineeringResearchandInnovationforSustainability,Lisbon,Portugal

b

UniversityofBeiraInterior,DepartmentofCivilEngineeringandArchitectureandGEOBIOTEC(GEO/04035),GeoBioSciences, GeoTechnologiesandGeoEngineering,6200-358,Covilhã,Portugal

c

UniversityofBeiraInterior,DepartmentofCivilEngineeringandArchitecture,6200-358,Covilhã,Portugal

d

CapeVerdeAirportsandAirSafety(ASA,SA),SalIsland,CapeVerdeandUniversityofBeiraInterior,DepartmentofCivilEngineeringand Architecture,6200-358,Covilhã,Portugal

ARTICLE INFO Articlehistory: Received11March2020

Receivedinrevisedform28July2020 Accepted5August2020

Keywords:

Airportpavementmanagementsystem Datacollection

Imageprocessing Statisticalcomparison

ABSTRACT

Inthisstudytheauthorscomparetwomethodsforairportasphaltpavementdistressdata

collectionappliedonthemainrunwayofAmílcarCabralinternationalairport,locatedatSal

IslandinCapeVerde.Thetwomethodsusedfortestingweretraditionalvisualinspection

(on-foot)andanindirectmethodusingavehicleequippedwithimagecaptureandrecording,lasers

andgeolocationdevices(in-vehicleinspection).Theaimofthisresearchistocontributetothe

validation oftheproposedlow-costin-vehicle pavementdistressinspectionsystemwith

semiautomatic data processing in order to be considered in the implementation ofthe pavement

conditionassessmentcomponentofairportpavementmanagementsystems(APMS).Thisisa

particularlyimportantcomponentasfromthecollecteddistressdataitispossibletoassessthe

conditionofthepavementsanddefineinterventionstrategies.Validationoftheindirectdata

collectionmethodisevaluatedbystatisticalcomparisonofthecollecteddistressdataand

pavementconditionindex(PCI)obtainedfrombothmethods.Statisticallynon-significant

differencesbetweentheresultsetsvalidatetheproposedindirectmethod,howevertheanalysis

evidenced two aspects that need improvement in the proposed system, namely the quality ofthe

capturedimagestoidentifydistresseswithlowerseverity levelandinspectortrainingforproper

allocationof severitylevels duringimage analysis.Thisresults insignificantadvantages

consideringthatthetotalamountoftherunwaypavementareaisinspected.Inspectiontimeis

reducedanddatacollectioncostcanbereduced.ProcessingandresultsvisualizationonGIS

environment allows revaluation ofthe dataset on the in-vehicle method. Data interpretation and

measurementsqualitycontrolbecomessimplerandfaster.

©2020TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

ThedevelopmentandimplementationofanAPMSmakesitpossibletomanageassetsinapracticalandsustainable manner, assisting managementpersonnel indecision makingthrough prioritysetting,cost quantificationand activity scheduling,resultinginthedevelopmentofeconomicallyviablestrategiesforpavementmaintenance[1–3].Fig.1presents themaincomponentsthatareconsideredontheimplementationofanAPMStooperateatthenetworkorprojectlevel[4].

*Correspondingauthor.

E-mailaddresses:bsantos@ubi.pt(B.Santos),galmeida@ubi.pt(P.G. Almeida),ianca.feitosa@ubi.pt(I.Feitosa),debora.lima@asa.cv(D.Lima).

https://doi.org/10.1016/j.cscm.2020.e00419

2214-5095/©2020TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

(2)

Informationrelatedtothecharacteristicsoftheairportpavementnetwork,asconstruction,maintenance,trafficand condition data are collected in the network inventory component. In condition assessment, condition data, defined accordinglytotheevaluationmethodandsurveyfrequencyadoptedbythesupervisingagency,isusedtodeterminethe pavementcondition.Dataisorganizedandstoredinadatabaseforuseindataanalysis,whereevaluationandprioritization oftherehabilitationandbudgetneedsovertheanalysisperiod isperformed.Finally,themain outputs(resultsofthe analyses)areorganizedindifferentformatsforconsiderationofengineersandmanagers.

Thefeedbackloop,oftenoverlooked,establishesaprocesswhereactualperformanceandcostdataareinputtedbackinto themodelsusedonpavementmanagementanalyses[4].

Fromtheabove,itispossibletoconcludethatefficientairportmanagementneedsasignificantamountofdataregarding theconditionofairportpavements.Qualityofthecollecteddataisthereforeessentialtoidentifydeficienciesandproperly diagnose pavement condition. This allows to detect current and future maintenance needs predicting the effects of interventionstrategyoverpavements’lifetime[6,7].

Dataisgenerallycollectedbyvisualinspectionofairportpavements.However,visualcollectionofsurfacedistressesis becoming increasingly challenging for airport maintenance teams as operational constraints limit access time for inspectionsonhighprioritypavements.Moreoverreductionsin fundingandoperationalstaffresourcesleadtovisual inspectionconstraints[8].Consequently,choosingthedatacollectionmethodthatwillprovidethenecessaryinformationto evaluatetheconditionofpavementsisvitalforAPMSsuccess.

Datacollectionbyvisualinspectionhasevolvedfromthetraditionalvisualconditionsurveyperformedonfoot,where distresstype,severity,andquantityareidentifiedandrecordedinpaperform,totheuseofmultifunctionalvehicles.Data collectionsystems installed onthese vehicles arecomposed by one or moreacquisition devices and post-processing applicationsforsemiautomaticorautomateddataextractionprocedures,basedoncomputervisionandimageprocessing algorithms[9].Devicesaregenerallyusedbothonroadandairportenvironments.Amongthemostcommon,thosestanding outareGNSS(locationreferencing)and videologgingmodules(forpavementsand360 imagery),lasercrackand rut measurementsystem(cracks,transverseprofileandrutting),highresolutionodometer(lineardistance),laserprofilometer (roughness– IRI,macrotextureand longitudinalprofile)andlandmobilelightdetectionand ranging(LiDAR)systems. Severalreferencedauthorstested,discussedanduseddataobtainedbythesemodulesandsystemsonairportpavement inspection[8,10–12].

Alsoimportanttonoticeisthelatestdevelopmentsinroadandairportassetinspectiontechnology,thatfocusontheuse ofunmannedaerialvehicle(UAVs-drones)includingLiDARtechnology[13–15].

Inthis context,anin-vehiclesystemwithimagecapture andrecording,lasersand geolocationdevices thatcanbe classifiedas alow-cost, mobilemultifunctionsystemwithsemiautomatic dataprocessingisproposed. Thisin-vehicle approachhasbeendevelopedoverthelast4yearsatthedepartmentofcivilengineeringandarchitectureoftheUniversityof BeiraInterior(UBI)[5,16–22],aimingtoimprovetheefficiencyofdatacollectionatlocalandsmallinternationalairports.So, thisstudyaimstoverifytheeffectivenessoftheindirectin-vehicleinspectionmethod,that‘àpriori’seemstobeamore practicalmethodologytouseasitrequireslesstimeontherunwayandfewerresourcesthanon-footinspection(withoutthe aidofspecializedtechnicalapparatus).

Forthispurpose,resultsobtainedfromatraditionalon-footpavementsurfacedistressinspectionandtheproposed in-vehicleinspectionsystemdevelopedatUBIarecompared.Acomparativestatisticalanalysiswasperformedontheresultsof pavementsurfacedistressdata(type,severitylevelsanddensities)collectedatexactlythesamesamplingunitsofthemain runwayofAmílcarCabralinternationalairport(ICAO:GVAC),locatedatSalIslandinCapeVerde.

Thepavementconditionindex(PCI)obtainedbyLima(2016)[21]forbothmethodsisalsocompared.PCIforairport pavementswasdevelopedbytheUSArmyCorpsofEngineersthroughfundingprovidedbytheU.S.AirForce.Thisindex describesthestructuralintegrityandoperationalconditionofpavementsanditsdeterminationisbasedontheidentification andassessmentoftheseveritylevelof17distressesobservedonpavementssurfaces[23].Itrangesfrom0(worstcondition) to100(bestcondition)anditsratingscalecanberelatedtomaintenanceandrehabilitationactivities[2,3,12,20].

(3)

Thispaperisorganizedin5sections:thefirstsectionpresentstheconceptofAPMSandtheimportanceofchoosingthe airportpavementinspectiontechnologyforthesuccessofthepavementconditionassessment;thefollowingthreesections describethestatisticalapproachadoptedtovalidatetheindirectpavementdatacollectionmethodtested,presentthecase studyandthestatisticalanalysisresults;finally,thelastsectionconcludeshighlightingsomereflectionsoftheauthorsbased ontheresultsobtainedandpresentingtopicsforfurtherdiscussion.

2.Methodology

Tovalidatetheproposedindirectdatacollectionmethod(in-vehicle),thecollecteddistressdataandPCIvaluesobtained throughonfootandin-vehicleinspectionwerestatisticallycompared.

Statisticalcomparisonofgroupsdependsonhowthevariablesunderstudyaremeasured(qualitative/quantitative),its qualityandquantity,typeofsampling(probabilisticorrandom/non-probabilisticornon-random),relationshipbetween samples(independent/paired),thesamples’normalitydistribution(normal/non-normal)andthenumberofgroupstobe compared.

Inthisstudy,variablesreferringtopavementdistresstype,severityanddensitywereevaluatedonsamplesfromthe GVACrunway01 19(studypopulation).SamplingwasdefinedaccordingtoASTMD5340-12[23].Thisstandardadopts systematicrandomsamplingforselectionofsampleunitstobeinspectedforpavementconditionassessment.

Sincethestudycomparesbothpavementinspectionmethods,pairedsamplesconstitutedbythesamesubjectswere considered(comparisonoftwo-pairedgroups),sopavementdistressdatawascollectedusingthetwoinspectionmethods ontheexactlysamesamplingunitsoftherunway.

Statisticalcomparisonofthesamplesisthenevaluatedbystatisticaltests.Testchoicedependsfundamentallyonthe number ofgroupstobecompared andonnormalityofthedata(variables),assessedbytheKolmogorov-Smirnovand Shapiro-Wilkstests.

Variables with normal distribution are statistically analysed by parametric t-test, while those with non-normal distributionareevaluatedusingtheWilcoxonnon-parametrictest[24].t-testisusedtodeterminetheoccouranceofa significantdifferencebetweenthemeansoftwo-pairedgroups.OntheWilcoxontest,differencesbetweensetsofpairsare calculatedandanalyzedinordertoestablishifthetwogroupsarestatisticallysignificantlydifferent[24].

3.Casestudy

Thecasestudywasdevelopedatrunway01 19oftheAmílcarCabralinternationalairport(ICAO:GVAC),locatedabout threekilometressouthofthecityofEspargos,atSalIsland,CapeVerde.CapeVerde'sairportsystemconsistsofsevenairport infrastructures.ItisthemaindriveroftheCapeVerdeaneconomyasthecountrymainactivityistourism.Inaddition,the geographyoftheterritory,anarchipelago,contributestotheincreasedrelevanceofairtransport.Issuessuchasaccessibility betweenislandsandtoothercountriesbecomesacentraldemandfortheeconomicdevelopmentandsocialactivityof citizens.

Fordistressinspection,theairportpavementnetworkisdividedinto4brancheswitha totalof16sections.GVAC's runwayis45mwideby3000mlong,with7.5mwideshoulders,comprising3oftheaforementionedsectionswith270 samplingunits.Theentiresurfaceoftherunwaypavementwasinspectedbythein-vehiclesystem(270samplingunits)and 43wereinspectedonfoot.This43samplingunitsconstitutestheminimumnumbertobeinspectedaccordingtoASTM D5340-12forPCIevaluation[20].Table1summarizesthesegmentationandadoptedcodinginformation.

Table1

CodingandsegmentationofGVACrunway01–19.

Pavement Code Description/Comments

Pavementnetwork–Airport SID GVACpavementnetwork

Pavementbranches R01 Mainrunway(01 19)

TWY Taxiway

BER Shoulders

APR Apron

R01pavementsections A 900mmeasuredfromend01

(touchdownarea)

B 1200mlocatedinthecentralpartofthe runway

C 900mmeasuredfromend19

(touchdownarea) Pavementsamplingunits–totalrunwayarea

(segmentationaccordingtoASTMD5340-12sampleareacriteria)

A:81samplingunits 500m2

samplingunits(100mby5m) B:108samplingunits In-vehiclevisualinspection

C:81samplingunits Pavementsamplingunits–sampleareaforinspection

(minimumareatoinspectaccordingtoASTMD5340-12)

A:14samplingunits 500m2samplingunits(100mby5m)

B:15samplingunits Traditionalandin-vehiclevisual inspection

(4)

Itshouldbenotedthatdespitehavingperformedatotalrunwayin-vehicleinspection,onlythecommon43sampling unitswereusedonthecomparativestatisticalanalysis.Fig.2presentsthelocationofthe3pavementsectionsstudied.

Onthein-vehicleinspectionthefollowingpavementdistressesaredirectlyidentifiedondaytimeimages:alligator cracking;bleeding;blockcracking;jet-blasterosion;jointreflectioncracking;longitudinalandtransversecracking;oil spillage;patching andutilitycut patch;polishedaggregate; ravelling; shoving;slippage crackingandweathering. Laser-lineprojectionimagescapturedatnightallowstheidentificationofcorrugation,rutting,swellinganddepression distresses.These 17 distressesare the ones consideredin ASTMD5340-12 standardfor PCIcalculation.A detailed description,aswellasthedefinitionofseveritylevels(low,mediumandhigh)andhowtomeasuredistressescanbe consultedin[23,25].

Thus,inordertocollectallthedistressdata,twoin-vehicleinspectionswerecarriedout,oneduringthedaytimeandthe otherat night.Takingintoaccounttheaccessrestrictionstotherunway duetoaircrafttraffic,allinformation forthe completerunwaywascollectedwithin3days,whiletheon-footinspectiontook3weeksforonly43samplingunits.

Uponcompletionofbothinspections,ageoreferenceddatasetofimageswasobtainedandprocessedforvisualizationon ageographicinformationsystem(GIS).Imageswerecollectedtoformacontinuousstreamwithenoughresolutiontoallowa spatialresolutionoflessthan0.003mperpixelatthecentreoftheimageandreducingspatialresolutiontowardsthe marginsduetogeometricdistortionassociatedwiththeopticalsystem.Latertheimageswerecorrelatedwithpositioning datagatheredonadualbandGPSreceiverandpost-processedonaPPP(precisepointpositioning)strategyusingonlinefree processingresources.Thisallowedforlocationerrorsfarbelow0.05mwhilemaintainingequipmenttoaminimum.Image and positioning data correlation quality was verified using control points on the ground. Image georeferencing and orientationwasperformedusinganin-housedevelopedsoftwarepackage.

Imagevisualizationoccursonacontinuouscoverageoverimposedreferencefeaturesoftherunwaytopographicsurvey. Thisvisualizationallowedidentificationofsurfacepavementdistressesandseveritylevelaswellasmeasurementofareas andlengthofinfluence.Theon-screendigitisationprocessofdistresseslengthandareafromcapturedimagesallowsfora vertexplacementaccuracythatis,onaverage,of2pixels,correspondingto0.006m.Measurementsperformedon-footusing measuringwheel presentsa sub-decimetricaccuracy forlineardistresses.Surfacedistressareaiscalculatedusingthe productoftwoapproximatelyorthogonallinearmeasurements.Consequently,measurementofareasusingimages,basedon careful,on-screenrastertovectordigitisation,aremoreaccuratethaninsitumeasurementsusingameasuringwheel.

Theinspectionsidentifiedthepresenceof6typesofpavementdistressesonGVACrunway.Acomparativeanalysisofthe dataobtainedbythetwoinspectionapproachesshowsadiscrepancyregardingtheamountofidentifieddistresstypesand densitybyseveritylevel(seeTable2).

While6distresseswereidentifiedbyon-footinspectiononly4wereregisteredusingthein-vehiclesystem.Thetwo distressesnotidentifiedduringthein-vehicleinspectionpresentessentiallyalowdensityandseveritylevelontheon-foot inspection.Inthecaseofdepressions,onlyalowlevelofseveritywasidentifiedon-foot,whichisthoughttohaveimpaired identification usingthein-vehicle system asit is difficulttodetectthis levelof severityonthecapturedimages. For longitudinal and transverse cracking at low severity level, the same situation occurs, however it is possible that a misidentificationoccurredathighseveritylevel,probablyonareaspresentingalligatorcracking.Previoustestsofthe in-vehiclesystemonroadenvironmentsuccessfullyidentifiedcrackingsituationsatahighseveritylevel[22].

(5)

Severityleveldensitydistributionshowsabiastowardsthehigherseverityclassondistressescollectedbythein-vehicle system.However,thesumofcommondistressesdensitiesforbothmethodsissimilar.Toassesswhetherthesedifferences arestatisticallysignificant,astatisticalcomparisonofthetwogroupsofsampleswasperformed.

It is worthtopoint out thatdata processingof theinformation gatheredduring thetwoinspection methodswas performedbythesameinspector.

Subsequentlyandconsideringthe6(on-footinspection)and4(in-vehicleinspection)identifiedstresses,PCIvalueswere calculatedperinspectedsamplingunitandpavementsectionforbothmethods(seeTable3andFig.3).Valuesobtainedby bothapproachesaresimilar,withmostoftheresultsshowingPCIvaluesintherange25–40,reflectingtheneedforashort terminterventionontherunwaypavement.

Fig.3presentsthescatterplotofPCIvaluespairedbysamplingunitandthecorrespondinglinearregressionmodel.The linearmodelisagoodfitforthedata,asdifferencesbetweenobservationsandthepredictedvaluesaresmallandunbiased (fittedvaluesarenotsystematicallytoohighnortoolowintheobservationspace).Theseconclusionsareemphasizedbya R2-valueof0.8993andastandarderroroftheestimatesof3.6386.

Consideringanoptimalmodelwherein-vehiclePCIwouldbethesameason-footdeterminedPCI,representedonFig.3 asareferenceline,itisclearthatlowerPCIvaluesareoverestimatedonthein-vehicleapproachandhighervaluesare underestimated,withapivotingpointaroundPCI=32.

4.Statisticalanalysisanddiscussionofresults

Densityvaluesof4pavementdistressesthatwereidentifiedonGVAC’srunwaybyon-footandproposedin-vehicle inspectionsystemwereusedtostatisticallycomparethetwoinspectionapproaches.ThiswasalsoperformedforthePCI valuesobtainedfromthoseidentifieddistresses.

Forthispurpose,threeanalyseswereimplemented:descriptivestatisticalanalysisconsideringdispersionandcentral tendencymeasures,anormalityanalysistodeterminethecomparativestatisticaltesttobeappliedduringthecomparative study(parametricornonparametric)andastatisticalcomparativeanalysis.

OnthenormalityanalysistheKolmogorov-SmirnovandShapiro-Wilktestswereadoptedandappliedtodensityvalues bytypeofdistressandlevelofseverity(low,mediumandhigh).TheobtainedP-valuesindicatethatbothdatasets(on-foot andin-vehicle)essentiallypresentanon-normaldistribution(p-value<0.05).Theexceptionbeingweatheringinsurface wear(highseveritylevel)onin-vehicleinspectionthatexhibitsanormaldistributionaccordingtotheKolmogorov-Smirnov test.Thisresultcanberelatedtothehighernumberofidentifiedcaseswhencomparedtotheother3distresses(larger sample size),suggestingan influenceontheresultof thenormalitytest (seeTables2and 4).Duetothenon-normal

Table2

Identifiedpavementdistressesanddensitiesbyseveritylevelandtypeofinspection.

Inspectiontypeandidentifieddistresses Densitybyseveritylevel(%)*

On-footinspection Low Medium High

Alligatorcracking 2.00 1.83 0.07

Patchingandutilitycutpatch 2.18 1.02 1.92

Ravelling 0.70 2.66 11.13

Weatheringinsurfacewear-densemixasphalt 4.78 7.82 16.00

Depressions 0.53 0.00 0.00

Longitudinalandtransversecracking 0.24 0.00 0.16

Sum(alldistressesidentified):53.04 10.43 13.33 29.28

Sum(distressesidentifiedonbothmethods):52.11 9.66 13.33 29.12

In-vehicleinspection Low Medium High

Alligatorcracking 1.09 2.23 0.00

Patchingandutilitycutpatch 0.10 2.35 1.15

Ravelling 0.00 2.75 12.60

Weatheringinsurfacewear-densemixasphalt 1.96 3.26 23.39

Sum(identifieddistresses):50.88 3.15 10.59 37.14

Table3

PCIvaluesobtainedforeachsampleunitinspectedandrunwaysection(adaptedfrom[21]).

Section Typeofinspection PCIpersamplingunit PCIpersection

A On-foot 36,38,41,43,52,20,52,27,34,46,24,11,60,46 38 In-vehicle 30,40,45,40,52,22,46,30,37,46,26,15,54,48 38 B On-foot 22,32,48,25,22,15,17,18,27,56,38,53,31,35,20 30 In-vehicle 26,26,41,27,28,24,18,16,30,59,38,47,31,29,25 31 C On-foot 44,27,32,36,35,20,35,63,32,43,59,25,30,26 36 In-vehicle 47,23,32,32,29,19,35,53,32,39,54,29,24,28 34

(6)

distributionofthedistressdensitydata,thenon-parametricWilcoxontestwasadoptedforcomparativeanalysisofboth groups.

ConsideringPCIvalues,theShapiro-Wilknormalitytestindicatesanormaldistributionofdata(P-value>0.05)forboth on-footandin-vehicleinspection.However,accordingtotheKolmogorov-Smirnovtest,PCIvaluesobtainedfromin-vehicle inspectiondatadonotfollowanormaldistribution.Giventheseresults,aPCIstatisticalcomparisonwithparametrict-test (statisticalmean)andnonparametricWilcoxon test wasperformed. Anf-testwas alsoperformed tocompare sample variance.

ResultsofthenormalitytestsandthestatisticalcomparisonanalysisarepresentedinTables4and5.

Resultsshowthatpatchingandutilitycutpatchdistressidentifiedatlowandmediumseveritylevelswerenotvalidated. Inthesecases,P-valuesarelessthan0.05,meaningthatthesamplesarenon-comparable.Thesameoccursforweatheringin surfacewearathighseveritylevelanditcanberelatedtothediscrepancyofthenormalityresultsobservedforthisparticular case.

Thenon-validationofthesecasescanberelatedtoclassificationdifficultiesofweatheringinsurfacewearataspecific severityleveloncollectedimages,aswellasotherpavementdistressespresentinglowseveritylevel.

Fig.3.PairedvaluesofPCIobtainedinthetwoinspections(on-footandin-vehicle)andlineartrendline.

Table4

Normalitytestsresults.

Test Kolmogorov-SmirnovP-value Shapiro-WilkP-value

InspectionbyfootSeveritylevel Low Medium High Low Medium High

Alligatorcracking 0.000 0.000 0.000 0.000 0.000 0.000

Patchingandutilitycutpatch 0.000 0.000 0.000 0.000 0.000 0.000

Ravelling 0.000 0.000 0.000 0.000 0.000 0.000

Weatheringinsurfacewear-densemixasphalt 0.000 0.000 0.011 0.000 0.000 0.000

PCI 0.200 0.340

In-vehicleinspectionSeveritylevel Low Medium High Low Medium High

Alligatorcracking 0.000 0.000 * 0.000 0.000 *

Patchingandutilitycutpatch 0.000 0.000 0.000 0.000 0.000 0.000

Ravelling * 0.000 0.000 * 0.000 0.000

Weatheringinsurfacewear-densemixasphalt 0.000 0.000 0.200 0.000 0.000 0.002

PCI 0.008 0.097

*

(7)

Theremainingdistresses-severitypairsandPCIvalueswerevalidatedbytheWilcoxontest.t-testalsovalidatedPCI values.

Basedontheresultsoft-test(statisticalmean)andf-test(variance),itcanbeinferredthattheuseoftheproposed in-vehiclesystemtoinspect pavementsurfacedistressesdidnotsignificantlyinfluencePCIresults,sincethestatistical average(t-test)ofbothsamples,aswellasitsvariance(f-test)producedP-valuesgreaterthan0.05,validatingtheproposed in-vehiclesystem.

5.Conclusions

ThecomparativestatisticalanalysisonPCIvaluesvalidatestheinnovativelow-costmethodproposedforcarryingout inspectionsusinganequippedvehicle.Foramoreconsistentvalidation,distressesidentifiedinbothapproacheswerealso meticulouslyanalysedbylevelofseverity.

Dataanalysisevidencedabetteridentificationofdistressesandseveritylevelsbydirectvisualization,inparticularforlow severitylevelsandweatheringinsurfaceweardistress.

Comparingthetypeofdistressesidentifiedbyeachapproach,it’sclearthatthein-vehiclemethodcouldnotassesstwo typesofdistressesthatweresurveyedon-footatalowseveritylevelandlowdensityvalues.Still,bycomparingdistresses allocationbyseveritylevel,it’sclearthatatendencytoclassifydistressesathigherseverityleveloccursonthein-vehicle system.

Theseresults,supportedbythestatisticalcomparisonanalysis,donotcompromisetheproposedmethod,sinceitallowed toidentifyimprovementaspectsintheproposedin-vehiclesystemandinthesemi-automaticprocessingofimages.

Theauthorsconsiderthat, byimprovingthein-vehicle system,thedifficulties encounteredwhileidentifyingsome distresseswillbesurpassed.Thisimprovementcanbeachievedthroughtheuseofhigherimagequalitycamerasandthe additionofasecondcameraplacedtocapturepavementroughnessandsmalldeformations.Itisfurtherconsideredthat inspectors trainingonimage analysis,especially regarding distressseveritylevelallocation, aswellas theinspectors’ accumulatedexperiencecouldpositivelyinfluenceresultsofthecomparativestatisticalanalysis.

Bycomparingbothinspectionapproachesitwasnoticedthattheproposedin-vehicleprototypewithimage,laserand GNSSdeviceshasasthemainadvantagethereductionofthetimeneededtocollectpavementdistressinformation,as traditional(on-foot)surveysaretimeconsuming,becomingmoreexpensiveforlargerairportswithtrafficconstraints.

Thein-vehicleapproachalsoallowstocontinuouslysurveytheconditionoftheentirepavementsurfaceandtoprocessall theinformationattheofficevisualizingdataonaGISenvironment,allowingre-evaluationandconfirmation,ifnecessary,of thepavementdistressdataobtainedunderthesameconditionsasthoseverifiedatthetimeofinspection(imagearchive). WiththisapproachitisalsopossibletocomparetheGISimageandalphanumericdatafromseveralinspectionscarried outoverthepavementlifetime,supportingtrendstudiesofpavementcondition.

DeclarationofCompetingInterest

Theauthorsreportnodeclarationsofinterest. Acknowledgements

TheauthorsacknowledgeUniversityofBeiraInterior,CERIS-CivilEngineeringResearchandInnovationforSustainability (ECI/04625),GEOBIOTEC-GeoBioSciences,GeoTechnologiesandGeoEngineering(GEO/04035) andASASA,CapeVerde AirportsandAirSafetyforsupportandfundingofthisstudy.

References

[1]M.Y.Shahin,PavementManagementforAirports,Roads,andParkingLots,secondedition,SpringerUS,2005,doi:http://dx.doi.org/10.1007/b101538. [2]FederalAviationAdministration(FAA),AC150/5380-7B,AirportPavementManagementProgram(PMP),(2014).https://doi.org/10.1004/AC150/5380-7B. [3]T.Jensen,C.M.Lang,C.MotzHagerstownRegionalAirportRichardTucker,P.P.Hochstetler,N.AmericaLauraMcKee,J.BarryBarker,D.H.Butler,J.M.

Crites,A.K.Kanafani,C.Professor,M.R.Morris,T.L.Rosser,H.G.Schwartz,B.A.Scott,K.T.Steudle,M.Dot,L.W.DouglasStotlar,C.MichaelWalton, CommonAirportPavementMaintenancePracticesASynthesisofAirportPractice,(2011).

Table5

Wilcoxontest,t-testandf-testresults.

Variable WilcoxontestP-value t-testP-value f-testP-value

Severitylevel Low Medium High Notapplicable Notapplicable

Alligatorcracking 0.068 0.657 0.317

Patchingandutilitycutpatch 0.012 0.011 0.076

Ravelling 0.068 0.861 0.640

Weatheringinsurfacewear-densemixasphalt 0.114 0.122 0.008

(8)

[4]W.DOT,WashingtonAirportPavementManagementManualWashington,(2019).

[5]D.Lima,B.Santos,P.G.Almeida,ProposalofanairportpavementmaintenancemanagementsystemforCapeVerde,STARTCON19–Int.Dr.Students Conf.+LabWork.Civ.Eng.,KnEEngineering,Covilhã,2020,pp.49–60,doi:http://dx.doi.org/10.18502/keg.v5i5.6917.

[6]L.Pierce,G.McGovern,K.Zimmerman,PracticalGuideforQualityManagementofPavementConditionDataCollection,(2013),pp.170.https://www. fhwa.dot.gov/pavement/management/qm/data_qm_guide.pdf.

[7]S.Saliminejad,N.G.Gharaibeh,Impactoferrorinpavementconditiondataontheoutputofnetwork-levelpavementmanagementsystems,Transp. Res.Rec.(2013)110–119,doi:http://dx.doi.org/10.3141/2366-13.

[8]K.Keegan,Katherine,Jung,InnovativeapproachtoairfieldpavementinspectionsanddistressidentificationatOaklandInternationalAirport,Int.Conf. Manag.PavementAssets,Washington,DC,2015.https://vtechworks.lib.vt.edu/bitstream/handle/10919/56397/ICMPA9-000070.PDF?

sequence=2&isAllowed=y.

[9]A.Ragnoli,M.R.deBlasiis,A.DiBenedetto,Pavementdistressdetectionmethods:areview,Infrastructures3(2018)1–19,doi:http://dx.doi.org/ 10.3390/infrastructures3040058.

[10]W.Chen,J.Yuan,M.Li,ApplicationofGIS/GPSinShanghaiairportpavementmanagementsystem,ProcediaEng.(2012)2322–2326,doi:http://dx.doi. org/10.1016/j.proeng.2012.01.308.

[11]M.Barbarella,M.R.DeBlasiis,M.Fiani,Terrestriallaserscannerfortheanalysisofairportpavementgeometry,Int.J.PavementEng.20(2019)466–480, doi:http://dx.doi.org/10.1080/10298436.2017.1309194.

[12]P.DiMascio,L.Moretti,Implementationofapavementmanagementsystemformaintenanceandrehabilitationofairportsurfaces,CaseStud.Constr. Mater.(2019),doi:http://dx.doi.org/10.1016/j.cscm.2019.e00251.

[13]C.Brooks,R.Dobson,D.Banach,T.Oommen,K.Zhang,A.Mukherjee,T.Havens,T.Ahlborn,R.Escobar-Wolf,C.Bhat,S.Zhao,Q.Lyu,M.D.of Transportation,ImplementationofUnmannedAerialVehicles(UAVs)forAssessmentofTransportationInfrastructure-PhaseII164p,,(2018).https:// www.michigan.gov/documents/mdot/SPR-1674_FinalReport_revised_631648_7.pdf%0Ahttps://trid.trb.org/view/1542464.

[14]P.Complete,B.Task,R.Inspections,T.Transfer,TheApplicationofUnmannedAerialSystemsinSurfaceTransportation,(2019).

[15]L.Jiang,Y.Xie,T.Ren,Adeepneuralnetworksapproachforpixel-levelrunwaypavementcracksegmentationusingdrone-capturedimages,Transp. Res.Board99thAnnu.Meet.(2020).

[16]L.Maganinho,DevelopmentofaDatabaseforRoadPavementConditionUsingGPS,VideoImageandGIS(inPortuguese),UniversityofBeiraInterior, 2013.

[17]A.Nogueira,EvaluationofRoadPavementsRutswithLaserScanning(inPortuguese),UniversityofBeiraInterior,2015. [18]D.Lima,AirportPavementManagementSystemforCapeVerde(inPortuguese),UniversityofBeiraInterior,2016.

[19]A.Domingos,PavementConditionIndexDeterminationandInterpretationforAirportPavementEvaluation(inPortuguese),UniversityofBeira Interior,2017.

[20]A.Domingos,B.Santos,P.G.Almeida,Pavementconditionindexdeterminationandinterpretationforairportpavementevaluation,Int.Congr.Eng., ICEUBI2017,Covilhã,2017.

[21]D.Lima,B.Santos,P.G.Almeida,MethodologytoassessairportpavementconditionusingGPS,laser,videoimageandGIS,PavementAssetManag. -Proc.WorldConf.PavementAssetManag.,WCPAM2017,2019,pp.301–307.

[22]B.Santos,P.G.Almeida,L.Maganinho,DatacollectionmethodologytoassessroadpavementconditionusingGNSS,videoimageandGIS,IOPConf.Ser. Mater.Sci.Eng.,InstituteofPhysicsPublishing,,2019,doi:http://dx.doi.org/10.1088/1757-899X/603/4/042083.

[23]AmericanSocietyforTestingandMaterials,D5340-12,StandardTestMethodforAirportPavementConditionIndexSurveys,Reproduction,(2012),pp. 1–54,doi:http://dx.doi.org/10.1520/D5340-12.2.

[24]J.Marôco,AnáliseEstatísticacomoSPSSStatistics,6a

edition,(2014) Portugal.

Imagem

Fig. 1. Main components of an APMS [5].
Fig. 2. Amílcar Cabral International Airport runway section division.
Fig. 3 presents the scatter plot of PCI values paired by sampling unit and the corresponding linear regression model
Fig. 3. Paired values of PCI obtained in the two inspections (on-foot and in-vehicle) and linear trend line.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

We differentiate between nonlinear physiological-based models, such as the Bal- loon model (Buxton, Wong and Frank, 1998; Friston et al., 2000; Riera et al., 2004), which describes

Observou-se que, através deste contacto direto entre gerações, é possível mudar as atitudes dos mais novos para com os idosos e o envelhecimento, assim

Desta forma o objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade de cultivares e linhagens de trigo, cultivados sob condição normal de irrigação (sem

Comportamento de parasitismo de Trichogramma atopovirilia Oatman &amp; Platner e Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) em posturas de

Vejamos, como argumenta Arendt “nada e ninguém existe neste mundo cujo próprio ser não pressuponha um espectador” (ARENDT, 1991, p. 17), Por conseguinte, explica a autora: o fato

Diante desse contexto, o presente trabalho apresenta a proposta de um modelo de reaproveitamento do óleo de cozinha, para a geração de biodiesel que

Considerando que a concentração de citocinas no soro de indivíduos coinfectados HIV/HPgV é importante para uma melhor compreensão dos aspectos imunológicos o objetivo desse