• Nenhum resultado encontrado

Rev. bras. ortop. vol.50 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.50 número2"

Copied!
6
0
0

Texto

(1)

w w w . r b o . o r g . b r

Original

article

Biomechanical

analysis

on

transverse

tibial

fixation

in

anterior

cruciate

ligament

reconstructions

Edmar

Stieven

Filho

a,∗

,

Mariane

Henseler

Damaceno

Mendes

b

,

Stephanie

Claudino

b

,

Filipe

Baracho

a

,

Paulo

César

Borges

b

,

Luiz

Antonio

Munhoz

da

Cunha

a

aUniversidadeFederaldoParaná(UFPR),Curitiba,PR,Brazil

bUniversidadeTecnológicaFederaldoParaná(UTFPR),Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7November2013 Accepted6December2013 Availableonline12March2015

Keywords:

Anteriorcruciateligament Femur

Orthopedicfixationdevices Mechanics

Tendons

a

b

s

t

r

a

c

t

Objective:Toverifywhetherthecombinationoftibialcrosspinfixationandfemoralscrew fixationpresentsbiomechanicaladvantageswhencomparedtofemoralcrosspinfixation andtibialscrewfixationforthereconstructionoftheanteriorcruciateligament(ACL).

Methods:Thirty-eightporcinekneesandbovineextensordigitorumtendonswereusedas thegraftmaterials.Thetestswereperformedinthreegroups:(1)standard,usedfourteen knees,andthegraftswerefixatedwiththecombinationoffemoralcrosspinandatibial screw;(2)inverted,usedfourteenkneeswithaninvertedcombinationoftibialcrosspin anda femoralscrew;(3)control,tencontroltestsperformedwithintactACL.Afterthe graftsfixation,allthekneesweresubjectedtotensiletestingtodetermineyieldstrength andultimatestrength.

Results:Therewasnostatisticallysignificantdifferenceinsurvivaltechniquesinregardto strength,yieldloadandtension.Therewasahighersurvivalcomparedinthestandard curvesofyieldstress(p<0.05).

Conclusion:Thereisnobiomechanicaladvantage,observedinanimalmodelstesting,inthe combinationoftibialcrosspinfixationandfemoralscrewwhencomparedtofemoralcross pinfixationandtibialscrew.

©2015SociedadeBrasileiradeOrtopediaeTraumatologia.PublishedbyElsevierEditora Ltda.Allrightsreserved.

WorkdevelopedattheUniversidadeFederaldoParaná(UFPR),Curitiba,PR,Brazil.ItformedpartofthedoctoralprojectofEdmar StievenFilhowithinthePostgraduateProgramonSurgeryatUniversidadeFederaldoParaná(UFPR).

Correspondingauthor.

E-mails:filho2000@gmail.com,edmar.filho@ufpr.br(E.S.Filho). http://dx.doi.org/10.1016/j.rboe.2015.02.012

(2)

Análise

biomecânica

da

fixac¸ão

tibial

transversa

na

reconstruc¸ão

do

ligamento

cruzado

anterior

Palavras-chave:

Ligamentocruzadoanterior Fêmur

Dispositivosdefixac¸ão ortopédica

Mecânica Tendões

r

e

s

u

m

o

Objetivo:Investigarseafixac¸ãotransversatibialcomparafusofemoralapresentavantagens biomecânicassobreafixac¸ãotransversafemoralcomparafusotibialnareconstruc¸ãodo ligamentocruzadoanterior(LCA).

Método:Foramusadoscomomodelosdetestesjoelhossuínosetendõesextensoresdigitais bovinos.Foramsubmetidosàreconstruc¸ãodoLCA28joelhos:14foramfixadoscomparafuso natíbiaeimplantetransversonofêmur(grupopadrão)e14comparafusonofêmurefixac¸ão transversanatíbia(grupoinvertido).Osmodelosforamsubmetidosaostestesdetrac¸ão.

Resultados:Nãohouvediferenc¸aestatisticamentesignificantenasobrevivênciadastécnicas noquetangeaforc¸a,forc¸amáximasemfalhaetensão.Houveumasobrevivênciamaiorno grupopadrãonacomparac¸ãodascurvasdetensãodelimiteelástico(p<0,05).

Conclusão:Nãohávantagembiomecânicadafixac¸ãotransversatibialcomparafusofemoral em relac¸ãoàfixac¸ãotransversafemoralcomparafusotibial,observadaem testescom modelosanimais.

©2015SociedadeBrasileiradeOrtopediaeTraumatologia.PublicadoporElsevier EditoraLtda.Todososdireitosreservados.

Introduction

The treatment of choice for young active symptomatic patientswhopresentanteriorcruciateligament(ACL)injuries isreconstruction.Thisfactoristhedeterminantforobtaining betterresultsafterreturningtosportspractice.1

Thegraft fixation methodused inthe reconstruction is whatdeterminesthestabilityintheimmediatepostoperative period.Themajorityofsurgicalfailuresoccurduringtheinitial monthsandthefixationsiteisthemostvulnerablepoint.2

When grafts from knee flexors are used, it is common forthefemoralfixationtobetransverseorsuspended,and forthetibialfixationtouseinterferencescrews.Transverse andsuspendedfixationsaremoreresistantthaninterference screws.3–5

Inadditiontotheimplant,thebonequalityisalsoa deter-miningfactorforthefixation.6,7

Femoralfixationhasgreaterresistancethantibialfixation becauseoftwofactors:femoralspongybonehasgreater den-sitythanthetibialboneandthefixationusedinthefemur presentshigherresistancethanthatofthetibia.7,8

Wedidnotfindanystudiesintheliteraturethatassessed thepossibilityofcompensatingfortibialbonefragilitywith the better mechanical quality of transverse fixations, as usuallyusedinthefemur.Mostbiomechanicaltestshave eval-uatedthetibialorfemoralfixationseparately,andfewhave evaluatedthefemur-ligament-tibiacomplex.9–12

The objective of this study was to ascertain whether transversetibialfixationusingafemoralscrewpresentsany biomechanicaladvantages over transverse femoralfixation usingatibialscrew,inananimalmodel.

Material

and

methods

Thisstudywasapprovedbythelocalethicscommittee,under thenumber064/09.

Twenty-eightfreshbovinedigital extensortendonswere acquired.Theseweredissectedanddividedintotwo,inorder toformpairsandsimulatetheflexortendonsofthehuman knee.13

The extremities of each tendon were sutured using EthibondTM Polyester2surgicalthread(Johnson &Johnson,

Piscataway,NJ,USA).

Afterthe suturing,analginateimpressionwas acquired usingJeltradetypeIIwithnormalsetting(Dentsply,York,PA, USA).Thetendonwasimmersedinthispaste,which devel-opedarubberyconsistencyafterafewseconds,thusforming amold.

At this point, the tendon was removed from the algi-nateandthismoldwassectionedtransversallyintoblocksof 10mminthickness.14,15

Thesectionsgeneratedfromthealginatemoldwere digi-tizedataresolutionof600dpiusingtheHPJ5780®digitizer.

The cross-sectional areas ofthe molds were measured by meansoftheImage-ProPlus®software.

Thethinnestcross-sectionofeachoftheextremitiesofthe tendonwasselectedinordertocalculatethearea.Sincethe pairsoftendonswerefoldedinthemiddletoformquadruple grafts,thefoursmallestareasofeachoftheextremitiesofthe tendonsweresummed.

Aftertheimpressionsoftheareahadbeenmade,the ten-donswereplacedsidebysidewiththeirrespectivepair.The pairs were foldedinthe middle, thusforming the quadru-plegraft.Thequadruplegraftsweresolidifiedusingpolyester thread (EthibondTM Polyester2) at the proximal extremity

(Fig.1).15

Twenty-eightkneespecimensfrompigsoftheLargeWhite breed were dissected.16 Fourteen ofthese specimenswere

(3)

Fig.1–Solidifiedtendons–quadruplegraft.

Metalinterferencescrewsof9mmindiameterand30mm in length were used. The transverse implant consisted of a pin made of polylactic acid (Rigidfix Cross Pin System, DePuyMitek,Raynham,MA,USA).

Theentireprocessofacquiringthetendonandknee mod-els and performing the mechanical tests was carried out withina24-hourperiod,sothattherewouldnotbeanyneed tofreezethematerial,whichmighthavechangeditselastic modulusandconsequentlytheresults.Thesampleswereall keptunderrefrigeration,onice,insideplasticbags contain-ingasmallquantityof0.9%physiologicalserum,sothatthe sampleswouldnot dryout whiletheyawaitedmechanical testing.17,18

Thekneeswereplacedonaspecificsurgicaltable,inthe 90◦position.15

In both the standard and the invertedgroup, the tibial tunnelpositionwasdeterminedusingaconventionalguide configuredat55◦.Allthetunnelsweredrilledwithadiameter

of9mm.

Standard fixation Inverted fixation

W

ylliam copini. W

ylliam copini.

Fig.2–Groupswithstandardandinvertedfixation.

Femoral device Tibial device

Fig.3–Devicesforfemoralandtibialfixation.

Inthestandardgroup,thefemoraltunnelwasconstructed using a transtibialguide with anoffset of7mm.After the drilling,theguidewasplacedinaU-shape(DePuyMitek, Rayn-ham,MA,USA)inthefemurinordertoprepareforpassing thefixationpinsthrough.Thegraftwaspassedfromthetibia tothefemur. Firstly,proximalfixationusingthe transverse pins was performed and then fixation inthe tibia using a screw.15,19,20

Intheinvertedgroup,thefemoraltunnelwasconstructed usinganoutside-inguide(Phusis,Grenoble,France).21After

the tunnelshadbeendrilled, theU-shaped guidewas pos-itionedinthetibiainordertoprepareforintroductionofthe implant.Thegraft waspassedfrom thefemurtothe tibia. Firstly,thetransversefixationinthetibiawasperformedand thenthefemoralfixation.

Forboththestandardandtheinvertedgroup,a standard-ized graft length of30mm was used in the intra-articular portion.

TencontroltestswithanintactACLwerealsoperformed. Ametaldeviceforpositioningthekneesinthetestmachine was developed. Thedevice ensured the alignment and an angleof30◦betweenthefemurandthetibiaduringthetests.

Thispositioningaimedtosimulateacriticalconditionforthe ACL(Fig.3).22,23

Stabilizationwasachievedthroughfixationofthe diaph-ysisofthebonestructureinthedeviceusinganutandbolt (Fig.4).

The groupswere subjected totraction tests inthe MTS 810universaltestmachine(MaterialTestSystemCorporation, Minneapolis,MN,USA),withaloadcell ofcapacity10kg/N (newtons).

Thetraction testconditions comprisedpretensioningof 10Nandavelocityof20mm/min,untilthetendonruptured.

Thefollowingvariablesweredetermined:maximumforce (MF); maximum force without failure (MFWF), which was obtainedastheloadsupportedbythematerialuntilthefirst significantchangetothecurveofloadversusdisplacement; tension(T);tensionattheelasticlimit(TEL),i.e.thepointat whichthetendonstartedtoundergodefinitiveplastic defor-mation;andstiffness(k).

Theresultsfromthetestscomprisedvaluesforloadversus displacement.Fromthiscurve,themaximumforcesandtheir limitswithoutfailureweredetermined.

(4)

Fig.4–Positioningofthesamplesinthetestmachine.

limitweredeterminedthroughdirectratiosbetweenthe vari-ablesofforceandarea.

Thestiffnessofthefemur-ligament-tibiasystemwas deter-minedbymeansofthesecantmethod.

Forthe statisticalanalysis, nonparametric Kaplan–Meier reliabilityanalysisandthelog-ranktestwereused.The lat-tercomparedthecurvesinordertoestimatepvalues.The analyseswereperformedusingtheR3.0.2software.

Results

Theresults foundfor the standard group are described in Table1.Themeanmaximumforcewas528N,whilethe max-imumforcewithoutdetectingfailurewas352N.

Theresultsfoundfortheinvertedgrouparedescribedin Table2andthemaximumforcewithoutdetectingfailurewas 330N.

Failuresrelatingtothesurgicalprocedureortothe cou-plingofthemodeltothetestsystemwereconsideredtobe operationalfailures.Wehadonecaseineachgroupoperated inwhichthefemurbecamecrackedatthetimeoffixingthe diaphysistothe testdevice.Another fourfailuresoccurred intheinvertedgroup,throughbreakageoftheimplantduring tibialfixation.Therewerenooperationalfailuresinthecontrol group.

TheresultsfromthecontrolgrouparereportedinTable3. Tocomparetheresults,theKaplan–Meiersurvivaltestwas appliedtoMF,MFWF,TandTEL.

InthesurvivaltestusingtheFMdata,withacutoffpointof approximately450N,thesurvivalrateinthestandardgroup was69%andintheinvertedgroup,67%(p>0.05).

ForMFWF,withacutoffpointofapproximately350N,the survivalrateinthestandardgroupwas46%andintheinverted group,33%(p>0.05).

Attheloadsof450NforMFand350NforFMWF,the con-trolgrouppresentedsurvivalof100%,whichwasstatistically significantincomparisonwitheitheroftheothertwogroups (p<0.05).

In the tensionanalysis, a cutoffpointof approximately 10MPa(megapascals),thesurvivalratewasfoundtobe69% inthestandardgroupand67%intheinvertedgroup(p>0.05). For TEL, at a cutoff point of approximately 7MPa, the survival rate was 62% in the standard group and 22% in the invertedgroup. This result was statistically significant (p<0.05).

Discussion

The traction test was performed through gradually apply-ing a deformational force tothe sample, until it ruptured. Theforcewasappliedtothelongaxisofthetestbody.The testmachinemeasuredtheinstantaneousloadappliedand thedisplacement.Thetestbodywasstretchedataconstant

Table1–Standardgroup:transversefemoralpinandtibialinterferencescrew.

MFWF(N) MF(N) A(mm2) T(N) TEL(N) k(N/mm) Failuresite

Transverse Screw Operational

Median 350 528 46 11 8 43 0 13 1

Mean 352 528 48 11 8 43

SD 108 96 10 3 3 15

MF,maximumforce;MFWF,maximumforcewithoutfailure;T,tension;TEL,tensionatelasticlimit;k,stiffness;SD,standarddeviation;N, newtons;A,area.

Table2–Invertedgroup:femoralinterferencescrewandtransversetibialpin.

MFWF(N) MF(N) A(mm2) T(N) TEL(N) k(N/mm) Failuresite

Transverse Screw Operational

Median 280 496 46 10 6 45 2 7 5

Mean 330 511 49 11 6 47

SD 109 117 11 1 2 14

(5)

Table3–Controlgroup.

MFWF(N) MF(N) Failuresite

Tibia Femur Fracture

Median 755 1032 8 1 1

Mean 780 986

SD 108 129

MF,maximumforce;MFWF,maximumforcewithoutfailure;SD, standarddeviation;N,newtons.

ratebytheequipment.Thesetractiontestsweredestructive tests.15

Thenumberofoperationalfailuresintheinvertedgroup (five)wasgreaterthanthenumberinthestandardgroup(one). Therewasonecaseoffailureofthefixationinthetraction machineineachgroup.Thesurgicalfailuresoccurredinthe invertedgroup. Thisoccurred because the guide for trans-versetibialfixationhadbeenadaptedfromtheoneusedfor thefemur.Theseadaptationsdonothavethesamelevelof reproducibility as seen with specific materials. Theguides forimplantation ofthe pins inthe tibia became unstable, whichledtobreakageoftheimplantatthetimewhenitwas introduced.

Therupturingofthegraftsinthestandardgroupoccurred atthescrew.Intheinvertedgroup,thereweretwocasesof fail-ureofthetransversefixation.Thisshowsthatthescrewhad greatermechanicalfragilitythandidthetransversefixation.

Regardingthetwocasesoffailureofthetransverse fixa-tionintheinvertedgroup,threehypothesescanbeenvisaged. Oneisthatthescrewintheoutside-inpositioninghadgreater resistanceinthetractionplanetested,sinceitwastestedat adivergentangle.Thesecondisthatthebonequalityofthe spongyboneofthefemurincreasedtheresistanceofthe fixa-tion.Lastly,thefactthattheguideforfixationofthetransverse tibialimplanthadbeenadaptedmayhavebeenthedecisive factorforthesetwofailures.

Transversefixationisusedinthefemurfortechnical rea-sons,toavoidthedifficultiesofplacingascrewinthefemur anditscomplications.Thisscrewisintroducedthroughthe medialportaland crossesthe intercondylarregion.Itoften hastobeplacedinatunnelatananglethatdiffersfromthat oftheentryportaloftheimplant.24,25Transversefixationand

suspendedfixationmakefemoralfixationasimplersurgical step.

Despitepresentinggreaterresistancethanthatofscrews, bothtransversefixationandsuspendedfixationhavetheir dis-advantages.Theirhighmechanicalresistanceisonlyreached ifaloop ofquadrupletendonisused.Attheother extrem-ity,theiruseislimited.Inthesefixations,cautionisrequired inrelationtothediameterofthetunnel,sincetunnelsthat areverywide maydiminishthe mechanicalresistanceand graft-bonecontact.26

In the outside-in technique, the femoral screw is introduced through a lateral access into the femur, which takesawaymanycomplicatingfactorsfromfemoralfixation withascrew.21

Anassociation betweenthe technical easeof fixingthe femurusinganoutside-inscrewandthemechanical

advan-tageoftransversetibialfixation,inordertocompensatefor thelowqualityofthespongybone,seemstobepromising.The presentstudydidnotshowthispossiblemechanical advan-tageinanimalmodels.

Survivaltestsare idealforcomparingmechanical analy-sesonsurgicaltechniques.15Theyshowthedegreetowhicha

givenprocedurecanbetrusted,forthedifferentloadsapplied. Nostatistical differenceswere foundin relationtothe MF, MFWF or Tdata. However,inrelationtothe TEL data, the standardgrouppresentedgreatersurvival.Thisshowsthatin additiontothelackofadvantageinusingtransversefixation in the tibia, this method may signify diminished capacity towithstandthetension.Onehypothesisforexplainingthis resultliesintheuseofguidesadaptedfromthefemoralregion forthetibialregion.

DespitethenegativefindinginrelationtoTEL,therehave been clinical studies showingthat use of transverse tibial fixation is safe.27 Good results from mechanical tests on

transversetibialfixationcanalsobefoundintheliterature. However,nopreviousstudieshavetestedthe femur-ligament-tibia complex;rather,theyonlyevaluatedthe tibialregion. Anotherimportantpointisthatwedidnotfindanystudies that hadevaluated Tor TELinrelationtotransverse tibial fixation.12

Conclusion

Thereisnobiomechanicaladvantagefromtransversetibial fixationusingafemoralscrew,incomparisonwithtransverse femoralfixationusingatibialscrew,asobservedintestson ananimalmodelforACLreconstruction.Thereisthe possi-bilitythatthegroupwithtransversetibialfixationhaslower capacitytowithstandtension.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.CohenM,AbdallaRJ,EjnismanB,FilardiM.Estudo

comparativonotratamentodaslesõesdoligamentocruzado anteriornoesporte.RevBrasOrtop.1977;32(35):337–41. 2.NoyesFR,Barber-WestinSD.Revisionanteriorcruciate

ligamentreconstruction:reportof11-yearexperienceand resultsin114consecutivepatients.InstrCourseLect. 2001;50:451–61.

3.MilanoG,MulasPD,ZiranuF,PirasS,ManuntaA,Fabbriciani C.Comparisonbetweendifferentfemoralfixationdevicesfor ACLreconstructionwithdoubledhamstringtendongraft:a biomechanicalanalysis.Arthroscopy.2006;22(6):

660–8.

4.KousaP,JärvinenTLN,VihavainenM,KannusP,JärvinenM. Thefixationstrengthofsixhamstringtendongraftfixation devicesinanteriorcruciateligamentreconstruction.PartI: Femoralsite.AmJSportsMed.2003;31(2):182–8.

5.SchefflerSU,SüdkampNP,GöckenjanA,HoffmannRFG, WeilerA.Biomechanicalcomparisonofhamstringand patellartendongraftanteriorcruciateligament

(6)

fixationmethodundercyclicloading.Arthroscopy. 2002;18(3):304–15.

6. RodeoSA,ArnoczkySP,TorzilliPA,HidakaC,WarrenRF. Tendon-healinginabonetunnel.Abiomechanicaland histologicalstudyinthedog.JBoneJointSurgAm. 1993;75(12):1795–803.

7. NurmiJT,SievänenH,KannusP,JärvinenM,JärvinenTLN. Porcinetibiaisapoorsubstituteforhumancadavertibiafor evaluatinginterferencescrewfixation.AmJSportsMed. 2004;32(3):765–71.

8. BrandJC,PienkowskiD,SteenlageE,HamiltonD,JohnsonDL, CabornDN.Interferencescrewfixationstrengthofa

quadrupledhamstringtendongraftisdirectlyrelatedtobone mineraldensityandinsertiontorque.AmJSportsMed. 2000;28(5):705–10.

9. MonacoE,LabiancaL,SperanzaA,AgròAM,CamillieriG, D’ArrigoC,etal.Biomechanicalevaluationofdifferent anteriorcruciateligamentfixationtechniquesforhamstring graft.JOrthopSci.2010;15(1):125–31.

10.AgaC,RasmussenMT,SmithSD,JanssonKS,LapradeRF, EngebretsenL,etal.Biomechanicalcomparisonof interferencescrewsandcombinationscrewandsheath devicesforsofttissueanteriorcruciateligament reconstructiononthetibialside.AmJSportsMed. 2013;41(4):841–8.

11.PetreBM,SmithSD,JanssonKS,deMeijerP-P,HackettTR, LapradeRF,etal.Femoralcorticalsuspensiondevicesforsoft tissueanteriorcruciateligamentreconstruction:a

comparativebiomechanicalstudy.AmJSportsMed. 2013;41(2):416–22.

12.ZantopT,WeimannA,RümmlerM,HassenpflugJ,Petersen W.Initialfixationstrengthoftwobioabsorbablepinsforthe fixationofhamstringgraftscomparedtointerferencescrew fixation:singlecycleandcyclicloading.AmJSportsMed. 2004;32(3):641–9.

13.DonahueTL,GregersenC,HullMLHS.Comparisonof viscoelastic,structural,andmaterialpropertiesof double-loopedanteriorcruciateligamentgraftsmadefrom bovinedigitalextensorandhumanhamstringtendons.J BiomechEng.2001;123(2):162–9.

14.GoodshipAE,BirchHL.Crosssectionalareameasurementof tendonandligamentinvitro:asimple,rapid,non-destructive technique.JBiomech.2005;38(3):605–8.

15.StievenFilhoE,MalafaiaO,Ribas-FilhoJM,DinizOEDS,Borges PC,AlbanoM,etal.Biomechanicanalysisofthesewed tendonsforthereconstructionoftheanteriorcruciate ligament.RevColBrasCir.2010;37(1):52–7.

16.NagarkattiDG,McKeonBP,DonahueBS,FulkersonJP. Mechanicalevaluationofasofttissueinterferencescrewin freetendonanteriorcruciateligamentgraftfixation.AmJ SportsMed.2001;29(1):67–71.

17.ViegasAC,CamanhoGL.Avaliac¸ãobiomecânicadostendões dosmúsculostibiaisepropostadesuautilizac¸ãocomo aloenxertosnasreconstruc¸õesdoligamentocruzado anterior.ActaOrtopBras.2003;11(3):170–5.

18.MatthewsLS,EllisD.Viscoelasticpropertiesofcattendon: effectsoftimeafterdeathandpreservationbyfreezing.J Biomech.1968;1(2):65–71.

19.FaustinoCAC.Reconstruc¸ãodoLCAcomousodostendões dosmúsculosflexoresmediaisdojoelhoefixac¸ãofemoral comosistemadeRigidifix®:relatopreliminar.ActaOrtop Bras.2004;12(4):212–6.

20.JonesKG.Reconstructionoftheanteriorcruciateligament.A techniqueusingthecentralone-thirdofthepatellar ligament.JBoneJointSurgAm.1963;45:925–32.

21.GarofaloR,MouhsineE,ChambatP,SiegristO.Anatomic anteriorcruciateligamentreconstruction:thetwo-incision technique.KneeSurgSportsTraumatolArthrosc.

2006;14(6):510–6.

22.MiyataK,YasudaK,KondoE,NakanoH,KimuraS,HaraN. Biomechanicalcomparisonsofanteriorcruciateligament: reconstructionprocedureswithflexortendongraft.JOrthop Sci.2000;5(6):585–92.

23.WooSL,HollisJM,AdamsDJ,LyonRM,TakaiS.Tensile propertiesofthehumanfemur-anteriorcruciate ligament-tibiacomplex.Theeffectsofspecimenageand orientation.AmJSportsMed.1991;19(3):217–25. 24.WaltonM.Absorbableandmetalinterferencescrews:

comparisonofgraftsecurityduringhealing.Arthroscopy. 1999;15(8):818–26.

25.MilankovMZ,MiljkovicN,NinkovicS.Femoralguide breakageduringtheanteromedialportaltechniqueusedfor ACLreconstruction.Knee.2009;16(2):165–7.

26.SimonianPT,EricksonMS,LarsonRV,O’KaneJW.Tunnel expansionafterhamstringanteriorcruciateligament reconstructionwith1-incisionEndoButtonfemoralfixation. Arthroscopy.2000;16(7):707–14.

27.VolpiP,MarinoniL,BaitC,GalliM,deGirolamoL.Tibial fixationinanteriorcruciateligamentreconstructionwith bone-patellartendon-boneand

Imagem

Fig. 2 – Groups with standard and inverted fixation.
Table 2 – Inverted group: femoral interference screw and transverse tibial pin.

Referências

Documentos relacionados

The animals were used in two separate experiments: I – a total of 36 hamsters were infected and separated into three separate groups for topical treatments with hydrating

were used in the experiment. Initially and every three months thereafter, the seeds were evaluated for physiological quality through the following determinations and tests: a)

Para Peer et al (2009) e Eliasson (2006), a forma mais utilizada para quantificar o custo da variabilidade do tempo de viagem é o uso do desvio padrão da distribuição

Based on the results of the previous tests described, three stages of embryonic development (G, 6S and 20S) were used to evaluate the aggressiveness of the chilling sensitivity

Para tanto, é preciso: (1) identificar emoções positivas durante as sessões terapêuticas; (2) identificar fontes dessas emoções, verificando o que acontece na sessão; (3)

A determinação dos valores das constantes de protonação e de estabilidade dos complexos de cobre(II) e de mercúrio(II) foi realizada com um programa adequado para o efeito, o

Os exem- pIares de camurupim foram capturados ainda alevinos em um es- tuário próximo ao distrito de Bitupiti (Barroquinha-Ceará) e mantidos em tanque de água doce ate o inicio

The aims of this study were to assess the accuracy of DXA whole body composition measurements performed with the knees bent compared to the standard position and to