• Nenhum resultado encontrado

J. Pediatr. (Rio J.) vol.90 número5

N/A
N/A
Protected

Academic year: 2018

Share "J. Pediatr. (Rio J.) vol.90 número5"

Copied!
7
0
0

Texto

(1)

www.jped.com.br

ORIGINAL

ARTICLE

Effects

of

erythromycin

on

-glutamyl

cysteine

synthetase

and

interleukin-1

in

hyperoxia-exposed

lung

tissue

of

premature

newborn

rats

Cheng

Cai

a,∗

,

Gang

Qiu

a

,

Xiaohui

Gong

a

,

Yihuan

Chen

a

,

Huanhu

Zhao

b

aDepartmentofNeonatology,ShanghaiChildren’sHospital,ShanghaiJiaoTongUniversity,Shanghai,China

bChineseMinorityEthnicGroups’TraditionalMedicineResearchCenter,CentralUniversityforNationalities,Beijing,China

Received8November2013;accepted14January2014

Availableonline27May2014

KEYWORDS Erythromycin; Hyperoxia; Lunginjury; Glutathione; Interleukin-1-beta

Abstract

Objective: Toexploretheeffectoferythromycinonhyperoxia-inducedlunginjury.

Methods: One-day-oldpretermoffspringSprague-Dawley(SD)ratswererandomlydividedinto fourgroups:group1,air+sodiumchloride;group2,air+erythromycin;group3,hyperoxia+ sodiumchloride;andgroup4,hyperoxia+erythromycin.Atone,seven,and14daysof expo-sure,glutathione(GSH)andinterleukin-1beta(IL-1beta)weredetectedbydouble-antibody sandwichenzyme-linkedimmunosorbentassay(ELISA),andbicinchoninicacid(BCA)wasused todetectGSHprotein.␥-glutamine-cysteinesynthetase(␥-GCS)mRNAwasdetectedbyreverse transcription-polymerasechainreaction(RT-PCR).

Results: Comparedwithgroup1,expressionsofGSHand␥-GCSmRNAingroup3were signifi-cantlyincreasedatoneandsevendaysofexposure(p<0.05),butexpressionof␥-GCSmRNAwas significantlyreducedat14days;expressionofIL-1betaingroup3wassignificantlyincreased atsevendaysofexposure(p<0.05),andwassignificantlyreducedat14days.Comparedwith group3,expressionsofGSHand␥-GCSmRNAingroup4weresignificantlyincreasedatone, seven,and14daysofexposure(p<0.05),butexpressionsofGSHshowedadownwardtrendat 14days;expressionofIL-1betaingroup4wassignificantlyreducedatoneandsevendaysof exposure(p<0.05).

Conclusions: Changesinoxidant-mediatedIL-1betaandGSHareinvolvedinthedevelopment ofhyperoxia-inducedlunginjury.Erythromycinmayup-regulatetheactivityof␥-GCS, increas-ingtheexpressionofGSH,inhibitingthelevelsofoxidant-mediatedIL-1betaandalleviating hyperoxia-inducedlunginjuryviaanantioxidanteffect.

©2014SociedadeBrasileiradePediatria.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Please citethisarticleas:CaiC,Qiu G, GongX, ChenY,Zhao H.Effects oferythromycin on␥-glutamylcysteine synthetase and interleukin-1␤inhyperoxia-exposedlungtissueofprematurenewbornrats.JPediatr(RioJ).2014;90:493---9.

Correspondingauthor.

E-mail:caicheng2004@163.com(C.Cai). http://dx.doi.org/10.1016/j.jped.2014.01.013

(2)

PALAVRAS-CHAVE Eritromicina; Hiperóxia; Lesãopulmonar; Glutationa; Interleucina-1beta

Efeitosdaeritromicinasobrea-glutamil-cisteína-sintetaseeainterleucina-1no tecidopulmonarexpostoàhiperóxiaderatosrecém-nascidosprematuros

Resumo

Objetivo: Exploraroefeitodaeritromicinasobrelesõespulmonaresinduzidasporhiperóxia.

Métodos: UmaprolederatosSprague-Dawley(SD)prematuroscomumdiadevidafoidividida aleatoriamente emquatro grupos:grupo1ar+cloretodesódio,grupo2ar+eritromicina, grupo3hiperóxia+cloretodesódioegrupo4hiperóxia+eritromicina.Comum,setee14 diasdeexposic¸ão,foramdetectadasGlutationa(GSH)eInterleucina-1beta(IL-1beta)pelo ensaioimunossorventeligadoàenzima(ELISA),eoácidobicinconinico(BCA)foiutilizadopara detectaraproteínaGSH.OmRNAda␥-glutamil-cisteina-sintetase (␥-GCS)foidetectadopor reac¸ãoemcadeiadapolimeraseviatranscriptasereversa(RT-PCR).

Resultados: Comparadasao grupo1,asexpressões domRNAdaGSHeda␥-GCSnogrupo3 aumentaramsignificativamentecomumesetediasdeexposic¸ão(p<0,05),porémaexpressão demRNAda␥-GCSdiminuiusignificativamenteaos14dias;aexpressãodeIL-1betanogrupo 3aumentousignificativamenteaos7diasdeexposic¸ão(p<0,05)ediminuiusignificativamente aos14 dias. Comparadas ao grupo3, as expressões domRNAda GSHe da␥-GCS nogrupo 4aumentaramsignificativamentecomum,setee14diasdeexposic¸ão(p<0,05),porémas expressõesdeGSHmostraramumatendênciadequedaaos14dias;aexpressãodeIL-1beta nogrupo4foireduzidasignificativamentecomumesetediasdeexposic¸ão(p<0,05).

Conclusões: As variac¸ões de IL-1 beta e GSH mediadas por oxidantes estão envolvidas no desenvolvimento de lesão pulmonar induzida por hiperóxia. A eritromicina poderáregular positivamenteaatividadeda␥-GCS,aumentandoaexpressãodeGSH,inibindoosníveis de interleucina-1betamediadaporoxidanteealiviandoalesãopulmonarinduzidaporhiperóxia pormeiodeumefeitoantioxidante.

©2014SociedadeBrasileiradePediatria.PublicadoporElsevierEditoraLtda.Todososdireitos reservados.

Introduction

With the rapid development of maternal health technol-ogyandperinatology,thesurvivalrateofprematureinfants is increasing, especially in very low birth weight infants (VLBWI).1However,thelungsofprematureinfantsareoften

immatureandindirectcontactwithoxygen,andtheyare

oneofthemostsensitive organstooxygentoxicity.

More-over, premature infants need to receive various oxygen

therapies for a long time after birth. Unfortunately, this

undoubtedly aggravates oxidative stress in the immature

lungsof prematureinfants, which may lead toacuteand

chroniclunginjury.2

Hyperoxia-inducedlunginjuryisamajorcauseofchronic

respiratory disease from infancy to adulthood, and has

becomeoneofthemostdifficultproblemsintheneonatal

intensive care unit. However,itsetiology and

pathogene-sisarenotfully understood.3 Nowadays,most researchers

believe that immature lung tissue directly exposed to

the hyperoxic environment results in oxidative stress,

whichhasacrucialroleinthedevelopmentof

hyperoxia-induced lung injury.4,5 Oxidative stress can disturb the

oxidant/antioxidant balance, and is one of the primary

pathogenic factors.6 Glutathione (GSH) is an important

intracellular antioxidant and has a key role in

maintain-ingintegrity andpreventing oxidative damage in alveolar

epithelial cells.7 -glutamine-cysteine synthetase (-GCS)

is therate-limiting enzyme of GSH protein synthesis,and

regulatesintracellularlevelsof GSH.8 IL-1betais present

intheearlyphaseof bronchopulmonarydysplasia(BPD)in

prematureinfants,andmayhave animportantroleinthe

development of BPD. However,the exact pathogenesis of

BPD remains unclear, and clinically effective treatments

remainlimited.

The non-antibacterial effectoferythromycin has

grad-ually attracted the attention of several researchers.9 It

exhibits many important physiological functions,

includ-ing: effective antibacterial activity, non-specific

anti-inflammatory effects in asthma, immune regulation,

induced chemical adhesion, promoted gastrointestinal

motility, and an anti-tumor effect.10 Erythromycin

effec-tivelytreatsmanynon-bacterial,infective chronic

inflam-matory diseases, some of which show imbalanced redox

reactions.11 However,it remains unclear howthe

expres-sion levels of GSH, ␥-GCS, and IL-1 beta are affected in

hyperoxia-exposed lung tissue. In the present study, the

authorsexploredtheeffectoferythromycinon

hyperoxia-induced lung injury in premature rats and examined the

expressionlevelsofGSH,␥-GCS,andIL-1betainpremature

ratpulmonarytissues.

Materials

and

methods

Experimentalanimalmodels12 andgrouping

(3)

UniversityforNationalities,Beijing,China.Thefirstdayof pregnancywasrecorded whenspermwasdetected in the vaginalsectionsoffemaleratsbymicroscopicexamination. Onday21ofgestation(term=22days)fetuseswere deliv-eredbyhysterectomy.Theone-day-oldpretermSDratswere randomlydividedintofourgroups(eightpupsineachgroup): group1receivedair(21%O2)+sodiumchloride;group2,air +erythromycin;group3,hyperoxia+sodiumchloride;and group4, hyperoxia+ erythromycin.Ratsin the airgroups wereexposedtoroomair,whereasthoseinthehyperoxia groupswereexposedtoO2concentrations>85%andCO2< 0.5%.Temperatureswerekeptat25-26◦Candhumidityat 60-70%,andtheoxygenandCO2levelsinthechamberwere monitored continuously with gas analyzers.12 The caudal

veinofthepretermratswasinjectedwithsodiumchloride

(0.15mL/kg)inthesodiumchloridegroups,and

erythromy-cin(50mg/kg) intheerythromycin groups.At one,seven,

and14daysofexposure,eightpupsfromeachgroupwere

anesthetizedand euthanized.Protein was extracted from

theleftlung, andtheright lungwasfrozen andstoredat

---70◦CinarefrigeratorforRT-PCR.

The study was approved by the experimental animal

welfaremanagementandethicscommitteeofShanghai

Chil-dren’s Hospital, Shanghai Jiao Tong University, Shanghai,

China.

DetectionofGSHandIL-1betainpulmonarytissue

homogenatesbyELISA

Lung tissues were collected, and total proteins were extracted using a protein extraction kit. Protein concen-tration wasmeasured usingtheBradford method(Bio-Rad - California,USA). GSH andIL-1 beta in pulmonary tissue homogenates were detected by ELISA kits obtained from NanjingJianchengBiologicalTechnologyCo.Ltd.,Nanjing, ChinaandWuhanHuameiCusabioBiologicalTechnologyCo. Ltd.,Wuhan,China,respectively.

All reagentswereallowedtoreachroom temperature. Therequired numberofstripswerearrangedandlabeled. 100-␮L of reagents were added to wells of polystyrene ELISA plates,and the wells werethoroughly washedwith phosphatebuffered saline(PBS)containing0.1% Tween-20 (PBS-Tween) (Bio-Rad Laboratories, CA, EUA) after each incubationstep.Allreagentswereprepared,including work-ingstandardsandsamples.100uLofstandards,controls,or samples wereadded tothe wellsand were incubatedfor twohoursat37◦C.Afterthewellswerewashed,100uLof goatanti-mouseGSH(orIL-1beta)polyclonalantibodywas addedtoeachwell(incubation,37◦C,30min).After exten-sivewash,100uLofrabbitanti-goatimmunoglobulinG(IgG) wasaddedtoeachwellforonehourat37◦C.Aftersubstrate solutionandstopsolutionincubation,theopticaldensityof each well wasread within30minutes,using amicroplate readersetto450nm.

DetectingofGSHproteinconcentrationsin

pulmonarytissuehomogenatesthrough

bicinchoninicacid(BCA)

Following the standard protocol for the Micro BCA Pro-tein AssayKit (Beijing BaitaikeBiological TechnologyCo.,

Beijing, China), the working solution consisted of 1 vol-umereagentCmixedwith25volumesofreagentB;then, 26 volumes of reagent A were added to the C/B mix-ture. The pH value of the working solution was 11.16 ± 0.06, measured with an Orion 310 (Thermo Scien-tific, MA, EUA) pH meter. Completely dissolved protein standard (5mg/ml), 10␮L diluted to 100␮L, so that the finalconcentrationwas0.5mg/ml,wouldbediluted stan-dards according to 0,1,2,4,8,12,16,20␮L respectively to 96-wellplate,andultra purewaterwouldall standardup to 20␮L, and 10␮L samples to 96-well plate, plus ultra pure water release liquid to 20␮L, the hole added with 200␮L BCA the working solution, gently tap the plate to ensurethoroughmixingwithasample addinggun,cooling thesamplestoroomtemperaturefrom37◦Cfor30-60min. Each measurement was performed in duplicate. All the absorbances were corrected by the corresponding blank replicate.Theabsorbance oftheblanksolutionwas0.048 ± 0.006. Absorbance at 562nm was measured by spec-trophotometerusingglasscuvetteswithopticalpathlength of0.1cm.

Expressionof-GCSmRNAdetectedbyRT-PCR

TotalRNA wasextractedusingtheRNAgentTotalRNA Iso-lation System (Promega Corporation, WI, EUA) according to the manufacturer’s instructions. The purity and yield of total RNA were determined spectrophotometrically by measuring the absorbance of an aliquot at 260nm and 280nm. RNA (4␮g) was reverse-transcribed into 50␮L of complementaryDNA(cDNA)usingtheM-MLVReverse Trans-criptase system (Jingmei Biotech Ltd, Shenzhen, China). The primer sequenceswere designed by Shanghai Biology EngineeringCo.,China,inaccordancewiththeliterature: ␥-GCS,forward:5′-TTGGCAGCCTTCCTGATTTC-3,reverse: 5′-AACTTCTCCACAACCCTCTG-3, product size 78bp; ␤-actin, forward: 5′-AAC GCAGCTCAGTAACAGTC-3, reverse: 5′-ATCCGT AAAAGCCTCTATGC -3, productsize 280bp. ␥-GCSand ␤-actinPCR reactionmixtures weresubjected to incubation for 5min at 94◦C, followed by 35 cycles of 94◦ C for 45 s, 50C for one min, and 72C for 30 s. A final extension was carried out at 72◦ C for ten min. PCR products were separated by electrophoresis on 2% agarosegels, stained withethidiumbromide(0.5␮g/mL), and observed using a UV transilluminator and evaluated usinga GDS-8000gel imagesystem (UVP Co., Cambridge, United Kingdom) by comparing the intensity of target product bands with that of ␤-actin used as the internal standard.

StatisticalAnalysis

(4)

0 2 4 6 8 10 12 14

14d 7d

1d

day

Expression of GSH protein

(ng/ml)

Group 1

Group 2

Group 3

Group 4 a

a

b b

b

Figure1 ExpressionofGSHproteininprematureratlungsdetectedbyELISA.

GSH,glutathione;ELISA,enzyme-linkedimmunosorbentassay.

ap<0.05,comparedwithgroup1. bp<0.05,comparedwithgroup3.

Results

EffectoferythromycinonGSHin

hyperoxia-exposedlungtissue

Comparedwithgroup1,expression ofGSHin group3was significantlyincreased(p <0.05)atoneandsevendaysof exposure,butshowednosignificantreduction(p>0.05)at 14days.Comparedwithgroup3,expressionofGSHingroup 4wassignificantlyincreasedatone,seven,and14daysof exposure(p<0.05);thegeneraltendencydecreasedafter 14days(Figs.1and2).

EffectoferythromycinonIL-1betain

hyperoxia-exposedlungtissue

Comparedwithgroup1,expressionofIL-1betaingroup3 wassignificantlyincreased(p<0.05)atsevendaysof expo-sure;itsexpression wassignificantlyreduced(p<0.05)at 14daysofexposure.Comparedwithgroup3,expressionof IL-1betaingroup4becamesignificantlyreducedatoneand sevendaysofexposure(p<0.05)(Fig.3).

Effectoferythromycinon-GCSin

hyperoxia-exposedlungtissue

Comparedwithgroup1,expressionof␥-GCSmRNAingroup 3 wassignificantly increased (p < 0.05) at one and seven daysof exposure; itsexpression wassignificantly reduced (p < 0.05) at 14 days of exposure. Compared with group 3, expression of ␥-GCSmRNA in group 4was significantly increasedatone,seven,and14daysofexposure(p<0.05)

(Fig.4).Erythromycininterventionup-regulatedtheactivity

of␥-GCSmRNAparticularlyinthehyperoxia-exposedlung

tissues.

Discussion

Basedonthehistologicalfeatures,ratfetallung develop-mentcanbedividedintofourperiods:theembryonicperiod (zeroto13days),glandperiod(14to18days),canalicular stage(19to20days),andsaccularperiod(21to22days). Thesaccularperiodduringthedevelopmentofhumanlung correspondsto28to34weeksofgestationalage,theage ofbirth ofmostpretermneonates. Thepostnatal ratlung development is divided into threeperiods: the expansion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

14d 7d

1d

day

Expression of GSH protein (mg/ml)

Group 1

Group 2

Group 3

Group 4

b b

b

a a

Figure2 ExpressionofGSHproteininprematureratlungsdetectedbyBCA.

GSH,glutathione;BCA,bicinchoninicacid.

(5)

0 5 10 15 20 25 30

14d 7d

1d

day

Expression of IL-1 beta

protein (ng/ml)

Group 1

Group 2

Group 3

Group 4 b

b a

a a

Figure3 ExpressionofIL-1betaproteininprematureratlungsdetectedbyELISA.

IL-1beta,interleukin-1beta;ELISA,enzyme-linkedimmunosorbentassay.

ap<0.05,comparedwithgroup1. bp<0.05,comparedwithgroup3.

period(onetofourdaysafterbirth),alveolarperiod(four to13daysafterbirth),andbalancedgrowthperiod(14to 21daysafterbirth).Thus,thedifferenttimepoints respec-tivelyrepresentthedifferentstagesoflungdevelopmentin preterminfantsafterbirth.

The pathogenesis and prevention of BPD in preterm infants hasmade significantbreakthroughs recently; how-ever, the exact pathogenesis of BPD remains unclear, and effective treatment is still significantly restricted.13

Macrolide antibiotics (MAs) contain the 12-22 carbon

chemical structure and belong to the lactone ring

car-bon antibiotics. Erythromycin A can inhibit the secretion

of pro-inflammatory cytokines such as tumor necrosis

factor-␣andIL-1beta.14Moreover,itisanextremely

broad-spectrumantibiotic, andhasantibacterialactivity against

Gram-positivebacteriaand someGram-negative bacteria,

anaerobic bacteria, Legionella, Chlamydia, Mycoplasma,

andRickettsia.15 Long-term clinical practiceand in-depth

pharmacological studies have showed that MAs not only

have antibacterial effects, but also possess non-specific

anti-inflammatory, anti-allergic, and immune regulation

properties.16 The main role ofantibiotics in somechronic

pulmonaryinflammatory diseasesmayberelatedto

inhib-itingthe oxidativeburstof neutrophilsandthereleaseof

inflammatorymediators. In addition,MAs areeffective in

preventingandtreating somerespiratorydiseases,

includ-ingasthma,pulmonaryfibrosis,diffusepanbronchiolitis,and

somenon-infectious inflammatory diseases, such asblood

diseases, skin diseases, and cancer; these functions have

nothingtodowiththeantibacterialactivities.17

Glutathione is a tripeptide-containing sulfonium

compound, composed of glycine, glutamic acid, and

cys-tine. ␥-GCS is the rate-limiting enzyme of GSH synthesis

thatregulates intracellularGSH levels.18 GSH isactivated

bytheinvivooxidation/reductionsystem,andprovidesthe

reductant for cystine, inhibiting the body’s production of

varioussubstancesin the processof oxidation of reactive

oxygen species (ROS), inactivating activity of membrane

peroxidase and inhibiting ROS, thus reducing ROS. Most

researchers have recognized that ROS caused by

oxida-tive stress has an important role in the development of

hyperoxia-inducedlunginjury.19Severalstudieswithinvivo

and in vitro experiments have demonstrated that, as an

important antioxidant, GSH played an important role in

maintainingtheairwayepithelialcellintegrityandresisting

lunginjuryandinflammation.20

Inthepresentstudy,comparedwiththeair+sodium

chlo-ridegroup,GSHexpressioninlungtissuesofprematurerats

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

14d 7d

1d

day

Expression of

γ

-GCS mRNA

Group 1

Group 2

Group 3

Group 4 b

b b

a

a

Figure4 Expressionof␥-GCSmRNAinprematureratlungsdetectedbyRT-PCR.

␥-GCS,␥-glutaminecysteinesynthetase;RT-PCR,reversetranscription-polymerasechainreaction.

(6)

wassignificantlyenhancedaftererythromycinintervention onday one, seven, and 14 in the erythromycin + sodium chloride group (p < 0.05); itsexpression wassignificantly enhancedondayoneandsevenafterexposuretohyperoxia in the hyperoxia + sodiumchloride group, and decreased significantlyonday14.GSH expressionin thehyperoxia+ erythromycingroups wassignificantlyenhancedunderthe exposuretohyperoxiaanderythromycininterventiononday one,sevenand14,butshowedasignificantdownwardtrend onday14.GSHexpressiondetectingbyBCAconfirmedthe ELISAresults.Afterexposuretohyperoxiaondayoneand seven,GSHexpressionwassignificantlyenhanced.Thebody mayhavesomemechanismforself-protectionandcanresist hyperoxicinjury.Asintracellular ROSincreases,thesulfur groups of cysteine in GSH have a strong affinity activity, andcanbeusedaselectrophilictargetsthatcombinewith ROS.TheyalsohavearoleineliminatingROSandlipid per-oxidation, thus avoiding alveolar cell membrane damage. However,exposuretohyperoxiacausedGSHproteinin alve-olar epithelial cells to be severely damaged by oxidative stressonday14,andGSHexpressionshowednosignificant reduction.

␥-glutamine-cysteine synthetase is the rate-limiting enzymeofGSHproteinsynthesis,whichregulates intracel-lularlevelsofGSH.21Thepresentstudydemonstratedthat

theinterventionoferythromycincaninhibitup-regulationof

GCSproteinlevelsinlungtissuesbyhyperoxiaexposureon

dayoneandseven(p<0.05);theinterventionof

erythromy-cinhadnoobviousinfluenceonhyperoxiaexposureonday

14,but␥-GCSmRNAexpressionwassignificantlyenhanced

ondaysevenand14(p<0.05),whichmayberelatedto

rel-evantregulatory proteins after ␥-GCS mRNAtranscription

becauseofhyperoxiaexposuredamage,resultingin

eryth-romycininhibiting theup-regulation ofGCSprotein levels

byhyperoxiaexposure.

Infection and inflammatory reactions are key factors

in thepathogenesis of BPD in preterm infants, which has

beenconfirmedbyanimalandclinicalstudies.22Ithasbeen

reportedthatIL-1beta asaproinfammatory cytokinehas

a central positionin the pathogenesisof BPD and has an

importantpathogenicroleinacuteandchroniclunginjury

inpreterminfants.23Inthepresentstudy,itwasfoundfound

that,comparedtotheairgroups,theexpressionofIL-1beta

inthelungtissueofprematureratsofhyperoxiagroupswas

significantly increased on day seven and reduced on day

14.Moreover,compared withthesodiumchloride groups,

theexpressionofIL-1betawassignificantlyreducedinthe

erythromycingroupsondayoneandseven.Bycontrast,the

expression of GSH in thelung tissueswas enhancedafter

theinterventionoferythromycinondayone,seven,and14.

Theseresultsdemonstratedthattheprimaryroleof

eryth-romycin may be related to inhibiting the oxidative burst

ofneutrophilsandthereleaseofinflammatorymediators.

Thus,oneofthemain mechanismsofMAsin treatingBPD

inthepreterminfantsmaybetheinhibition ofneutrophil

oxidativeoutbreakandthereleaseofinflammatory

media-tors.

In summary, erythromycin can inhibit the oxidative

outbreak of neutral granulocytes in lung tissue, improve

the antioxidant role of GSH, inhibit the release of the

inflammatory cytokine IL-1 beta, and thus has an

impor-tant rolein reducing oxidative stress in the development

of hyperoxia-induced lung injury, which may provide

a new theoretical basis for the clinical treatment of

hyperoxia-inducedlunginjury.

Funding

This work was supported by funding from the Shanghai Science and Technology Committee (Project Number: 134119a0500).

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

References

1.JobeAJ.ThenewBPD:anarrestoflungdevelopment.Pediatr Res.1999;46:641---3.

2.JobeAH.Thenewbronchopulmonarydysplasia.CurrOpin Pedi-atr.2011;23:167---72.

3.FarstadT,BratlidD,MedbøS,MarkestadT,NorwegianExtreme PrematurityStudyGroup.Bronchopulmonarydysplasia- preva-lence, severity and predictive factors in a national cohort of extremely premature infants. Acta Paediatr. 2011;100: 53---8.

4.SaugstadOD.Bronchopulmonarydysplasia-oxidativestressand antioxidants.SeminNeonatol.2003;8:39---49.

5.FernandesLV,GoulartAL, SantosAM,BarrosMC,GuerraCC, KopelmanBI.Neurodevelopmentalassessmentofverylowbirth weightpreterminfantsatcorrectedageof18-24 monthsby BayleyIIIscales.JPediatr(RioJ).2012;88:471---8.

6.DundarozR, Erenberk U, TurelO, DemirAD, OzkayaE, Erel O. Oxidativeand antioxidative statusof childrenwithacute bronchiolitis.JPediatr(RioJ).2013;89:407---11.

7.Hassanin KM, Abd El-Kawi SH, Hashem KS. The prospective protectiveeffectofseleniumnanoparticlesagainst chromium-induced oxidative and cellular damage in ratthyroid. Int J Nanomedicine.2013;8:1713---20.

8.Kim BY, Kwak SY, Yang JS, Han YH. Phosphorylation and stabilizationofc-MycbyNEMOrenders cellsresistantto ion-izing radiation through up-regulation of ␥-GCS. Oncol Rep. 2011;26:1587---93.

9.Swords WE,Rubin BK.Macrolide antibiotics,bacterial popu-lations and inflammatory airway disease. Neth J Med. 2003;61:242---8.

10.Amado-RodríguezL,González-LópezA,López-AlonsoI,Aguirre A,AstudilloA,Batalla-SolísE,etal.Anti-inflammatoryeffects ofclarithromycininventilator-inducedlunginjury.RespirRes. 2013;14:52.

11.Nair PM, Park SY, Chung JW, Choi J. Transcriptional regu-lationof glutathione biosynthesisgenes. ␥-glutamyl-cysteine ligaseandglutathionesynthetaseinresponsetocadmiumand nonylphenolinChironomusriparius.EnvironToxicolPharmacol. 2013;36:265---73.

12.YamJ,FrankL,RobertsRJ.Oxygentoxicity:comparisonoflung biochemicalresponsesinneonatalandadultrats.PediatrRes. 1978;12:115---9.

13.Halliday HL, Ehrenkranz RA, Doyle LW. Early (< 8 days) postnatalcorticosteroidsfor preventing chronic lungdisease in preterm infants. Cochrane Database Syst Rev. 2010;(1): CD001146.

(7)

antibiotic from a marine-derived Micromonospora sp. Mar Drugs.2013;11:1152---61.

15.SatoK, SugaM,Akaike T, FujiiS, Muranaka H,Doi T, etal. Therapeuticeffectoferythromycinoninfluenzavirus-induced lung injury in mice. Am J Respir Crit Care Med. 1998;157: 853---7.

16.GotfriedMH.Macrolidesforthetreatmentofchronicsinusitis, asthma,andCOPD.Chest.2004;125:52S---60S,quiz60S-61S.

17.TamaokiJ.The effects ofmacrolides oninflammatory cells. Chest.2004;125:41S---50S,quiz51S.

18.RahmanI,vanSchadewijkAA,HiemstraPS,StolkJ,vanKrieken JH,MacNeeW,etal.Localizationofgamma-glutamylcysteine synthetasemessengerrnaexpressioninlungsofsmokersand patientswithchronicobstructivepulmonarydisease.FreeRadic BiolMed.2000;28:920---5.

19.Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonarydysplasia.NEnglJMed.1967;276:357---68.

20.Rahman I,MacNee W.Oxidativestress andregulationof glu-tathioneinlunginflammation.EurRespirJ.2000;16:534---54.

21.ChenHH,KuoMT.Roleofglutathioneintheregulationof Cis-platin resistance in cancer chemotherapy. MetBased Drugs. 2010:2010,pii:430939.

22.RochaG.Chorioamnionitisandlunginjuryinpretermnewborns. CritCareResPract.2013;2013:890987.

Imagem

Figure 2 Expression of GSH protein in premature rat lungs detected by BCA.
Figure 4 Expression of ␥-GCS mRNA in premature rat lungs detected by RT-PCR.

Referências

Documentos relacionados

Temas relacionados à Igreja eram debatidos nas ruas, nas casas, no comércio e não eram mais assuntos exclusivos dos contextos eclesiás- ticos. A Igreja despertava um

Para tanto, além de se apresentar a abordagem teórica que envolve KIBS, incluindo suas 4 dimensões características, o estudo apresenta a composição e a dinâmica do setor de serviços

Compared with model group, the serum TNF-α and IL-2 levels of nude mice in 5-Fu, middle-dose DOPA and high-dose DOPA group were significantly increased, respectively (P &lt;

The levels of Apo J mRNA and protein in carotid arteries were significantly upregulated after rosuvastatin administration as compared with the model group, and reached to maximum

In the periods of 0-21, 0-28 and 0-35 days of age, birds fed the antibiotic again presented higher weight gain values, but only as compared with the control group (P&lt;0.05) and

The expressions of Bax, p53 and p21 protein in tumor tissue in 200 mg/kg Cur group were significantly higher than control group (P &lt; 0.05), and the expressions of Bcl-2,

em nosso trabalho (capaz de diminuir o efeito vasodilatador da bradicinina, mas não interferir com o efeito pressor), associado com o inibidor da ECA; iii) o uso da

No segundo parágrafo da página 83, Vygotski prossegue sua crítica assinalando que o que se sabe sobre a mente da criança de um ano e meio ou dois anos não corresponde à suposição