• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número1"

Copied!
5
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Polycarpol

in

Unonopsis

,

Bocageopsis

and

Onychopetalum

Amazonian

species:

chemosystematical

implications

and

antimicrobial

evaluation

Felipe

M.A.

da

Silva

a,∗

,

Bruna

R.

de

Lima

a

,

Elzalina

R.

Soares

a

,

Richardson

A.

de

Almeida

a

,

Francinaldo

A.

da

Silva

Filho

a

,

Wallace

R.

Corrêa

b

,

Marcos

J.

Salvador

b

,

Antonia

Q.L.

de

Souza

c

,

Hector

H.F.

Koolen

d

,

Afonso

D.L.

de

Souza

a

,

Maria

L.B.

Pinheiro

a

aDepartamentodeQuímica,UniversidadeFederaldoAmazonas,69077-000Manaus,AM,Brazil bInstitutodeBiologia,UniversidadeEstadualdeCampinas,13083-970Campinas,SP,Brazil cFaculdadedeCiênciasAgrárias,UniversidadeFederaldoAmazonas,69077-000Manaus,AM,Brazil dInstitutodeQuímica,UniversidadeEstadualdeCampinas,13083-970Campinas,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7December2014 Accepted8January2015 Availableonline11February2015

Keywords:

Antimicrobialactivity Bocageopsis

Chemotaxonomicmarker Onychopetalum Polycarpol Unonopsis

a

b

s

t

r

a

c

t

Polycarpol,arecurrentlanostane-typetriterpeneinAnnonaceaefamily,wasconfirmedbythinlayer chromatographyandmassspectrometryanalysisintheaerialparts(twigsandtrunkbarks)ofUnonopsis duckeiR.E.Fr.,U.floribundaDiels,U.rufescens(Baill.)R.E.Fr.,U.stipitataDiels,Onychopetalum amazon-icumR.E.Fr.andBocageopsispleiospermaMaas.Itschemotaxonomicsignificancewasdiscussedforthese threegenera,aswellfortheAnnonaceaefamily.Inaddition,theantimicrobialactivityagainstseveral strainsofmicroorganismswasevaluatedforthefirsttimeforthiscompound,beingobservedsignificant antibacterialactivityagainstStaphylococcusaureus(ATCC6538),Staphylococcusepidermidis(ATCC1228) andEscherichiacoli(ATCC10538andATCC10799)withminimalinhibitoryconcentrationvaluesbetween 25and50␮gml−1.

©2014SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

The Annonaceae family comprises about 2500 species dis-tributedin130genera.Thisfamilyconsistsoftrees,shrubsand climbers,witha predominantdistributioninlowlands of tropi-calandsubtropicalregions,beingconsideredapantropicalfamily (Richardsonetal.,2004).Thisfamilyischemicallycharacterized bythepresenceofalkaloids,particularlyisoquinoline-derivedand terpenoids,wheremonoterpenesandsesquiterpenesare predom-inantin thecomposition ofessential oils (Leboeuf et al.,1982; Fournieretal.,1999).Anotherremarkablefeatureisthepresenceof annonaceousacetogenins,aclassexclusivefromthisfamily,that hasattractedinterestduetothegrowinglistofnewlydescribed structuresandbiologicalactivities(Changetal.,1999;Cunhaetal., 2009).Acetogeninsalongwiththelanostane-typetriterpene poly-carpolhavebeensuggestedaspotentialchemotaxonomicmarkers forthisfamily(Leboeufetal.,1982;Goulartetal.,1986;Jungetal., 1990).

∗ Correspondingauthor.

E-mail:felipemas@ufam.edu.br(F.M.A.d.Silva).

Polycarpol displays a growing list of biological activities describedintheliterature,suchasantifilarial(Nyasseetal.,2006), antineoplastic(Matosetal.,2006),antitrypanosomal(Ngantchou etal.,2009)andmorerecentlyanti-inflammatory(Saadawietal., 2012).Althoughtriterpenespossessprovenantimicrobial activi-ties(Haraguchietal.,1999;Katerereetal.,2003;Djoukengetal., 2005;Angehetal.,2007)alackofstudiesdescribingthe antibacte-rialactivitiesofpolycarpolisobserved.Thecontinuoussearchfor newantimicrobialdrugsisstimulatedbytheincreasing appear-anceofantibiotic-resistantorganisms,suchasindividualsofthe Staphylococcus,Pseudomonas,Enterococcus,andPneumococcus gen-era(Pachecoetal.,2012).

Unonopsis,BocageopsisandOnychopetalumarebotanicallyclose generadistributedthroughneotropicalregions.The morphologi-calsimilaritiesamongthesegenerawereexpressedbyFries,when he placed them in the informal “Unonopsis-Gruppe”. Recently thiscloserelationshipwassupportedbyphylogeneticresearches (Maasetal.,2007).Unonopsisisthelargestgenusamong these three,comprising approximately50 species.Ontheotherhand,

Bocageopsisand Onychopetalumcomprise few species, fourand

two, respectively (B. mattogrossensis, B. canescens, B. multiflora andB.pleiosperma,O.amazonicumandO.periquino)(Maasetal., 2007).Unonopsisisalsothemostexploredfromthechemicaland

http://dx.doi.org/10.1016/j.bjp.2015.01.003

(2)

biologicalpointsof view(Siqueiraet al.,1998; Waechteretal., 1999; Silva et al., 2012b,c, 2014). The chemical information regardingtheBocageopsisandOnychopetalumgeneraisstilllimited, beingfocuseddirectedtothestudyoftheessentialoilsand alka-loidcompositions(Almeidaetal.,1976;Oliveiraetal.,2014;Soares etal.,2015).Inthiswork,thepresenceofthetriterpenepolycarpol (1)intheaerialparts(trunkbarksandtwigs)ofAmazonian

Boca-geopsis, Onychopetalum and Unonopsis species was investigated

bythinlayerchromatography(TLC)andmassspectrometry(MS) approaches.Thechemotaxonomicsignificanceofpolycarpolwas discussedforthesethreegeneraandfortheAnnonaceaefamily. Inaddition,polycarpolwassubmittedtoinvitroassaysto evalu-ateitsantimicrobialactivityagainstStaphylococcusaureus(ATCC 6538),Staphylococcusepidermidis(ATCC1228),Pseudomonas aeru-ginosa(ATCC27853),Enterobacterfaecalis(Ef),Bacillussubtilis(Bs),

Escherichiacoli(ATCC10538and10799),Candidaalbicans(ATCC

10231and1023),Candidaparapsilosis(ATCC22019),Candida tropi-calis(ATCC157andct),Candidaglabrata(ATCC30070)andCandida dubliniensis(ATCC778157).

OH

(1) HO

Materialsandmethods

Plantmaterial

Theaerialparts (twigsand trunkbarks)of Unonopsisduckei R.E.Fr.,(voucherno.3289), Onychopetalumamazonicum R.E.Fr. (voucherno.218341)andBocageopsispleiospermaMaas(voucher no.183125)werecollectedintheReservaFlorestalAdolphoDucke, atthemunicipalityofManaus,Brazil,fromindividualspreviously identifiedbyspecialists.Thevoucherspecimensaredepositedin theherbariumoftheInstitutoNacionaldePesquisasda Amazô-nia(INPA).The samepartsfor U.floribunda (voucherno.6701)

and U. rufescens (voucherno. 3767) were collectedin the

Dis-tritoAgropecuáriodaSUFRAMAinthesamecity,fromindividuals previously identified byspecialists. The voucher specimens are depositedinthebotanycollectionofPDBFF/INPA(ProjetoDinâmica BiológicadeFragmentosFlorestais).Theplantmaterial(twigsand trunkbarks)of U.stipitata(voucher no.8250) wascollectedin thecampusoftheUniversidadeFederaldoAmazonas(UFAM).A voucherspecimenwasdepositedintheHerbariumofthe institu-tion.ThespecimencollectedonthecampusofUFAMwasidentified byProf.AntonioCarlosWebberfromtheDepartamentode Biolo-giaoftheUFAM.TheSISBIOlicensenumberforthecollectionis 34677-1.

Extractionandconfirmationofthepolycarpol

TheextractionofpolycarpolfromU. duckei,U. floribunda, U. rufescens,U.stipitata,O.amazonicumandB.pleiospermawasmade accordingto theadapted methoddescribed for U. guatterioides (Silvaetal.,2012a),briefly:10gofpowderedmaterial(twigsand trunkbarks)weremaceratedforthreedayswithhexane(80ml). Theextractwasconcentrated atreduced pressure. The precipi-tateformedwaswashedwithhexaneandre-crystallizedinethyl

Table1

AntimicrobialactivityinvitroofpolycarpolwiththeirMICvalues(␮gml−1).

Microorganism Polycarpol Positivecontrolsb

MICa MIC

Staphylococcusaureus(ATCC6538)c 25 25 Staphylococcusepidermidis(ATCC1228)c 50 50 Bacillussubtilis(Bs)d e 50 Escherichiacoli(ATCC10538)c 50 50 Escherichiacoli(ATCC10799)c 50 50 Pseudomonasaeruginosa(ATCC27853)c >500 Enterobacterfaecalis(Ef)d 50 Candidaalbicans(ATCC10231)c 250 12.5 Candidaalbicans(ATCC1023)c 250 12.5 Candidaparapsilosis(ATCC22019)c 12.5 Candidatropicalis(ATCC157)c 12.5 Candidatropicalis(ct)d 12.5 Candidaglabrata(ATCC30070)c 12.5 Candidadubliniensis(ATCC778157)c 250 12.5

aMICminimuminhibitoryconcentrationin␮gml−1.

bPositivecontrol:chloramphenicolforbacteriastrainsandketoconazoleforyeast strains.

c Standardstrain. d Fieldstrain.

e(–)withoutinhibitionofdevelopment.Compoundsevaluatedintherangeof10 and500␮gml−1.

acetate.Approximately1mgoftheeachsolidwasseparatedfor TLCandMSanalysis,beingpolycarpol(1)identifiedbycomparison withanauthenticstandard(Silvaetal.,2012a).

Biologicalassay

Thepurestandardofpolycarpolwasevaluatedforits antimi-crobial activity using the brothmicrodilution method(96-well microtiterplates),aspreviouslydescribed(Salvadoretal.,2002; Barrosetal.,2009; Costaet al.,2010;Bataglionet al.,2014)to giveconcentrations between 10 and 500␮gml−1. The minimal inhibitoryconcentration(MIC)wascalculatedasthelowest con-centrationshowingcompleteinhibitionofatestedstrain.Inthese tests, chloramphenicol and ketoconazole were used as experi-mentalpositivecontrol,whilethesolutionpropyleneglycol-sterile distilledwater(5:95,v/v)servedasthenegativecontrol.Each sensi-tivitytestwasperformedinduplicateforeachmicroorganismand repeatedthreetimes.Thestrainsutilizedintheassaysareshown inTable1.

Instrumentsandmaterials

(3)

200 300 400 500 600 700 800 900 1000

m/z 0

10 20 30 40 50 60 70 80 90

100 423.33

441.31 405.34

455.27

207.24 338.42

121.15 269.37

535.26 577.45 637.71 674.49 727.48 775.74 810.48 882.82 934.80 HO

HO HO

[M–2H2O+H]+ [M+H]+

[M–H2O+H]+

H

H

H H O

+

+ + +

Fig.1. MassspectrumandinsourcethermaldissociationproposalforthesequentiallossesobservedforAPCIionizationofpolycarpol.

Resultsanddiscussion

ConfirmationofpolycarpolbyTLCandMSanalyses

Fromtheaerialparts ofU. duckei,U. floribunda,U. rufescens, U.stipitata,O.amazonicumand B.pleiospermawhitesolidswere obtainedafterextractionandre-crystallizationprocedures.Allthe samplesweredissolvedinethylacetateandanalyzedbyTLCin comparison withan authentic polycarpolstandard (Silvaet al., 2012a).Thesamplesandthestandardpresentedthesame reten-tion factor (Rf 0.6) when eluted with a hexane–ethyl acetate (7:3)mixtureandrevealedwithvanillin–sulphuricacidreagent (bluespot) andunderUV light(254nm).Theobservationofan intense blue spot in all samples is in agreement with results expected for triterpene compounds (Oleszek et al., 2008). The sampleswhensubjected toMSanalysisinfull scanmode, pre-sented three major ions at m/z441 [M+H]+, 423 (

−18Da) and

405 (−18Da) (Fig. 1). The ion at m/z 441 corresponds to the

protonatedmoleculeexpectedforpolycarpol,whilethem/z423 and 405are consistent with sequential neutral losses (−H2O). Hydroxilatedtriterpenespresentthisdissociativebehaviordueto theapplicationofhighdesolvationtemperaturesinAPCI exper-iments (Koolen et al., 2013). All samples presented the same threemajorionswhensubjectedtoMSanalysis.Theseevidence along withTLC observations assisted theconfirmation of poly-carpol (1) in aerial parts (twigs and trunk barks) of U. duckei, U. floribunda, U. rufescens, U. stipitata, O. amazonicum and B. pleiosperma,being this substance reportedfor the first time in

thisUnonopsisspeciesaswellinOnychopetalumandBocageopsis

genus.

Antibacterialactivity

Thepolycarpolwasevaluatedinvitroforantimicrobialactivity againstelevenstrainsofmicroorganism(Table1).Thissubstance presentedsignificantantimicrobialactivityagainstS.aureus(ATCC

6538),S.epidermidis(ATCC1228)andE.coli(ATCC10538andATCC 10799)withMICvaluesbetween25and50␮gml−1.Forthestrains ofB.subtilis,E.faecalisandP.aeruginosawerenotobserved inhi-bitionofthedevelopment.Theseobservationsareinagreement withliteraturedata,sincelannostanetriterpenesisolatedfromthe vegetalspeciesandfungiwhenassayedagainstgram-negativeand gram-positivebacteria,presentseveralactivestructures(Liuetal., 2010a,b;Mosaetal.,2014).Oleanane,ursane,lupane,friedelane, fernane and others miscellaneous-typetriterpenes alsopresent severalactivecompoundsagainstgram-negativebacteria,mainly P.aeruginosa,E.coli,Klebsiellapneumoniae,andSalmonellatyphi, andgram-positive,comprisingS.aureus,B.subtilis,Bacilluscereus, and S.faecalis.Thetentative understandingof therelationships betweenthechemicalstructuresoftriterpenesandthe antibac-terialactivitiesindicatesthat theactivitymayberelatedtothe presenceofanoxygenatedgroupatC-3(Pachecoetal.,2012).In polycarpolthispositionisoccupiedbyahydroxylgroup,however anothersubstituents,likecarbonyls,O-glycosides,esters(mainly acetylmoieties),orhydroxylaminescanbepresentinthisposition (Pachecoetal.,2012).

Thesignificantantibacterialactivitiesobservedforpolycarpol anddescribedinthisworkforthefirsttimeneedsfurther inves-tigations,which couldhelpin thesearchfor newantimicrobial drugs.

(4)

Chemotaxonomicsignificanceofpolycarpol

The chemotaxonomic importance of the polycarpol for the AnnonaceaefamilywasfirstlyrecognizedbyLeboeufetal.(1982)

duringa systematic researchwithseveral species belongingto neighboringfamilies,suchasLauraceae,Monimiaceaeand Menis-permaceae.Atthistime,polycarpolwasnotfound,beingsuggested for the first time in literature as chemotaxonomic marker for Annonaceae.Thisideawassupportedovertheyears(Goulartetal., 1986; Junget al., 1990).Polycarpol was recentlyisolated from Duguetiaglabriuscula (Pereira et al., 2003), Duguetiafurfuraceae (Silva et al., 2007), Artabotrys madagascariensis (Murphy et al., 2008),Piptostigmapreussi(Ngantchouetal.,2009)andArtabotrys spinosus(Sichaemetal.,2011),allspeciesfromAnnonaceae fam-ily,which enhancestheinitialpropositionof thiscompound as achemotaxonomicmarkerforthisfamily.Consideringitsbroad occurrence at genera level, is appropriate to restrict the term “chemotaxonomicmarker”atafamilylevel,beingsuggestedthe useoftheterm“chemicalmarker”togeneralevel.

InUnonopsisgenus,polycarpolhasbeenreportedin

Unonop-sisglaucopetala(Jayasuriyaet al.,2005), Unonopsisguatterioides (Touché et al., 1981; Silva et al., 2012a), Unonopsis spectabilis (Laprévoteetal.,1987)andUnonopsispacifica(Arangoetal.,1988). There-currentobservationofpolycarpolinallthesespecies sub-jectedtophytochemicalapproaches,aswellasinO.amazonicum andB.pleiospermaisanimportantchemicalevidencenotonlyto confirmthebotanicalproximityofthesegenera(Maasetal.,2007), butalsotoreinforcepolycarpolasa chemical markerforthese genera.Theinsufficientphytochemicalknowledgeregarding Ony-chopetalumandBocageopsisgenerastillnotdoesallowsaprofound evaluationofthechemicalsimilaritiesbetweenthemand Unonop-sis.Inthissense,phytochemicalinvestigationsdirectedatbetter understandingofthechemical relationshipsamongthese three close-relatedgeneraareindispensableinthefuture.

Conflictofinterest

Theauthorsdeclarenoconflictsofinterest.

Authorscontributions

FMAS,HHFK(PhDstudents),BRL,ERS(MScstudents),RAM(PhD student)andFASF (CIstudent)contributedequallyincollecting plantsamples,confirmationofthecompoundstructureandwritten ofthemanuscript.WRCandMJScontributedtoinvitrobiological assays.ADLS,MLBPandAQLSsupervisedthelaboratoryworkand contributedtocriticalreadingofthemanuscript.Alltheauthors havereadthefinalmanuscriptandapprovedthesubmission.

Acknowledgment

TheauthorsaregratefultoCAPES,CNPq,FINEP,FAPEAMand FAPESPforfinancialsupport.WethankPDBFFforproviding logis-ticalandfieldsupport.Thisispublicationnumber663inthePDBFF TechnicalSeries.

References

Angeh,J.E.,Huang,X.,Sattler,I.,Swan,G.E.,Dahse,H.,Hartl,A.,Eloff,J.N.,2007. Antimicrobialandanti-inflammatoryactivityoffour knownandonenew triterpenoidfromCombretumimberbe(Combretaceae).J.Ethnopharmacol.110, 56–60.

Almeida,M.E.L.,Braz-Filho,R.,Bülow,V.,Gottlieb,O.R.,Maia,J.G.S.,1976.Onychine, analkaloidfromOnychopetalumamazonicum.Phytochemistry15,1186–1187. Arango,G.J.,Cortes,D.,Cavé,A.,D’Ocon,P.M.,1988.7-7′-Bisdeshidroaporfnsde

Unonopsispacifica.An.Quim.C-Org.Bioq.84,124–127.

Barros,L.F.,Barison,A.,Salvador,M.J.,Mellosilva,R.,Cabral,E.C.,Eberlin,M.N., Ste-fanello,M.E.A.,2009.ConstituentsfromtheleavesofMagnoliaovata.J.Nat.Prod. 72,1529–1539.

Bataglion,G.A.,Silva,F.M.A.,Santos,J.M.,Santos,F.N.,Barcia,M.T.,Lourenc¸o,C.C., Salvador,M.J.,Godoy,H.T.,Eberlin,M.N.,Koolen,H.H.F.,2014.Comprehensive characterizationoflipidsfromAmazonianvegetableoilsbymassspectrometry techniques.FoodRes.Int.64,472–481.

Chang,F.R.,Chen,J.L.,Lin,C.Y.,Chiu,H.F.,Wu,M.J.,Wu,Y.C.,1999.Bioactive aceto-geninsfromtheseedsofAnnonaatemoya.Phytochemistry51,883–889. Costa, E.V., Pinheiro, M.L., Barison, A., Campos, F., Salvador, M.J., Maia, B.H.,

Cabral,E.,Eberlin,M.N.,2010.AlkaloidsfromthebarkofGuatteriahispida andtheirevaluationasantioxidantandantimicrobialagents.J.Nat.Prod.73, 1180–1183.

Cunha,M.M.,Nascimento,F.C.,Santos-Pimenta,L.P.,Boaventura,M.A.D.,Salas,C.E., Lopes,M.T.P.,2009.Screeningofcytotoxicactivityinhexanicandethanolic extractsofRollinialaurifolia.Lat.Am.J.Pharm.28,234–240.

Djoukeng,J.D.,Abou-Mansour,E.,Tabacchi,R.,Tapondjou,A.L.,Boudab,H.,Lontsi, D.,2005.Antibacterial triterpenesfrom Syzygiumguineense(Myrtaceae).J. Ethnopharmacol.101,283–286.

Fournier,G.,Leboeuf,M.,Cavé,A.,1999.Annonaceaeessentialoils:areview.J.Essent. OilRes.11,131–142.

Goulart,M.O.F.,Santana,A.E.G.,Oliveira,A.B.,Oliveira,G.G.,Maia,J.G.S.,1986. Azaflu-orenonesandazaanthraquinonefromGuatteriadielsiana.Phytochemistry25, 1691–1695.

Haraguchi,H.,Kataoka,S.,Okamoto,S.,Hanafi,M.,Shibata,K.,1999.Antimicrobial triterpenesfromIlexintegraandthemechanismofantifungalaction.Phytother. Res.13,151–156.

Hosoe,T.,Okada,H.,Itabashi,T.,Nozawa,K.,Okada,K.,Takaki,G.M.,Fukushima,K., Miyaji,M.,Kawai,K.I.,2000.Anewpentanorlanostanederivative,cladosporide A,asacharacteristicantifungalagentagainstAspergillusfumigatus,isolatedfrom Cladosporiumsp.Chem.Pharm.Bull.48,1422–1426.

Jayasuriya,H.,Herath,K.B.,Ondeyka,J.G.,Guan,Z.,Borris,R.P.,Tiwari,S.,Jong,W., Chavez,F.,Moss,J.,Stevenson,D.W.,Beck,H.T.,Slattery,M.,Zamora,N., Schul-man,M.,Ali,A.,Sharma,N.,Macnaul,K.,Hayes,N.,Menke,J.G.,Singh,S.B., 2005.Diterpenoid,steroid,andtriterpenoidagonistsofliverxreceptorsfrom diversifiedterrestrialplantsandmarinesources.J.Nat.Prod.68,1247–1258. Jung,J.H.,Pummangura,S.,Chaichantipyuth,P.,Patarapanich,C.,Mclaughlin,J.L.,

1990. Bioactiveconstituents of Melodorumfruticosum. Phytochemistry 29, 1667–1670.

Katerere,D.R.,Grev,A.I.,Nash,R.J.,Waigh,R.D.,2003.Antimicrobialactivityof pen-tacyclictriterpenesisolatedfromAfricanCombretaceae.Phytochemistry63, 81–88.

Kitagawa,I.,Kobayashi,M.,Inamoto,T.,Yasuzawa,T.,Kyogoku,Y.,1981.The struc-turesofsixantifungaloligoglycosides,stichlorosidesA1,A2,B1,B2,C1,andC2, fromtheseacucumberStichopuschloronotus(Brandt).Chem.Pharm.Bull.29, 2387–2391.

Kitagawa,I.,Kobayashi,M.,Inamoto,T.,Fuchida,M.,Kyogoku,Y.,1985.Marine naturalproducts.XIV.StructuresofechinosidesAandB,antifungal lanostane-oligosidesfromtheseacucumberActinopygaechinites(Jaeger).Chem.Pharm. Bull.33,5214–5224.

Kitagawa,I.,Kobayashi,M.,Son,B.W.,Suzuki,S.,Kyogoku,Y.,1989.Marinenatural products.XIX.PervicosidesA,B,andC,lanostane-typetriterpene-oligoglycoside sulfatesfromtheseacucumberHolothuriapervicax.Chem.Pharm.Bull.37, 1230–1234.

Koolen,H.H.F.,Soares,E.R.,Silva,F.M.A.,Oliveira,A.A.,Souza,A.Q.L.,Medeiros,L.S., Rodrigues-Filho,E.,Cavalcanti,B.C.,Pessoa,C.O.,Morais,M.O.,Salvador,M.J., Souza,A.D.L.,2013.Mauriticacid:anewdammaranetriterpenefromtheroots ofMauritiaflexuosaL.f.(Arecaceae).Nat.Prod.Res.27,2118–2125.

Krohn,K.,Ludewig,K.,Jones,P.G.,Doering,D.,Aust,H.J.,Draeger,S.,Schulz,B., 1992.Biologicallyactivemetabolitesfromfungi,21Anantifungalandherbicidal lanostanelactonefromSporormiellaaustralis.Nat.Prod.Lett.1,29–32. Laprévote,O.,Roblot,F.,Hocquemiller,R.,Cavé,A.,1987.Alcaloïdesdesannonacées,

84.bisaporphinoïdesdel’Unonopsisspectabilis.J.Nat.Prod.50,984–988. Leboeuf,M.,Cavé,A.,Bhaumik,P.K.,Mukherjee,B.,Mukherjee,R.,1982.The

phyto-chemistryoftheAnnonaceae.Phytochemistry21,2783–2813.

Liu, X.T.,Winkler,A.L.,Schwan, W.R.,Volk,T.J.,Rott,M.A.,Monte, A., 2010a. AntibacterialcompoundsfrommushroomsI:ALanostane-typetriterpeneand prenylphenolderivativesfromJahnoporushirtusandAlbatrellusflettiiandtheir activities againstBacilluscereusand Enterococcus faecalis. PlantaMed.76, 182–185.

Liu,X.T.,Winkler,A.L.,Schwan,W.R.,Volk,T.J.,Rott,M.A.,Monte,A.,2010b. Antibac-terialcompoundsfrommushrooms.II:Lanostanetriterpenoidsandanergostane steroidwithactivityagainstBacilluscereusisolatedfromfomitopsispinicola. PlantaMed.76,464–466.

Maas,P.J.M.,Westra,L.Y.T.,Vermeer,M.,2007.Revisionoftheneotropical gen-era Bocageopsis, Onychopetalum, andUnonopsis (Annonaceae).BLUMEA52, 413–554.

Matos,M.F.C.,Leite,L.I.S.P.,Brustolim,D.,Siqueira,J.M.,Carollo,C.A.,Hellmann,A.R., Pereira,N.F.G.,Silva,D.B.,2006.Antineoplasticactivityofselectedconstituents ofDuguetiaglabriuscula.Fitoterapia77,227–229.

Murphy,B.T.,Cao,S.,Brodie,P.J.,Miller,J.S.,Ratovoson,F.,Birkinshaw,C.,Rakotobe, E.,Rasamison,V.E.,Tendyke,K.,Suh,E.M.,Kingston,D.G.I.,2008. Antiprolifera-tivecompoundsofArtabotrysmadagascariensisfromtheMadagascarrainforest. Nat.Prod.Res.22,1169–1175.

(5)

Ngantchou,I.,Nkwengoua,E.,Nganso,Y.,Nyasse,B.,Denier,C.,Hannaert,V., Schnei-der,B.,2009.AntitrypanosomalactivityofpolycarpolfromPiptostigmapreussi (Annonaceae).Fitoterapia80,188–191.

Nyasse,B.,Ngantchou,I.,Nono,J.J.,Schneider,B.,2006.Antifilarialactivityinvitroof polycarpoland3-O-acetylaleuritolicacidfromcameroonianmedicinalplants againstOnchocercagutturosa.Nat.Prod.Res20,391–397.

Oliveira,E.S.C.,Amaral,A.C.F.,Lima,E.S.,Silva,J.R.A.,2014.Chemicalcomposition andbiologicalactivitiesofBocageopsismultifloraessentialoil.J.Essent.OilRes. 26,161–165.

Oleszek,W.,Kapusta,I.,Stochmal,A.,2008.TLCoftriterpenes(includingsaponins). In:Waksmundzka-Hajnos,M.(Ed.),ThinLayerChromatographyin Phytochem-istry.CRCPress,Taylor&FrancisGroup,LLC,NewYork,pp.519–537. Pereira,N.F.G.,Carollo,C.A.,Garcez,W.S.,Siqueira,J.M., 2003.Novelsantalane

sesquiterpenoidsfromthestembarkofDuguetiaglabriuscula–Annonaceae. Quim.Nova26,512–516.

Pacheco,A.G.,Alcântara,A.F.C.,Abreu,V.G.C.,Corrêa,G.M.,2012.Relationships betweenchemicalstructureandactivityoftriterpenesagainstgram-positive andgram-negativebacteria.In:Bobbarala,V.(Ed.),ASearchforAntibacterials Agents.InTech,Rijeka,pp.1–24.

Richardson,J.E.,Chatrou,L.W.,Mols,J.B.,Erkens,R.H.J.,Pirie,M.D.,2004.Historical biogeographyoftwocosmopolitanfamiliesoffloweringplants:Annonaceae andRhamnaceae.Phil.Trans.R.Soc.Lond.B359,1495–1508.

Saadawi,S.,Jalil,J.,Jasamai,M.,Jantan,I.,2012.Inhibitoryeffectsof acetylmelodor-inol,chrysinand polycarpolfrom Mitrellakentiionprostaglandin E2 and thromboxaneB2productionandplateletactivatingfactorreceptorbinding. Molecules17,4824–4835.

Salvador,M.J.,Ferreira,E.O.,Pral,E.M.F.,Alfieri,S.C.,Albuquerque,S.,Ito,I.Y.,Dias, D.A.,2002.BioactivityofcrudeextractsandsomeconstituentsofBlutaparon portulacoides(Amaranthaceae).Phytomedicine9,566–571.

Sichaem,J.,Ruksilp,T.,Worawalai,W.,Siripong,P.,Khumkratok,S.,Tip-pyang,S., 2011.AnewdimericaporphinefromtherootsofArtabotrysspinosus.Fitoterapia 82,422–425.

Silva,D.B.,Tulli,E.C.O.,Garcez,W.S.,Nascimento,E.A.,Siqueira,J.M.,2007.Chemical constituentsoftheundergroundstembarkofDuguetiafurfuracea(Annonaceae). J.Braz.Chem.Soc.18,1560–1565.

Silva,F.M.A.,Koolen,H.H.F.,Barisson,A., Souza,A.D.L.,Pinheiro,M.L.B.,2012a. Steroids and triterpenefrom the barkofUnonopsis guatterioides R. E. Fr. (Annonaceae).Int.J.Pharm.Pharm.Sci.4,522–523.

Silva,F.M.A.,Koolen,H.H.F.,Almeida,R.A.,Souza,A.D.L.,Pinheiro,M.L.B.,Costa,E.V., 2012b.Desreplicac¸ãodealcaloidesaporfínicoseoxoaporfínicosdeUnonopsis guatterioidesporESI-IT-MS.Quim.Nova35,944–947.

Silva,F.M.A., Koolen,H.H.F., Lima,J.P.S.,Santos,D.M.F.,Silva-Jardim,I.,Souza, A.D.L.,Pinheiro,M.L.B.,2012c.Leishmanicidalactivityoffractionsrichin apor-phinealkaloidsfromAmazonianUnonopsisspecies.Rev.Bras.Farmacogn.22, 1368–1371.

Silva,F.M.A.,Souza,A.D.L.,Koolen,H.H.F.,Barison,A.,Vendramin,M.,Costa,E.V., Ferreira,A.G.,Pinheiro,M.L.B.,2014.Phytochemicalstudyofthealkaloidal frac-tionsofUnonopsisduckeiR.E.Fr.guidedbyESI-IT-MSn.Phytochem.Anal.25, 45–49.

Siqueira,J.M.,Bomm,M.D.,Pereira,F.G.,Garcez,W.S.,Boaventura,M.A.D.,1998. EstudofitoquímicodeUnonopsislindmanii–Annonaceae,biomonitoradopelo ensaiodetoxicidadesobreaArtemiasalinaleach.Quim.Nova21,557–559. Soares, E.R., Silva, F.M.A., Almeida, R.A.,Lima, B.R., Koolen, H.H.F., Lourenco,

C.C.,Salvador,M.J., Flach,A.,Costa,L.A.M.A.,Souza,A.Q.L.,Pinheiro,M.L.B., Souza, A.D.L., 2015. Chemical composition and antimicrobial evaluation of the essential oils of Bocageopsis pleiosperma Maas. Nat. Prod. Res., http://dx.doi.org/10.1080/14786419.2014.996148(inpress).

Touché,A.,Desconclois,J.F.,Jacquemin,H.,Lelièvre,Y.,Forgacs,P.,1981. Constitu-antsdequelquesannonacéesguyanaisesanalysequalitativeetquantitativedes acidesaminésbasiqueslibres.Présenced’untriterpène,Lepolycarpol.Plant. Med.Phytother.15,4–9.

Imagem

Fig. 1. Mass spectrum and in source thermal dissociation proposal for the sequential losses observed for APCI ionization of polycarpol.

Referências

Documentos relacionados

The compounds were evaluated in an in silico study and showed strong to moderate antibacterial activity against several strains of Staphylococcus aureus.. In particular, three

The implication is that resident communities of foreign language speakers in Porto have comparable contact with the local population, but again, we should take into account the

segurança da aviação que futuramente acabou sendo denominado de Sistema de Gerenciamento da Segurança Operacional (SGSO). O SGSO permite, através de uma abordagem

Em outro álbum de Violeta podemos encontrar a mesma fotografia no formato menor de carte-de-visite (6x9 centímetros), indicando que possivelmente outras cópias da mesma imagem

Es así como el estado, se esfuerza por mantener un política monetaria y financiera estable, garantizaría, -ciertamente con algunas diferencias entre los distintos países

In the present work and for the first time, it is evaluated the antimicrobial activity against multi-resistant microorganisms and the anti-inflammatory activity, assessed by the

treating many types of diseases, the objective of the present study was to evaluate the antimicrobial activity of the EO from the leaves of this species against microorganisms which

The aim of this work was to study the in vitro antibacterial activity possessed by killer yeast strains against bacteria contaminating alcoholic fermentation ( Bacillus