• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
4
0
0

Texto

(1)

Magneti Coil System for the TCABR Tokamak

E.A. Saettone, A. Vannui, F.T. Degasperi, R.M.O. Galv~ao,

Y. Kuznetsov, E.K. Sanada, and I.C.Nasimento

Laboratoriode Fsiade Plasmas,

InstitutodeFsia,Universidade deS~aoPaulo,

S~aoPaulo,CEP05315-970, SP,Brazil

Reeivedon3July,2001

Inthiswork,wedisussthepreliminaryanalysisofsomedisruptiveplasmadishargesintheTCABR

tokamak,operatinginthehighdensitylimit. TheFourieranalysisoftheMHDativitywasgreatly

failitatedbeausethemagnetioilsinsidetheTCABRwereinstalledastotakeintoonsideration

thetoroidalgeometryofthesystem,inastraightforwardmanner. Whatwehaveobservedisthat

them=3;4and7MHDomponentsdominateduringalmostthewholedishargeduration,whereas

the m= 2MHD mode inreased substantially justbefore the ourrene ofa major disruption.

Also,weouldestimatetheangularveloityofthemagnetiislands,whihwasobservedtoinrease

uptothreetimesjustbeforethemajordisruption.

I Introdution

Ithasbeenexperimentallyprovedthattheuseof

mag-netioilsareessentialfordeterminingtheMHD

om-ponents, responsible for triggeringthedisruptive

phe-nomenon in tokamaks. The disruption instability

im-posessevererestritionsontheplasmaurrentand

par-tile density [1℄, ausing a sudden expansion of the

plasma olumn, whih is followed by alarge negative

spikeintheV

loop

signal,inspiteoftheapparentnormal

evolutionoftheplasmadisharge[2℄. Itisusually

pre-ededbyintenseMHD ativity(Mirnovosillations).

Theoretially,thebasisonwhihthisinstability

o-ursintokamaksisnottotallywellknown,yet.Usually,

the high density disruptions are understood as being

triggered by an interation between magneti islands

[3℄. Experimentally,in mosttokamaks it hasbeen

ob-served that the m= 2MHD omponent

(orrespond-ing to themagneti islands loatedwithin the surfae

q=2)growexponentially,triggeringthedisruption.

II Experimental set-up

The TCABR tokamak is a middle size tokamak with

themainparametersshowedin Table1. Themagneti

oilsystemisomposedof22magnetiprobes,installed

aroundoneretangularrosssetioninsidethevauum

vessel of the tokamak [4℄, as shown in Fig. 1. Eah

probe has two windings, perpendiular to eah other,

retion.

TABLE1. MainparametersoftheTCABRtokamak.

ToroidalMagnetiField BT 1:07 T

MajorRadius Ro 0:61 m

MinorRadius a 0:18 m

PlasmaCurrent Ip 100k A

DishargeDuration d 150ms

EletroniCentralDensity n

e 310

19

m 3

EletroniCentralTemperature T

e

400eV

Figure1. UpperviewoftheTCABRtokamak,showingthe

(2)

Thepositioning ofthemagnetiprobeswashosen

as to takeinto aount automatially the toroidal

ef-fetsofthesystemduethetoroidalgeometryofthe

to-kamak (Fig. 2). Thisorretionwasintroduedby

fol-lowingtheangulardistributiongivenbytheMerezhkin

orretion,[5℄

=+sin (1)

where is thepoloidalangle onsidering(in the

ylin-drialapproximation)anequalangulardistributionfor

theoils,andisgivenbythefollowingexpression[5℄:

= r mn R mn h p (r mn )+ 1 2 ` i (r mn )+1

i

(2)

where

p

is thebeta poloidal and l

i

istheinternal

in-dutane oftheonnedplasma.

Figure 2. Retangular ross setion of thetokamak

show-ing thepositionofeahmagnetiprobe,distributedinthe

poloidal diretion, taking into aount the toroidal eet

duetothetoroidalgeometry.

Theeetive area(sensibility)of eahoil was

ex-perimentallydeterminedbyreatinganosillating

mag-neti eld using a Helmholtz oil, with amplitude of

1:810 5

T. The frequeny range of the osillating

magnetieldwashosenbetween5kHz and40kHz.

During the experiments, all the 44 probe signals

were bandpass ltered, between 1kHz and 100kHz,

and amplied eletronially. Afterwards,these signals

weredigitalizedandsavedusingtheTCAqs(aquisition

data systemof the TCABR tokamak), with 250 kHz

ofaquisitionsamplingrate. Aomputerprogramwas

onstruted to Fourier analyse the experimental data

andto alulatethedominantMHD modespresenton

thedisruptiveTCABRdishargesanalyzed.

III Experimental data treatment

Some proedures have been followed to treat the

ex-aomputerprogram. First,theprogramonsidersthe

eetiveareaoftheoils,obtainedfromthealibration

and,afterwards,italulatesthemagnetield

ompo-sitionmeasuredby thetwooils of eah probe, in the

poloidaldiretion.

Also,theomputerprogramalulates theangular

position of every probe (equation (1)), using from

theequation (2), whih is measuredfrom the vertial

equilibriumeld(B

v

),asgivenbytheequation[6℄:

B v = o I p 4r p ln 8r p a p + 1 2 (3)

whereistheShafranov parameter,denedby

= p + ` i 2 1 (4) where p

is the beta parameter and l

i

is the internal

indutaneof theplasma. Therefore, for theTCABR

tokamak,equation(2)anbewritten as

= a R TCABR p + 3 2 (5) where the TCABR p

orrespondsto thebeta parameter

asmeasuredfromtheMHDequilibrium. Theomputer

program also onsiders that the perturbed magneti

eld, as measured by the Mirnov oils, has a

depen-denewiththedistanegivenby:

_ ~ B m ( k )/ 1 r m+1 k (6) where _ ~ B m ( k

) is the experimental data, as measured

by the probe at the

k

poloidal angle, and r

k is the

ratio a=b

k

, being a the plasma olumn radius and b

k

the distane between the plasma olumn enter and

themagnetioilloatedatangularposition

k (whih

is dierent for eah probe beause of the retangular

rosssetionoftheondutingwalls). Toalulatethe

ontribution of eah MHD mode, in eah plasma

dis-harges,theprogramusesthefollowingexpression[7℄:

_ ~ B m ( k )=A

m

os(m

k )+B

m sin(m

k

) (7)

wheretheFourieronstantsA

m andB

m

arealulated

bythefollowingequations[7℄:

A m = 1 11 22 X k =1 _ ~ B m ( k

)os(m

k ) (8) B m = 1 11 22 X k =1 _ ~ B m ( k

)sin(m

k )

(9)

Finally,theomputerprogramreatesanewsetof

(3)

IV Analysis of a disruptive

dis-harge

IntheTCABR tokamak,disruptive disharges are

ob-tainedwheneverthemahineisoperatedatthedensity

limit (n

e

310 19

m 3

). During these plasma

dis-harges, plasma urrents of approximately 80 kA are

obtained for about 50 ms, until the ourrene of a

majordisruption. Typially,the loopvoltageisabout

2V,with nosigniantH

emissionor hardX ray

emission. Theexperimentalmagnetisignalspikedup

bytheMirnovoils,however,showtypial Mirnov

os-illations, with frequenies in the range of 10 kHz to

15kHz.

Fig.3showstheexperimentalsignalsofadisharge

(shotNo2017)inthehighdensitylimit. Itisobserved

amajordisruptionin t=86:8ms, thatannihilatethe

plasma in 20 ms. Note that the Mirnov

osil-lations have a onstant amplitude during almost the

whole disharge, until the disruption takesplae

(be-tween t 50 ms and t 85 ms), whih indiates a

saturation of the magneti islands. The safety fator

forthisdishargewasalulatedtobeq(a)4:4.

20

40

60

80

100

120

Time (ms)

-2

-1

0

1

2

B

4IZ

(a.u.)

-0.2

0

0.2

R-X (a.u.)

0

0.05

0.1

0.15

H

alpha

(a.u.)

0

10

V

loop

(V)

0

20

40

60

I

p

(kA)

TCAqs Shot 002017

TCABR

^

Figure3. ShotNo2017 oftheTCABR tokamakoperating

inthehighdensitylimit. A major disruption ours in

t=86.8ms (arrow atthe bottom). Afterthat, the plasma

urrentdeaystozeroinabout20ms.

aroundthe disruptiontime, areshownin Fig. 4.

Ob-servethat at t =85:2ms, theamplitudeof theMHD

ativitydereasesonsiderably,atthesametimeaspike

isobservedinthehardX-raynon-integratedsignal.

Af-ter that, in t = 86:3 ms, the Mirnov osillations

am-plitude begins to growexponentially, during

approxi-mately 0:5 ms, until the ourrene of the disruption

in t=86:8ms.

84

84.5

85

85.5

86

86.5

87

87.5

Time (ms)

-0.5

0

0.5

B

4IZ

(a.u.)

-0.2

0

0.2

R-X (a.u.)

0

0.03

0.06

0.09

H

alpha

(a.u.)

-20

-10

0

10

V

loop

(V)

56

58

60

62

64

I

p

(kA)

TCAqs Shot 002017

TCABR

^

^

^

1

2

3

Figure4. ShotNo2017 oftheTCABRtokamakexpanded

intimearoundtheourreneofthedisruption. Int=85.2

ms(arrowNo1),MHDativitydereases onsiderably. In

t=86.3ms(arrowNo2),theMirnovosillationamplitude

growsexponentiallyuntildisruptionours,int=86.8ms

(arrowNo3).

Experimentally, theexponentialgrowthrateof the

MHD ativity, just before the disruption, was

alu-latedtobe

exp

=8:910 3

s 1

. Comparingthisvalue

tothetheoretialresistivegrowthrate,alulatedtobe

res

=3:110 4

s 1

, (thetheoretialvalueoftheideal

growthratewasalulatedtobe

ideal

=1:310 6

s 1

)

thedisruptiveeventinthisdishargeouldbeexplained

in terms of an interation between magneti islands.

Thefrequenyofthepreursorosillationswasalso

ob-servedto inreasefrom10kHz to 13kHz,in

approx-imately0:2msbeforethedisruptiontakesplae. This

probably meansthat the angular veloity ofmagneti

(4)

pe-As to ompare the evolution of theMHD poloidal

modesexistinginthisplasmadisharge,weFourier

an-alyzedtheexperimentalsignalsbetweent=75msand

t = 76 ms, when there was no evidene yet of any

preursorto thedisruptiveinstability. Itwasthen

ob-servedthattheMHDmodesm=3;4and7were

domi-nant(Fig. 5),andtheangularveloityofthemagneti

islands, between these two instants of time, was

esti-matedtobe!

rot

=1:610 3

rad=s.

Figure 5. Polardiagrams(left) and MHDspetra(right),

alulated at(a)t=75msand(b)t=76ms,fortheshot

No2017 oftheTCABRtokamak.

Figure 6. Polardiagrams(left) and MHDspetra(right),

alulated at(a)t=86.3msand (b)t=86.75ms,ofthe

shotNo2017 oftheTCABRtokamak.

Thesamealulationswerealsoarriedoutjust

be-foredisruption,forthesameplasmadisharge. As

ob-servedin Fig. 6-b, the MHD modesorrespondingto

m=2andm=7arelearlydominant,justbeforethe

magnetiislandsjust beforedisruption, wasestimated

tobe!

rot

=5:010 3

rad=s. New oilsare being

po-sitionedinside thevaum vessel, in dierent toroidal

position,toverify thennumberforthesemodes.

V Conlusions

Some disruptive disharges, that ourred when the

TCABRisoperatedatthedensitylimit,wereanalized

inthisartile. ItwasobservedthattheMirnov

osilla-tions,alongthedisharge,haveafrequenyof10kHz.

Itwasalso determinedthat the m=3;4and 7MHD

modesdominates during thewhole disharge,with an

angularveloityoftheorrespondingmagneti islands

estimatedtobe1:610 3

rad=s.

However, just before disruption (approximately

0:2 ms before the ourrene of the disruption), it

wasobservedthattheMirnovosillationsfrequeny

in-reases up to 13 kHz. At this time, a larger

ontri-butionof them=2MHD omponent wasalulated,

whih probably wasthe responsible for triggeringthe

disruption. Theangularveloityfortheorresponding

magnetiislandswasestimated to be5:010 3

rad=s,

threetimesmorethanduringtherestofthedisharge.

Finally, theexponentialgrowthrate ofthe Mirnov

osillationswasomparedtothetheoretialvalues,

re-latedtotheresistiveandidealgrowthrates,fromwhih

weinferredthat theourreneofthedisruptionould

beexplainedintermsofamagnetiislandsinteration.

Aknowledgments

ThisworkhasbeenpartiallysupportedbyFAPESP

andbytheMinistryofSieneandTehnologythrough

the PRONEX program. Also we want to thanks Mr.

NelsonM.Cuevas,Mr. AblioPiresdosReisandJuan

I.Elizondoforthetehnialsupport.

Referenes

[1℄ S.V.Mirnov, I.B.Semenov,SovietPhysisJETP,33,

11347(1971).

[2℄ J.A.Wesson, MHDStability Theory, AademiPress,

1981,pp.191-233.

[3℄ G.Bateman,MHDInstabilities,MITPress,NewYork,

1978,pp.265-278.

[4℄ I.Semenov, S.Mirnov,et al.,ReviewofSienti

In-struments,70,449(1999).

[5℄ T.R. Harley, D.A. Buhenauer, J.W. Coonrod, K.M.

MGuire,Nul.Fus.,29,771(1989).

[6℄ Yu.K. Kuznetsov, I.N. El Chamaa, I.C. Nasimento,

R.M.O.Galv~ao, PhysisofPlasmas, 6,4002 (Otober

1999).

[7℄ M.S.T.Araujo,\MHD,ProgramaparaaObten~aoda

Evolu~aoTemporaldasComponentesMHDdoPlasma

Imagem

TABLE 1. Main parameters of the TCABR tokamak.
Figure 2. Retangular ross setion of the tokamak show-
Figure 3. Shot No 2017 of the TCABR tok amak operating
Figure 5. Polar diagrams (left) and MHD spetra (right),

Referências

Documentos relacionados

A drought larger than 130 mm in the previous har- vest, already affects the sucrose accumulation harm- ing the maturation, giving a negative signal for soil water storage

Como conseqüência dessas reflexões no coletivo neste GT e, sentido necessidade de repensar nossa forma de atuação diante das crianças que ainda não estão alfabetizadas em

Segundo o poeta curitibano, a literatura/poesia de seu tempo vive uma situação de esgotamento, em que já não haveria mais tempo para “gestos inaugurais” (LEMINSKI, 1993, p.

From the 12 studies included (13 entries) in this meta-analysis, they all started from the same research assumption, in which the elderly with classifications according to the

We also used spatial ltering tehniques to enhane the visualization of the magneti eld.. due to

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of

Pursuant to Article 15-A of the Constitution of the Pan American Health Organization, "The Executive Committee shall be composed of nine Member Governments of the

Em Pedro Páramo, por exemplo, tem-se uma escritura (des)organizada em 70 fragmentos narrativos, que se desenvolvem em diferentes planos, nos quais a evoca- ção, a fantasia, o mito e