• Nenhum resultado encontrado

Rev. bras. ortop. vol.50 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. ortop. vol.50 número5"

Copied!
6
0
0

Texto

(1)

w w w . r b o . o r g . b r

Original

article

Experimental

trial

on

surgical

treatment

for

transverse

fractures

of

the

proximal

phalanx:

technique

using

intramedullary

conical

compression

screw

versus

lateral

compression

plate

Daniel

Schneider

Ibanez

,

Fabio

Lucas

Rodrigues,

Rafael

Salmeron

Salviani,

Fernando

Augusto

Reginatto

Roberto,

Jose

Roberto

Pengo

Junior,

Marcio

Aurelio

Aita

LaboratóriodeEnsaiosMecânicoseMetalográficos(LEMM),Jaú,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17June2014 Accepted25August2014 Availableonline1August2015

Keywords:

Bonefixation

Internalfixationoffractures Handinjuries

Fingerinjuries

a

b

s

t

r

a

c

t

Objective:Tocomparethemechanicalparametersbetweentwomethodsforstabilization throughcompression:1.5mmaxialcompressionplateversusconicalcompressionscrew usedasanintramedullarytutor.

Methods:Polyurethanemodels(Sawbone®)thatsimulatedtransversefracturesofthe

prox-imalphalanxwereused.Themodelsweredividedintothreegroups:lateralplate,conical screwandnoimplant.

Results:Greater force was needed to result in fatigue in the synthesis using an intramedullaryplate.Thus,thismodelwasproventobemechanicallysuperiortothemodel withthelateralplate.

Conclusion: StabilizationusingtheAcutrak®screwfortreatingfracturesinthemodelused

inthistrialpresentsmechanicalresultsthatarestatisticallysignificantlysuperiortothose fromtheaxialcompressiontechniqueusingthelateralplate(AptusHand®).

©2014SociedadeBrasileiradeOrtopediaeTraumatologia.PublishedbyElsevierEditora Ltda.Allrightsreserved.

Ensaio

experimental

para

tratamento

cirúrgico

das

fraturas

transversas

da

falange

proximal

Técnica

com

parafuso

intramedular

cônico

de

compressão

versus

placa

de

compressão

lateral

Palavras-chave:

Fixac¸ãoóssea

Fixac¸ãointernadefraturas

r

e

s

u

m

o

Objetivo:Compararosparâmetrosmecânicosentredoismétodosdeestabilizac¸ãopor com-pressão:placadecompressãoaxialde1,5mmcomoparafusocônicodecompressãousado comotutorintramedular.

WorkdevelopedintheLaboratóriodeEnsaiosMecânicoseMetalográficos(LEMM),Jaú,SP,Brazil.

Correspondingauthor.

E-mail:drdanielsi@hotmail.com(D.S.Ibanez).

http://dx.doi.org/10.1016/j.rboe.2014.12.009

(2)

Traumatismosdamão Traumatismosdosdedos

Métodos: Foramusadosmodelosde poliuretano(Sawbone®)quesimulama fraturada falangeproximaltransversa,divididosemtrêsgrupos(placalateral,parafusocônico,sem implante).

Resultados: Hánecessidadedeumamaiorforc¸apararesultarnafadigada síntesecom parafusointramedular.Comprova-se,assim,asupremaciamecânicadessesobreomodelo comaplacalateral.

Conclusão: Aestabilizac¸ãocomoparafusoAcutrak®,notratamentodasfraturasnomodelo adotadonesteensaio,apresentaresultadosmecânicossuperioreseestatisticamente sig-nificativosemcomparac¸ãocomatécnicadecompressãoaxialcomousodaplacalateral (AptusHand®).

©2014SociedadeBrasileiradeOrtopediaeTraumatologia.PublicadoporElsevier EditoraLtda.Todososdireitosreservados.

Introduction

Fractureofthephalangesarefrequentinjuriesandaccount for6%ofallfractures.1,2 Theproximalphalanxisfractured morefrequentlythanthemiddleordistalphalanges.3,4

Indicationsforsurgicaltreatmentforthesefracturesneed to take into consideration the type of fracture line, the displacement between the fragment and the difficulty in maintainingclosedreductionofthefracture.3Theaimof sur-gicaltreatmentistorestoretheanatomyandfunctionofthe affectedfinger.4,5

Thetechniquesthathavebeendescribedrangefrom seek-ingrelativestability totheprincipleofabsolutestability. A combinationofmethodsissometimesnecessary,6 andthis dependsonthenatureofthefractureline,theavailabilityof implantsandthesurgeon’spreference.

Among the surgical complications, the following can be highlighted: joint stiffness, adherence and/or tearing of the extensor tendon,1 functional loss of the finger2 or, additionally, skewed consolidation, pseudarthrosis and osteomyelitis.5–7

Thesecomplicationsareoftencausedbypoorknowledge ofthebiomechanicsofthisorgan;anunfoundedbeliefthat allfracturesofthehandcanberesolvedthroughconservative treatment;orpoorcooperationfromthepatient.8

Inseekingtominimizethesecomplications,Mantovanni etal.9describedlateralpositioningoftheplateinwhichthe extensortendon wasleft untouched soasto avoidtendon adherenceandjointstiffness.Anotheroptionwouldbetouse theprincipleofanintramedullaryinternaltutor,10,11suchas aconicalcompressionscrew(Acutrak®),tobeplaced percuta-neously.Wedescribethisnoveltechniqueinthepresentstudy. Theobjectiveofthisstudywastocomparethemechanical parameters of two methods of stabilization through com-pression:a1.5mmaxialcompressionplateversusaconical compressionscrewusedasanintramedullarytutor.Bothof thesemethodswereusedonfracturesofthediaphysisofthe proximalphalanxthatfollowedatransverseline.

Methods

Thisstudy was conductedin the Mechanical and Metallo-graphicTestingLaboratory(LEMM), inthe city ofJaú,state

Fig.1–GroupImodelbeforethemechanicaltest.

Fig.2–GroupIImodelbeforethemechanicaltest.

ofSão Paulo,Brazil,inMay 2012.Thislaboratoryhas been certifiedbyINMETRO.

Fifteenpolyurethanemodelssimulatingtheproximal pha-lanx(Sawbone®),ofdimensions10mm

×8mm×60mmand density 40poundsper cubicfoot (lb/ft3)were used. Simple transversefractureswithasinglelineataninclinationofless than30◦weremade.12

Thesemodelsweredividedintothreegroups:fivemodels foreachgroupwithsynthesismaterial(groupsIandII);and threemodelsforagroupwithoutsynthesismaterial(group III).

GroupIwitha1.5mmcompressionplateandfour corti-calscrews(AptusHand®),placedinthelateralregionofthe model(Fig.1).

Group II – one conical compression screw (Acutrak®) of standardtype,positionedintramedullarily(Fig.2).

GroupIIImodelsofthephalanxwithoutanimplantand withoutafracture(Fig.3).

Placement technique for the lateral plate in the polyurethanemodel(Fig.1):

Placementof1.5mmplatepositionedlaterallyinthemodel and,afterreduction,placementoffourbicorticalscrews(two

(3)

Load

h

Test body

Support bearings

L

Load bearing

Fig.4–Illustrativeschematicphotooftheflexiontestwith load-bearingatthreepoints:distanceL:40mm;distanceh:

15mm;forceapplied:5mm.

distallyandtwoproximallytothefracturefocus)thatpromote compressionaxiallytothefractureline.

Placementtechniquefortheintramedullaryconical com-pressionscrewinthepolyurethanemodel(Fig.2):

Reductionofthefractureinthepolyurethanemodeland passageofthe guidewirefrom theupper face towardsthe lowerface,acrossthefracture.Thisisfollowedby measure-mentofthesizeoftheimplant,drillingofanopeninginboth corticesandinstallationofaconicalcompressionscrewjust belowtheuppersurfaceintheregionproximaltothefracture andadjacenttothedistallowersurfaceofthismodel.

Application ofthe mechanical test inthe polyurethane models:flexiontestatthreesupportpoints(Fig.4).

Thepolyurethanemodels(testbodies) wereplacedin a machine(EMIC apparatus,model DL10000)withthree con-tactpoints:oneloadbearingandtwosupportbearings.Inthis manner,theloadwasappliedsoastogenerateaconstantly increasingflexionforceuntilthesynthesismaterialreached fatigue.

Fig.5–Illustrativedetailedschematicphotooftheflexion testwithload-bearingatthreepoints:groupII.

120

100

80

60

40

20

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deflection (mm)

Source: Mechanical and metallographic testing laboratory (LEMM)

Force/Load (N)

TB 1 TB 2 TB 3 TB 4 TB 5

Fig.6–Flexiontestcurves,withload-bearingatthree points,forgroupI.

GroupI–forceappliedfromabovetobelow,withthe com-pressionplatepositionedlaterally.

GroupIIforceappliedfromabovetobelow,withthe com-pression screwalso placedfrom above to below,inclined accordingtothetransversefractureline(Fig.5).

GroupIII–forceappliedfromabovetobelow,ontheentire testbody.

Inallthegroupsevaluated,thedistanceLbetweenthe sup-portbearingswasthesame.IngroupsIandII,theflexionforce appliedbytheloadbearingwaskeptconstantatadistanceh

of15mmfromthebeginningofthesynthesisandat5mm fromthefractureline.

All the data were sent for statistical analysis. The Kruskal–Wallistestwasusedandthesignificancelevelwas takentobe5%(0.050).TheStatisticalPackagefortheSocial Sciences (SPSS) software, version 21.0,was used to aid in obtainingtheresults.

The Kruskal–Wallis test was applied to ascertain the possible differences between the three groups, compared simultaneously,forthevariablesofinterest.

Results

Ingroup I(lateralcompression plate),themean maximum flexionforcewithstoodwas81.23N,witharangefrom97.13 to73.35N.Themeanrigidityunderflexionwas90.80N,with arangefrom116to70N(Table1andFigs.6and7).

GroupII(intramedullaryconicalcompressionscrew) with-stoodameanmaximumflexionforceof320.40N,witharange from 360.08 to 278.85N. The mean stiffness under flexion was427.48N,witharangefrom455Nto385N(Table2and

Figs.8and9).

GroupIII(entiretestbody)withstoodamean maximum flexionforceof537.50N,witharangefrom545.61to528.68N. Themeanstiffnessunderflexionwas492N,witharangefrom

499Nto480N(Table3andFig.10).

Description and comparisonof the variables of interest betweenthethreegroupsstudied(Table4).

(4)

Table1–ResultsobtainedfromflexiontestforgroupI.

Item K(N/mm) Ele(Nm2) Q(mm) P(N) R(Nm) Fmax(N)

1 96.0 0.05 0.03 54 0.41 79.05

2 70.0 0.04 47 0.35 73.35

3 116.0 0.07 52 0.39 97.13

4 86.0 0.05 47 0.35 71.36

5 86.0 0.05 49 0.37 85.05

Mean 90.8 0.052 0.030 49.8 0.4 81.2

Standarddeviation 16.89 0.01 3.11 0.02 10.39

Source:MechanicalandMetallographicTestingLaboratory(LEMM).

K,rigidityunderflexion;Ele,structuralrigidityunderflexion;P,plasticflowload;R,momentofflow(resistancetoflexion);q,displacementat

0.2%ofthedistancebetweentheexternalandinternalbearings;Fmax,maximumtestforce.

Table2–ResultsobtainedfromflexiontestforgroupII.

Sample K(N/mm) Ele(Nm2) q(mm) P(N) R(Nm) Fmax(N)

1 434.0 0.24 0.03 250 1.88 360.08

2 455.0 0.26 265 1.99 328.09

3 467.0 0.26 320 2.40 342.55

4 398.0 0.22 250 1.88 278.85

5 385.0 0.22 190 1.43 292.45

Mean 427.8 0.2 0.03 255.0 1.9 320.4

Standarddeviation 35.48 0.02 46.37 0.35 34.03

Source:MechanicalandMetallographicTestingLaboratory(LEMM).

K,rigidityunderflexion;Ele,structuralrigidityunderflexion;P,plasticflowload;R,momentofflow(resistancetoflexion);q,displacementat

0.2%ofthedistancebetweentheexternalandinternalbearings;Fmax,maximumtestforce.

Table3–ResultsobtainedfromflexiontestforgroupIII.

Sample K(N/mm) Ele(Nm2) q(mm) P(N) R(Nm) Fmax(N)

1 480.0 0.27 0.030 430 3.23 528.68

2 499.0 0.28 0.030 420 3.15 545.61

3 497.0 0.28 0.030 410 3.08 538.12

Mean 492.0 0.3 0.030 420.0 3.2 537.5

Standarddeviation 10.44 0.01 0.030 10.00 0.08 8.48

Source:MechanicalandMetallographicTestingLaboratory(LEMM)

K,rigidityunderflexion;Ele,structuralrigidityunderflexion;P,plasticflowload;R,momentofflow(resistancetoflexion);q,displacementat

0.2%ofthedistancebetweentheexternalandinternalbearings;Fmax,maximumtestforce.

Fig.7–IllustrativephotoofgroupIafterthemechanical test.

400

350

300

250

200

150

100

50

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Deflection (mm)

Source: Mechanical and metallographic testing laboratory (LEMM)

Force/Load (N)

TB 1 TB 2 TB 3 TB 4 TB 5

(5)

Table4–ApplicationofKruskal–Wallistest.

Variable Group N Mean Standarddeviation Minimum Maximum P25 Percentile50(median) P75 Significance(p)

K(N/m) I 5 90.80 16.89 70.00 116.00 86.00 86.00 96.00 0.005 II 5 427.80 35.48 385.00 467.00 398.00 434.00 455.00

III 3 492.00 10.44 480.00 499.00 488.50 497.00 498.00 Total 13 313.00 186.03 70.00 499.00 96.00 398.00 467.00

Ele(Nm2) I 5 0.05 0.01 0.04 0.07 0.05 0.05 0.05 0.005

II 5 0.24 0.02 0.22 0.26 0.22 0.24 0.26

III 3 0.28 0.01 0.27 0.28 0.28 0.28 0.28

Total 13 0.18 0.10 0.04 0.28 0.05 0.22 0.26

q(mm) I 5 0.03 0.00 0.03 0.03 0.03 0.03 0.03 >0.999

II 5 0.03 0.00 0.03 0.03 0.03 0.03 0.03

III 3 0.03 0.00 0.03 0.03 0.03 0.03 0.03

Total 13 0.03 0.00 0.03 0.03 0.03 0.03 0.03

P(N) I 5 49.80 3.11 47.00 54.00 47.00 49.00 52.00 0.005 II 5 255.00 46.37 190.00 320.00 250.00 250.00 265.00

III 3 420.00 10.00 410.00 430.00 415.00 420.00 425.00 Total 13 214.15 152.58 47.00 430.00 52.00 250.00 320.00

R(Nm) I 5 0.37 0.03 0.35 0.41 0.35 0.37 0.39 0.005

II 5 1.92 0.35 1.43 2.40 1.88 1.88 1.99

III 3 3.09 0.06 3.03 3.15 3.06 3.08 3.12

Total 13 1.59 1.12 0.35 3.15 0.39 1.88 2.40

Fmax(N) I 5 81.19 10.39 71.36 97.13 73.35 79.05 85.05 0.005

II 5 320.40 34.03 278.85 360.08 292.45 328.09 342.55 III 3 537.47 8.48 528.68 545.61 533.40 538.12 541.87 Total 13 278.49 184.81 71.36 545.61 85.05 292.45 360.08

K,rigidityunderflexion;Ele,structuralrigidityunderflexion;P,plasticflowload;R,momentofflow(resistancetoflexion);q,displacementat

0.2%ofthedistancebetweentheexternalandinternalbearings;Fmax,maximumtestforce.

synthesismaterials(Tables1and2)andfracturingofthetest bodyingroupIII(Table3).

The study described here did not present any statisti-callysignificantdifferencesincomparingthedifferentmodels simultaneouslyand withineachgroup.For thisreason,the Mann–Whitneytestwasapplied(Table5)toidentifywhich groupsdifferedfromtheothers,whencomparedaspairs.

Withtheexceptionofthevariableq(mm),whichremained constantinthethreegroups,itcanbestatedthatreal differ-encesbetweenthegroupswerepresentinrelationtotheother variablesofinterest.

Fig.9–IllustrativephotoofgroupIIafterthemechanical test.

600

500

400

300

200

100

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Deflection (mm)

Source: Mechanical and metallographic testing laboratory (LEMM)

Force/Load (N)

TB 1 TB 2 TB 3 TB 4 TB 5

Fig.10–Flexiontestcurves,withload-bearingatthree points,forgroupIII.

Table5–ApplicationofMann–Whitneytest.

Variable Pairofgroups

Ivs.II Ivs.III IIvs.III

K(N/m) 0.009 0.024 0.025

Ele(Nm2) 0.008 0.021 0.023

P(N) 0.009 0.024 0.024

R(Nm) 0.009 0.024 0.024

(6)

Discussion

Fracturesoftheproximalphalanxaremostprevalentamong malesbetweentheagesof10and40years.Theyareusually treatedasinsignificantinjuries,butthisresultsinfunctional limitation4inaneconomicallyimportantpopulation.

Evolution in treatments for fractures of the proximal phalanx is a necessity in our setting, given that the inci-dence of this fracture has been increasing exponentially andthepublishedresultsfromtheestablishedmethodsare unconvincing.10Theideal,inseekingtodiminishthe postop-erativecomplications,istocombinelessinvasivetechniques withbetterimplantstability,inordertoenableearly mobiliza-tionofthefracturedfinger.

Thenewdesignoflockedplatesandspecificallythoseof 1.5mmwithathicknessof2mm,alongwiththe accompany-inginstruments(preciseguidesandtweezersforperforming reduction),facilitatestheintraoperativeprocedure.

TheuseofanAcutrak®conicalcompressionscrew(which wasdesignedfortreatingfracturesofthescaphoid),described forthefirsttimeinthisstudy,showsthepossibilityof apply-ingthistofracturesoftheproximalphalanxwiththestability thatisnecessaryforgood postoperativerecovery.However, forthistobeundertaken,mechanicalproofthatthesynthesis would withstandtheloadingneeded duringthe rehabilita-tion,andwouldnotimpairrecoveryorbringanyharmtothe patient,wasrequired.Thisreasonencouragedustoconduct thepresentstudy.

Neither the percutaneous approach using the Acutrak® screwinthedorsalregionofthefinger(asaninternaltutor) northe placementofalateral plate (usingtheprinciple of axialcompression)reachedtheextensortendon,and adher-enceofthe tendontothe implantwas avoided.Therewas alsolessriskofjointstiffness,sincethehypothesiswasthat thesemethodswouldbesufficientlystabletoenable metacar-pophalangealand interphalangealjointmobilityduringthe immediatepostoperativeperiod.

Wedecidedtouseasyntheticbonemodel,ratherthanan animalphalanx(suchasfromapig),becausethedensityinthe modelwouldbeaconstant.Thisminimizedthebiasrelating tovariationsinbonedensityandconcentratedthetestingon theimplants.Westandardizedonasimpletransversefracture linesincethisisthebestlineforobtainingaxialcompression ofthefragments,giventhatweweregoingtotesttechniques thatappliedcompression.

In making horizontal comparisons of the mechanical resultsbetweenthegroups, itwasobservedthattherewas astatisticallysignificantdifferencebetweengroupsIandII. Thus,greaterforcewasneededtoreachfatigueofthe syn-thesismaterialconsistingofanintramedullaryscrew.Itwas thereforeshownthatthismaterialwasmechanicallysuperior tothemodelwiththelateralplate.

Sincethe meanmaximum forceingroupIII(Fig.3)was 167.8%greaterthanthatofgroupIand662.9%greaterthan thatofgroupII,thisshowsthatthetestmachine(Fig.1)didnot influencethefracture,butonlytheimplants.Thecomparative mechanicaltestperformedinthepresentstudywastherefore certified.

The results obtained from this study encourage us to proceedfurtherintheseinvestigations,nowinaclinical man-ner.Inadditiontothemechanicaladvantageofconicalscrews, theyareappliedpercutaneouslyandthismayavoid compli-cations relating tothe surgical access that isnecessary in osteosynthesisusingaplate.

Conclusion

StabilizationusingAcutrak®screws,intreatingthefractures inthemodelusedinthistrial,presents mechanicalresults thatarestatisticallysignificantlysuperiortothosefromthe axial compression technique using a lateral plate (Aptus Hand®).

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.PackerGJ,ShaheenMA.Patternsofhandfracturesand

dislocationsinadistrictgeneralhospital.JHandSurgBr.

1993;18(4):511–4.

2.EmmettJE,BreckLW.Areviewandanalysisof11,000

fracturesseeninaprivatepracticeoforthopaedicsurgery,

1937–1956.JBoneJointSurgAm.1958;40(A(5)):

1169–75.

3.DeJongeJJ,KingmaJ,VanderLeiB,KlasenHJ.Fracturesofthe

metacarpals.Aretrospectiveanalysisofincidenceand

aetiologyandareviewoftheEnglish-languageliterature.

Injury.1994;25(6):365–9.

4.KamathJB,Harshvardhan,NaikDM,BansalA.Current

conceptsinmanagingfracturesofmetacarpaland

phalangess.IndianJPlastSurg.2011;44(2):203–11.

5.BartonN.Internalfixationofhandfractures.JHandSurgBr.

1989;14(2):139–42.

6.Margi´cK.Externalfixationofclosedmetacarpaland

phalangealfracturesofdigits.Aprospectivestudyofone

hundredconsecutivepatients.JHandSurgBr.

2006;31(1):30–40.

7.HenryMH.Fracturesoftheproximalphalanxand

metacarpalsinthehand:preferredmethodsofstabilization.J

AmAcadOrthopSurg.2008;16(10):586–95.

8.OuelletteEA,DennisJJ,LattaLL,MilneEL,MakowskiAL.The

roleofsofttissuesinplatefixationofproximalphalanx

fractures.ClinOrthopRelatRes.2004;418:213–8.

9.MantovaniG,FukushimaWY,ChoAB,AitaMA,LinoWJr,

FariaFN.Alternativetothedistalinterphalangealjoint

arthrodesis:lateralapproachandplatefixation.JHandSurg

Am.2008;33(1):31–4.

10.ZylukA,Budzy ´nskiT.Treatmentofmetacarpaland

phalangealfractures–areview.ChirNarzadowRuchuOrtop

Pol.2006;71(4):299–308.

11.OrbayJL,TouhamiA.Thetreatmentofunstablemetacarpal

andphalangealshaftfractureswithflexiblenonlockingand

lockingintramedullarynails.HandClin.2006;22(3):

279–86.

12.FitoussiF,LuW,IpWY,ChowSP.Biomechanicalpropertiesof

absorbableimplantsinfingerfractures.JHandSurgBr.

Imagem

Fig. 2 – Group II model before the mechanical test.
Fig. 5 – Illustrative detailed schematic photo of the flexion test with load-bearing at three points: group II.
Fig. 7 – Illustrative photo of group I after the mechanical test. 400350300250200150100500 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Deflection (mm)
Table 4 – Application of Kruskal–Wallis test.

Referências

Documentos relacionados

O enquadramento teórico, capitulo 2, baseia-se no estudo relativamente à importância e ao tipo de relações que serão levadas em consideração para a

Practial Implications: To ensure a complementary transfer of capabilities between the sports, coaching interventions should highlight informational constraints to improve the

Como resultado desse itinerário de maior risco, as mu- lheres com menos de 21 anos foram as que mais recorreram à internação hospitalar para a finali- zação do aborto (29 casos),

In this connection, the present study aims to present an epidemiological analysis of accidents involving scorpions in Brazil, in the period from 2000 to

In the present study, there was a significant difference regarding the consumption of fruits from the Northeast region with the North, South, and Southeast

Therefore, both the additive variance and the deviations of dominance contribute to the estimated gains via selection indexes and for the gains expressed by the progenies

This manuscript presents results from a series of case studies to evaluate the hypothesis that the NT could be used to assess P status in cattle and assesses the usefulness of

Sabendo que a compreensão do texto narrativo (literário) e do texto informa- tivo (não literário) exigem desenvolvi- mentos diferenciados de competências, (o que nem sempre