• Nenhum resultado encontrado

Infectious Disease Epidemiology & Mathematical Modeling

N/A
N/A
Protected

Academic year: 2018

Share "Infectious Disease Epidemiology & Mathematical Modeling"

Copied!
56
0
0

Texto

(1)

Infectious disease epidemiology

&

Mathematical modeling

Hans-Peter Duerr & Martin Eichner

(2)

Program

Topic

Slide

Lesson 1

SARS 2002/2003: why modeling, and what is a

mathematical model? (

the example of bacterial growth

)

4

Exercise 1

Design a mathematical model yourself: the bacterial growth curve

(iterative solution of the bacterial growth curve with Excel)

11

Exercise 2

Solve the bacterial growth with Runge-Kutta software

17

Lesson 2

Deterministic models: SIR-model, theory, basic

reproduction number R

0

, epidemic vs. endemic case

19

Exercise 3

Simulate: epidemic according to the SIR model

29

Exercise 4

Think longterm: the influence of time and demography

(The example of measles as an endemic infection)

38

Lesson 3

Vaccination: final size of an epidemic, critical vaccination

coverage

41

Exercise 5

Predict: how many newborns to vaccinate?

(sensitivity analyses into the critical vaccination coverage)

44

(3)

Literature selection

• Infectious Disease Epidemiology: Theory and Practice. Neil Graham. Jones and Bartlett Publishers, Inc.

• Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Wiley

(4)

Program

Lesson 1

SARS 2002/2003:

(5)

A

m

oy

G

ar

dens

B

loc

k

E

Country

Cases Deaths Case fatality [%]

China

5327

349

7

Hong Kong

1755

296

17

Taiwan

665

180

27

Kanada

251

41

16

Singapur

238

33

14

Vietnam

63

5

8

USA

33

0

0

Philippinen

14

2

14

Deutschland

9

0

0

8355 906 10.8%

For comparison Malaria: ~300 Mio. Cases / Year,

(6)

A

m

oy

G

ar

dens

B

loc

k

E

SARS, initial spread

CDC, taken from http://en.wikipedia.org

H

ot

el

M

et

ropol

(7)

Spread from Hotel Metropole

K

ey:

B

asi

c reproduct

ion num

(8)

Problem Global Networks

e.g. between

Chicago and New

York 25.000

Passengers per day

Passengers per day

L. Hufnagel et al. 2004, PNAS 101: 15124-9

K

ey w

ords:

M

odel

, N

et

w

(9)

Prediction

Fig. 2. Global spread of SARS. (A) Geographical

representation of the global spreading of probable

SARS cases on May 30, 2003, as reported by the WHO

and Centers for Disease Control and Prevention. The

first cases of SARS emerged in mid-November 2002 in

Guangdong Province, China (17). The disease was

then carried to Hong Kong on the February 21, 2003,

and began spreading around the world along

international air travel routes, because tourists and the

medical doctors who treated the early cases traveled

internationally. As the disease moved out of southern

China, the first hot zones of SARS were Hong Kong,

Singapore, Hanoi (Vietnam), and Toronto (Canada), but

soon cases in Taiwan, Thailand, the U.S., Europe, and

elsewhere were reported. (B) Geographical

representation of the results of our simulations 90 days

after an initial infection in Hong Kong, The simulation

corresponds to the real SARS infection at the end of

May 2003. Because our simulations cannot describe the

infection in China, where the disease started in

November 2002, we used the WHO data for China.

K

ey w

ord:

M

odel

predi

ct

ion

(10)

What is a mathematical Model?

Model:

B

( )

t

=

B

0

2

λ

t

Growth from one generation to the next:

B

i

=

2

B

i

1

Logar

it

hm

ic

Li

near

Problems of this approach: - only valid for initial growth

- too simple for describing complex processes

Example bacterial groth: bacteria divide 2 times per hour.

Duration between divisions D = 0.5 hours.

(11)

Exercise 1:

preliminary considerations

x

er

c

is

e

1

Draw into each graph the bacterial growth curve you would expect if

• … the

before-mentioned changes

occur simultaneously

• … the generation

time of the bacterium

was not 0.5h but 1h

• … the culture was

started with 10000

bacteria, rather than

1 bacteria

(12)

Exercise 1: iterative solution

of the model in Excel

e

rci

se

1

(

F

ile

"

00_bac

ter

ial

G

rowth.x

ls

",

s

h

e

e

t

"

gener

ati

on ti

m

e

")

=A2*tGen

1. Parameter:

"

Bakt0

"

2. Parameter:

"

tGen

"

3. Parameter

"

multFaktor

"

=Bakt0

=A2*tGen

=C2*multFaktor

Complete cells

B2

to

C32

(13)

F o lie 13 / 56 H ans -P et er D uer r, U ni v er s ity of T uebi ngen, w w w .uni -tuebi ngen. de/ m odel ing

E

xerci

se

1

resul

ts

Verify the preliminary considerations

of the previous slide

(14)

Design models with differential equations

( )

B

( )

t

dt

t

dB

λ

~

=

"The speed by which the

total number of bacteria

B

changes over time

t

…"

"…is proportional

to the individual

rate of division

λ

…"

"…and proportional

to the number of

bacteria reproducing

at time

t

"

=

( )

t

e

const

t

B

=

λ

~

Total number of bacteria at time

t

Example bacterial groth: bacteria divide 2 times per hour.

Duration between divisions D = 0.5 hours.

Rate of division

= 2 per hour

λ

λ

=

1

/

D

(15)

Differential equations

offer more…

Li

near

( )

 −

K

t

B

1

Previously: the bacterial culture grows indefinitely

(unrealistic in a finite world)

Now:

the culture cannot exceed a certain capacity K

(realistic: test tube)

"The growth rate

approaches zero when

the bacterial culture

approaches the value of

the capacity (

B

(

t

)=

K

)."

( )

t

e

B

K

B

K

B

t

B

λ

~

(16)

Summary

• A mathematical Model is just a

mathematical way to describe a process.

• Simple processes may be intuitively

described "by hand"

• Differential equations are a useful tool to

describe complex processes.

• Differential equations allow for describing

dynamic processes by means of

(17)

Exercise 2:

preliminary considerations

Assume A) a bacterium which, under optimal conditions, reproduces 2 times per

hour (per capita-reproduction rate=2/h) and

B) a volume which can harbour at maximum 1,000,000 bacteria.

• Fill in the numbers

for the upper and

lower bounds of

each axis into the

white boxes

• Draw a qualitative

curve for the per

capita-reproduction

rate

λ

and the

num-ber of bacteria over

time,

B(t)

. Where is

the inflection point

of

B(t)

?

E

x

er

c

is

e

2

N

um

ber

of

bac

ter

ia

B

(t

)

P

er

c

api

ta

-r

epr

oduc

ti

on r

at

e

λ

Aim: intuitive prediction

of a dynamic process

1

(18)

Exercise 2:

First steps

Ex

e

rci

se

2 (

"00_bac

ter

ial

G

row

th.

tx

t"

)

• Aim: first steps with modeling

software

• Complete file

"

00_bactGrowth.txt

" with the

equations of the bacterial growth

curve (save your work), and specify

the initial value B(0).

• Copy the text into the program

editor of Berkeley-Madonna

• Click "Run"

• Make your sliders in Menu

Parameters|Define

Sliders...

• Verify the preliminary

considerations of the previous slide

(19)

Program

Lesson 2

Deterministic models:

SIR-model, theory, basic

reproduction number R

0

,

epidemic vs. endemic

(20)

Polio virus type 1

Extensions of

the SIR-model:

SIRS

SEIR

SEIRS

R

S

I

Susceptible

Infectious

immune

Common way of

representing a model:

Compartiments

SIR-Model

(21)

Information needed

• Durations:

latent and infectious period

• Rates:

contact rate(s)

• Probabilities:

P(infection | transmission)

• Demography: birth and death rate,

age structure of the population

• Disease:

Proportion of inapparent infections

(22)

Birth of (susceptible) individuals

d

S(t)

/ dt

=

µ

Dynamic description: Birth

S Proportion susceptibles

µ

per capita birth rate

R

I

S

=1

(23)

new Infections

dS(t) / dt =

µ

-

β

c I(t) S(t)

dI(t) / dt =

β

c I(t) S(t)

Dynamic description: Infection

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

µ

Per capita birth rate

β

Contact rate

(24)

Mass action law

The probability of encounterings between

susceptible and infectious individuals

depends on:

• the contact rate

β

("Temperature")

• the ratio Susceptible : Infectious

Susceptible

Infectious

0

0.2

0.4

0.6

0.8

1

0

0.2 0.4 0.6 0.8

1

Proportion susceptible

P

(25)

new infections

dS(t) / dt =

µ

-

β

c I(t) S(t)

dI(t) / dt =

β

c I(t) S(t)

Dynamic description: Infection

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

µ

Per capita birth rate

(26)

Loss of infectiousity

dS(t) / dt =

µ

-

β

c I(t) S(t)

dI(t) / dt =

β

c I(t) S(t)

-

γ

I(t)

dR(t) / dt =

γ

I(t)

Dynamic description: Loss of infection

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

µ

Per capita birth rate

β

Contact rate

(27)

Mortality

dS(t) / dt =

µ

-

β

c I(t) S(t)

-

µ

S(t)

dI(t) / dt =

β

c I(t) S(t) -

γ

I(t)

-

µ

I(t)

dR(t) / dt =

γ

I(t)

-

µ

R(t)

Dynamic description: Mortality

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

µ

Per capita birth rate

β

Contact rate

(28)

• Initialisation

– choose parameter values for

β

, c,

γ

and

µ

– choose initial values for S(0), I(0), and R(0)

• First iteration (time = 0)

– compute for a short time step

the changes

d

S(0)/

d

t,

d

I(0)/

d

t and

d

R(0)/

d

t

– extrapolate changes to S(0+

), I(0+

) and R(0+

)

• Following iterations (time = t)

1. compute for a short time step

the changes

d

S(t)/

d

t,

d

I(t)/

d

t and

d

R(t)/

d

t

2. extrapolate changes to S(t+

), I(t+

) and R(t+

)

t=t+

, goto 1

Numeric solution of the model

(29)

Exercise 3:

preliminary considerations

The SIR model, defined as, … produces qualitatively a graph like

dS(t) / dt =

µ

-

β

c I(t) S(t) -

µ

S(t)

dI(t) / dt =

β

c I(t) S(t) -

γ

I(t) -

µ

I(t)

dR(t) / dt =

γ

I(t) -

µ

R(t)

Z

ahl

Zeit

der

Inf

iz

ier

ten

the contact rate between

people increases? (

β

↑)

Time

N

o.

of

i

nf

ec

tous

peopl

e

Draw your qualitative prediction into the graph on how the course of the

epidemic would change (higher, faster, slower, etc) if

patients recover more

rapidly? (

γ

)

Time

N

o.

of

i

nf

ec

tous

peopl

e

β

and

γ

increase at the

same time

Time

N

o.

of

i

nf

ec

tous

peopl

e

Aim: understanding the role

of the parameters in the SIR

(30)

Exercise 3: solving differen-

tial equations numerically

E

x

er

c

is

e

3

(F

ile

"

10_SIR.txt

")

• Aim: quantitative

epidemiology of

infectious diseases –

learning by doing

• Complete file

"

10_SIR.txt

" with the

equations of the

SIR-model (save your work),

and specify the initial

values (INIT S, I, R).

• Copy the text into the

program editor of

Berkeley-Madonna

• Click "

Run

"

Program here, using

the parameters listed

beyond

(31)

Exercise 3:

M

ak

e

y

our

s

lider

s

i

n

M

enu

Parameters|Define Sliders...

Aim: Performing a

sensitivity analysis

E

x

er

c

is

e

3

(F

ile

"

10_SIR.txt

(32)

R

0

: Basic reproduction number

• Average number of secondary infections

which one infectious individual would cause

in a fully susceptible population

Definition:

R

0

=

β

c D

• R

0

>1:

Infection can persist;

an endemic state ist possible

• R

0

<1:

Infection cannot persist; goes extinct

D = 1

/ (

γ+µ)

average duration of the infectious period

β

c

Number of (sufficiently close) contacts per unit of time

Wichtig!

Wichtig!

(33)

R

0

for some infectious diseases

Disease

Average

age at

infection

[years]

R

0

Critical

vaccination

coverage

p

crit

[%]

Measles

5.0

15.6

94

Pertussis

4.5

17.5

94

Mumps

7.0

11.5

91

Rubella

10.2

7.2

86

Polio

10.4

6.1

84

(34)

β

c = 0,5/day,

γ

= 0,1/day,

µ

= 0/day

R

0

= 5

SIR Model; without births and deaths

(35)

β

c = 0,2/Tag,

γ

= 0,1/Tag,

µ

= 0/Tag

R

0

= 2

SIR Model; without births and deaths

Epidemic

(36)

At the end of an Epidemic...

Infectious

... susceptible individuals may remain

(37)

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

Basic reproduction number R

P

ropor

tion s

us

c

ept

ibl

e

- log (S

) = R

0

(1 - S

)

(38)

E

x

er

c

is

e

4

(F

ile

"

11_SIRreparamete

rize

d.txt

")

• For

R

0

=15 (Measles-like) simulate an

ex-tended period of time by increasing

STOP-TIME

from 100 to 5000 days (=13.7 years)

• Simulate a population with a lower life

ex-pectancy (developing countries) by

decrea-sing

lifeExpectYears

from 50 to 30 years.

Aim: Understanding the

influence of demography

Parameter

Minimum

Use

Maximum

STOPTIME

0

100

5000

DT

0

0.1

1

DTOUT

0

1

10

iniInfected

0

0.0001

1

lifeExpectYears

0

50

100

durationInfected

0

10

20

R0

0

15

20

• Make sure that slider settings in file

"

11_SIRreparameterized.mmd

"

are as follows

• What is the reason for

recurrent epidemics?

• Why is the time between

epidemics reduced?

Exercise 4:

(39)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

Time [days]

P

ropor

ti

ons

suszeptible

infizierte

immune

SIR Modell with demography

β

c = 0,5/day,

γ

= 0,1day,

µ

= 0,0005/day

R

0

= 5

(40)

Summary

• Neglecting births and deaths,

– we model an epidemic scenario;

– after the epidemic, a proportion of susceptibles,

which depends on R

0

, remains

• Considering births and deaths,

– we model an endemic scenario

– the model variables (S,I,R, ...) approach the

endemic state (if R

0

> 1);

– the equilibirum prevalence depends on R

0

.

(41)

Program

Lesson 3

Vaccination:

final size of an epidemic,

(42)

Model without vaccination

dS(t) / dt =

µ

-

β

c I(t) S(t) -

µ

S(t)

dI(t) / dt =

β

c I(t) S(t) -

γ

I(t) -

µ

I(t)

dR(t) / dt =

γ

I(t) -

µ

R(t)

Dynamic description: SIR without vaccination

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

µ

Per capita birth rate

β

Contact rate

(43)

A proportion of newborns will be vaccinated

dS(t) / dt =

µ

...

-

β

c I(t) S(t) -

µ

S(t)

dI(t) / dt =

β

c I(t) S(t) -

γ

I(t) -

µ

I(t)

dR(t) / dt =

...

+

γ

I(t) -

µ

R(t)

Dynamic description: SIR with vaccination

R

I

S

(1

-p

)

µ

p

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

p Proportion vaccinated

µ

Per capita birth rate

β

Contact rate

(44)

Exercise 5: Vaccination

E

x

er

c

is

e

5

(F

ile

"

11_SIRreparamete

rize

d.txt

")

Aim: Understanding the

concept of thresholds

• Define slider for "

p

" in

Menu

Parameters|Define

Sliders...

and choose

slider settings as shown in

the screenshot on the right

(45)

Exercise 5: Vaccination

E

x

er

c

is

e

5

(F

ile

"

12_SIRvaccinatio

n.tx

t

")

Aim: Understanding the

concept of thresholds

• Technical remark:

1.

2.

(46)

Exercise 5: Vaccination

E

x

er

c

is

e

5

(F

ile

"

12_SIRvaccinatio

n.tx

t

")

Aim: Understanding the

concept of thresholds

• For R

0

=15, increase

p

up to a value when

there is no epidemic

anymore. This is the

ciritical vaccination

coverage p*. Repeat

the procedure for

R

0

=10, 5 and 2, and

plot your results in

the graph to the right.

p*

0

5

10

15

0

0.2

0.4

0.6

0.8

1

R

0

What is the critical

(47)

Endemic equilibrium

no change of model variables in the endemic equilibrium

0

=

µ (1

-p

)

-

β

c I(t) S(t) -

µ

S(t)

0

=

β

c I(t) S(t) -

γ

I(t) -

µ

I(t)

0

=

µ

p +

γ

I(t) -

µ

R(t)

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

p Proportion vaccinated

µ

Per capita birth rate

β

Contact rate

(48)

Endemic equilibrium

no change of model variables in the endemic equilibrium

0 =

µ (1

-p

)

-

β

c I S -

µ

S

0 =

β

c I S -

γ

I -

µ

I

0 =

µ

p +

γ

I -

µ

R

I=...

S=...

R=...

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

p Proportion vaccinated

µ

Per capita birth rate

β

Contact rate

(49)

Endemic equilibrium

S = (

γ

+

µ

) / (

β

c)

I = (1 - 1/R

0

- p)

µ

/ (

γ

+

µ

)

R = 1 - S - I

R

0

=

β

c / (

γ

+

µ

)

= 1 / R

0

Estimate R

0

from the

proportion of

susceptibles in the

endemic equilibrium

R

I

S

S Proportion susceptible

I Proportion infectious

R Proportion immune

c P (infection | contact)

p Proportion vaccinated

µ

Per capita birth rate

β

Contact rate

(50)

Critical vaccination coverage

Parameters of the right hand side are known, except p

I = (1 - 1/R

0

- p)

µ

/ (

γ

+

µ

)

R

I

S

I Proportion infectious

Basic reproduction number:

R

0

=

β

c / (

γ

+

µ

)

p Proportion vaccinated

µ

Per capita birth rate = death rate

(51)

Critical vaccination coverage

Parameters of the right hand side are known, except p

0 = (1 - 1/R

0

- p

crit

)

µ

/ (

γ

+

µ

)

p

crit

= 1 - 1 / R

0

=1-S

To eliminate a disease, it is not necessary to

vaccinate the whole population

(52)

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

Basic reproduction number R0

P

ropor

tion

vac

ci

nat

ed

Elimination

Persistence

(53)

Summary

• The proportion of susceptibles in the endemic

equilibrium does not depend on the proportion p of

vaccinated children

• Transmission stops if p

p

crit

• The critical vaccination coverage is

• The model can be used for sensitivity analyses into the

effects of different vaccination strategies:

- What is the critical vaccination coverage?

- How does vaccination impact on the prevalence and incidence of the

infection?

- what is the best vaccination strategy (e. g. ring vaccination vs. mass

vaccination)?

(54)

µ

γ

R

0

p

crit

β

c

Basic reproduction number

1 / R

0

is the endemic prevalence of susceptibles

Per capita birth rate = death rate

1 /

µ

is the life expectancy

Loss-of-infection rate

1 / (

γ+µ

) is the average duration of the infectious period

Critical vaccination coverage

p

crit

= 1 - 1 / R

0

Effective contact rate

β

c = R

0

(

γ+µ

)

(55)

Vergleich:

deterministische vs. stochastische Modelle

Deterministische Modelle

stochastische Modelle

• werden i.d.R. durch explizite

Formeln (Differenzialgleichungen)

erstellt

• liefern bei gleichen

Anfangs-bedingungen stets identische

Ergebnisse

• ihre Ergebnisse sind meist besser

verallgemeinerbar

Zur Planung

von Interventionsmaßnahmen sind

deterministische Modelle oft besser

geeignet

• werden i.d.R. durch

(individuen-basierte) Simulationsprogramme

erstellt

• liefern bei gleichen

Anfangs-bedingungen zufallsbedingt

unterschiedliche Ergebnisse

• ihre Ergebnisse sind meist

realitätsnäher da sie zufällige

Effekte wiedergeben können

(Stochastizität)

• Für die Untersuchung von Effekten

in kleinen Populationen besser

Wichtig!

Wichtig!

(56)

free download:

www.influsim.de

Imagem

Fig. 2. Global spread of SARS. (A) Geographical  representation of the global spreading of probable  SARS cases on May 30, 2003, as reported by the WHO  and Centers for Disease Control and Prevention

Referências

Documentos relacionados

Diretoria do Câmpus Avançado Xanxerê Rosângela Gonçalves Padilha Coelho da Cruz.. Chefia do Departamento de Administração do Câmpus Xanxerê Camila

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Avaliou os problemas causados pelas chuvas na área e procurou identificar as maneiras que a população residente na área utiliza para amenizar os danos causados

Pode-se usar um aparelho para controle de volume de administração para aplicar uma diluição inicial de Azanem ® (aztreonam) em uma solução para infusão

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

os cultivares apresentaram desempenho produtivo satisfatório para as características avaliadas e se mostraram promissores a serem recomendados para à incorporação no

(1984) analisando povoamentos de Eucalyptus saligna, aos 8 e 9 anos de idade, respectivamente, verificaram que em média 85% da biomassa aérea encontrava- se no fuste (madeira