• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número4"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

article

In

vitro

photoprotective

effects

of

Marcetia

taxifolia

ethanolic

extract

and

its

potential

for

sunscreen

formulations

Sônia

C.C.

Costa,

Cassia

B.

Detoni,

Carla

R.C.

Branco,

Mariana

B.

Botura,

Alexsandro

Branco

DepartamentodeSaúde,UniversidadeEstadualdeFeiradeSantana,FeiradeSantana,BA,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31May2015

Accepted24July2015

Availableonline17August2015

Keywords:

Marcetiataxifolia

Flavonoid Photoprotective

Sunscreenformulation

a

b

s

t

r

a

c

t

ThespeciesMarcetiataxifolia(A.St.-Hil.)DC.,Melastomataceae,whichisendemicoftherupestrianfields ofnortheasternBrazil,containsasignificantamountofflavonoids.Inthiswork,thepotentialofthe ethanolicextractofM.taxifoliaastheactiveprincipleinasunscreenphotoprotection(UV-AandUV-B) formulationwasinvestigated.TheLiquidChromatographyHighPerformance-DiodeArrayDetector quan-tification(quercetin),totalflavonoidcontent,antioxidantactivitythrough2.2-diphenyl-1-picrylhydrazil method,photoprotectiveactivityagainstUV-BandUV-Aradiationinvitro(spectrophotometricmethod) andpotentialforeyeirritationusingthemethodologyoftheheneggtest-chorioallantoicmembranewere performedintheextract.Afterthat,theformulationswerepreparedusingdifferentconcentrationsof activeethanolicextract(5,10,20and30%)andtheevaluationofthesunprotectionfactorwascarriedout usingthesamemethodologyusedforthecrudeextract.ThecrudeextractshowedUV-Aphotoprotection andloweyeirritationintheheneggtest-chorioallantoicmembranetest.AllformulationscontainingM. taxifoliaextracthad≥6sunprotectionfactor.Itsshowsthepossibilitytousethisextractsasasunscreen inpharmaceuticalpreparations.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Theultraviolet radiation(UVR) isdivided intothree distinct

regions: ultraviolet A (UV-A, 315-400nm), ultraviolet B (UV-B,

280-315nm)andultravioletC(UV-C,100-280nm)(Poloninietal.,

2011).Reachingtheskin,withcumulativeaction,UVRcausesa

complexprocessassociatedwithmorphologicalandchemical

reac-tions.DNAisanimportantmacromoleculethatabsorbsUVRand

hencecanmutate,whatinthefuturecanresultinmalignant trans-formationofthecellskincancer(Baloghetal.,2011).Theeffective protectionagainstUVRisavailableaspreparationsfortopicaluse containingsolarfilters,knownassunscreens.Theefficacyofsuch productsisdependentontheircapacitytoabsorbradiantenergy. Theeffectivenessofasunscreenismeasuredasafunctionoftheir sunprotectionfactor(SPF).Thus,thenecessitytoprovidehighSPF andscreeningefficiencyagainstbothultravioletAandultraviolet Bwavelengthsisevident(Vilelaetal.,2011).

Flavonoids compounds are widely distributed in the plant

kingdom and possess a biological action, especially

antimicro-bial, antioxidant and photoprotective activities (Pietta, 2000;

Correspondingauthor.

E-mail:branco@uefs.br(A.Branco).

Lacombeetal.,2010).Thedemandforactiveflavovoid-richextracts

hasbecomean important componentfor the discoveryof new

moleculesactivetohumanphotoprotection.Thatisduetoits struc-turalsimilaritytochemicalfilterswhichmakesitsusceptibleto radiationabsorptionintheultravioletregion(Agatietal.,2013). Plantextractsrichinflavonoidsarecapableofabsorbing ultravio-letlight,usuallytwomaximumpeaksofultravioletabsorptionin theUV-BandUV-Aregions,whatresultsinthepossibilityforthe useoftheseextractsinthedevelopmentofsunscreenformulations (Bobinetal.,1995).

TheMelastomataceaefamilycontainsaround170generaand

4,600speciesdistributedintropicalandsubtropicalareasofthe world(Reisetal.,2005).TheyareespeciallyabundantinBrazil, occurringinforests,savannahsandrupestrianfields.Several popu-lationsoftheMarcetiagenusarefoundinrockyfieldsintheMinas Gerais(SerradoEspinhac¸o)andBahia(ChapadaDiamantina)states. Thesefieldsareasetofelevationsaround1,200mwithhigh

irra-diation,highwinds,droughtandarockysoilquartznaturewith

small depthand low fertility (Giuliettiet al., 1987).The genus Marcetiacurrentlycomprehends29species,withapproximately 90%inhabitingBahia(Brazil).ThespeciesMarcetiataxifolia(A.St.

Hil.)DC.is representedbyshrubandsubshrubbetween15and

300cminheight,smallleaves,oppositeandsessileorshortly peti-ole(Martins,1989).

http://dx.doi.org/10.1016/j.bjp.2015.07.013

(2)

Thepreviousinvestigationmadeinourlaboratoryinthe Marce-tiataxifoliashowtheantimicrobialactivityandthepresence of flavonoidsusingHPLC-DADanalysis(Leiteetal.,2012).Inthiswork thepotentialofphotoprotectiveactivityoftheethanolicextract fromthesameplantinasunscreenformulationisinvestigated.

MaterialsAndMethods

Plantmaterial

Marcetiataxifolia (A.St.-Hil.) DC., Melastomataceae, was

col-lected in Rio-de-Contas (Chapada Diamantina, state of Bahia,

Brazil).VoucherspecimensweredepositedintheHerbariumofthe DepartmentofBiologyoftheStateUniversityofFeiradeSantana

(HUEFS)withthefollowingnumber:191053.

Preparationofplantextracts

Thedried powderedleavesofM.taxifolia(1500g)were

sub-jectedtothoroughmacerationin95%ethanol.Theextractionswere carriedoutatintervalsof72h.Theethanolicextractwasfiltered throughtavacuumfilterandthefiltratewasdefattedusinghexane. Theethanolicportionsweredriedandusedforthestudies.

HPLC-DADquantification

APurospher100RP-18(250mm×4.6mmi.d.,5␮m)column

(Merck)wasused.Themobilephasewascomposedbysolvent(A)

H2O/H3PO40.1%andsolvent(B)MeOH.Thesolventgradientwas

programmedasA(75-0%)andB(25-100%)for20min,then100%B

for4min,then75%Aand25%Bfor10min.Aflowrateof1.0␮l/min wasusedina30◦Coven,and20lofeachsamplewasinjected.

Theeluatewasmonitoredatadetectionwavelengthof360nm.

Precisely,weighedsampleweredissolvedinmethanol(10mg/␮l).

Themethodwasvalidatedbyanexternalcalibrationcurveusing

standardsolutionsofquercetin,preparedinmethanolinfive dif-ferentconcentrations,rangingfrom0.1to1.5mg/␮l.Thequercetin

standardsolutionswereinjectedthreetimes,andthecurvewas

constructedonMicrosoftOfficeExcel© usingtheaverageofthe

area.Theaccuracywasexpressedastheagreementbetweenthe

experimentallymeasuredvalueandthesetreferencevalue.The

precisionandaccuracywerecalculatedaccordingtotheformula,

respectively:RSD(%)=(SD×100)/C,whereRSD(%)isthe preci-sion,SDisthestandarddeviationandCisthemeanconcentrations calculated;Accuracy(%)=(Cexp×100)/TC,whereCexpisthetotal concentrationofquercetinfromtheextractandTCisthetheoretical concentrationofthestandardreference.Thedetectionlimit(LOD) andquantificationlimit(LOQ)wereestimatedbytheslopeandthe

meanstandarddeviationoftheconcentrationsusedtoconstruct

theanalyticalcurve.

Totalflavonoidcontent(TFC)

TheTFCwasdeterminedbyusingacolorimetricmethodas

pre-viouslydescribedwithafewmodifications(Gursoy,2009).Thedata wereexpressedas␮gofquercetinequivalents(Que)per10mgof ethanolicextractweight.

DPPHFreeradicalscavengingassay

Thefreeradicalscavengingactivitywasmeasuredusingthe

2.2-diphenyl-1-picrylhydrazil(DPPH)assay(Mensoretal.,2001).

Theabsorbancevaluesweremeasuredat518nmandconverted

into the percent antioxidant activity (AA) using the following

formula: AA%=[(absorbance of the control−absorbance of the

sample)/absorbanceof the control]×100. TheIC50 values were

calculatedfromalinearregressionofthedatausingtheGraphPad Prism®5.0program.

Sunprotectionfactor(SPF)ofthecrudeextract

Theethanolicextractwasdissolvedinethanoltoafinal concen-trationof12.5,25,50,125and250␮g/␮l.TheSPFmodelusedin

thisstudywasaccordingtothemethodologydescribedbyMansur

et al. (1986). The sample absorbanceswere measuredin UV-B

wavelengthrange(290-320nm),with5-nmincrementsandthree

determinationsweremadeateachpoint.TheSPFwascalculatedby applyingtheMansurequation:SPF=CFx290

320290EE(␭)xI(␭) xabs(␭),where:CF(correctionfactor)=10;EE(␭)isthe erythe-malefficiencyspectrum;I(␭)isthesolarintensityspectrum;abs (␭)istheabsorbanceofthesolution.ThevaluesofEE(␭)xI(␭)are constantaccordingSayreetal.(1979).

UV-Ablockingactivityofthecrudeextract

A1mg/mlhydroalcoholicsolutionoftrans-resveratrolwas pre-pared.Petridishesof4.5cmdiameterwerefilledwith5␮lofthis solution.EachPetridishwascoveredwitha0.04-gevenlyspread layerofdryethanolicextractofM.taxifoliatobetestedfortheirUV blockingactivity.Petridisheswithcleanlidswereusedascontrol.

ThepetridisheswereplacedinsidetheUV-Achamberandwere

irradiatedwitharadiationintensityofabout830W/m2(between 320and400nm)foraperiodoftime(0-120min).Inpredetermined

intervals (20min) a sample was collected and diluted at 1:10.

Theabsorbancewasmeasuredspectrophotometrically(306nm)

usingaUV-VISVarian®

(Cary100BIO)(Kerrileeetal.,2009).The absorbanceofasampletotallyprotectedfromlightwasalso

mea-suredinpredeterminedintervalstoassurethatthedegradation

wasinducedbyUV-Alight;transisomer,whenexposedtolight,

becomesthecismakingconstantabsorbance(Kerrileeetal.,2009). Thisexperimentwasperformedintriplicate.

Invitroeyeirritationtests(HET-CAM)

Theirritatingpotentialofthecrudeextractwasperformedusing

HET-CAM(hen’seggtest-chorioallantoicmembrane)test

accord-ingtoICCVAM(ICCVAM,2010).The assayemploystheCAM of

a 10-day-oldfertilizedhen’s egg.TheCAM,a membrane which

surrounds the developing chick embryo, is highly vascularized

(Bagleyetal.,1991),andisregardedasbeinginsensitivetopain (Dannhardtetal.,1996).Forthistest,theethanolicextractofM taxifoliawasdissolvedindistilledwateratconcentrationsof250, 125,62.5␮g/␮l.Thefertilizedchicken eggswereobtainedfrom commercialsources.Onthe10thdayofincubation,theeggshell

wasremovedaroundthechamberair,showingtheshell

mem-brane.AfterCAMwasexposed,300␮loftheextractswasapplied.

Thepositivecontrols(NaOH 0.1M),andanegativecontrol

(dis-tilledwater)wereperformedtodemonstratethevalidityofthe

test.Foreachconcentrationandcontrols,threeeggswereused.

Aftertheapplicationoftheextracts,themembraneandblood ves-selswereexaminedfor5min.Thetimeofappearance,measuredin seconds,ofeachirritanteffect(haemorrhage,lysisandcoagulation)

wasrecorded.

Thefollowingformulaisusedtogenerateanirritationscore(IS):

IS=(301−H)×5

(300) +

(301−L)×7

300 +

(301−C)×9 300

WhereH=thetime takentostart thehemorrhagereactions;

(3)

Table1

PolowaxlotioncompositionfortheincorporationofMarcetiaextract.

Phase Rawmaterial Amount Properties

1 Methylparaben 0,15% Preservative

Glycerine 5% Moist

Deionizedwater q.s.p.100g Carrier

2 Propylparaben 0,05% Preservative

LiquidVaseline 3% Lubricant

Octylstearate 4% Emollient

Polowax 5% BasisandAuto-Emulsifier

3 Imidazolidinylurea 0,1% Preservative

Table2

Compositionofthesunscreenformulation.

Phase Rawmaterial Amount Properties

1 Methylparaben 0,15% Preservative

Glycerine 5% Moist

Deionizedwater q.s.p.100g Carrier

2 Propylparaben 0,05% Preservative

Vaselineliquid 3% Lubricant

Octylstearate 4% Emollient

Polowax 5% BasisAutoEmulsifier

Benzophenone-3 3% SunscreenUVA/UVB

3 Imidazolidinylurea 0,1% Preservative

The average score was calculated for each extract, and the extractswereclassifiedintofourcategories:non-irritant(IS>1), lowirritant(1≤IS<5),Moderateirritant(5≤IS<9)andirritant(IS

≥9)(Debbaschetal.,2005).

Preparationofsunscreenformulations

ThepharmaceuticalbaseforincorporatingMarcetiaextractand

sunscreenformulawereadaptedfromthePharmaceutical

Medi-calForm(Batistuzzoetal.,2006)asdescribedinTables1and2, respectively.

Thevehicle,polowaxlotion,usedfortheincorporationofherbal extracts,waspreparedbyheatingthephase1and2at75◦C, sep-arately(Proenc¸aetal.,2009).Afterthat,phase2waspouredinto phase1underconstantagitation,endingwiththeadditionofphase 3andthemixingtemperaturebelow40◦C.Theformulaconsistedof

astandardsunscreenemulsionofO/Wcontaining

benzophenone-3as chemical filter,inaccording toTable2. Theemulsionwas

preparedwiththesamemethoddescribedforpreparingtheO/W

emulsionwithoutbenzophenone-3.Theextractwasincorporated

tothelotionpolowaxvaryingintheirconcentrationsof5,10,20 and30%.Onceformulated,thepHwasmeasuredandtunedwith tri-ethanolaminetopH6.0to7.0,whichpHisdesirableforsunscreen accordingtoRibeiro(2010).

DeterminationoftheSPFofsunscreens

ForthedeterminationoftheSPFoftheformulationsextracts(5, 10,20and30%),theyweredissolvedinethanoltoafinal concen-trationof0.2,2.0,5.0,10,15,20,30and50mg/␮ltoevaluatethe

profileofthesunscreenformulationsprepared.Themethodology

usedforSPFevaluationoftheseformulationswasthesameused

forthecrudeextract.Theabsorbancereadingswereperformedin

triplicate.

Statisticalanalysis

The analyses were performed in triplicate, and the results

expressed as mean±standard deviation (SD).Differences were

considered significant when p<0.05. Multiple comparisons

betweenmore thantwo groups wereperformedwithone-way

5 10 15 20

Minutes

Quercetin standard

A

B

Que

25

Fig. 1.HPLCchromatogram of theethanolicextract ofMarcetia taxifolia (A):

flavonoidglycosylatedregion(Rt:10–15min),flavonoidnon-glycosilatedregion

(Rt:16-20min);HPLCchromatogram(B)ofthequercetinstandard(Rt:14.35min).

ANOVAsupplementedwithTukey’stest.Thedataobtainedwere

analyzedusingtheGraphPadPrism®version5.0.

ResultsandDiscussion

HPLCquantification

Thecrude extractof Marcetiataxifoliawasanalyzedthrough

HPLC-DAD (Fig. 1A), what shows the presence of the

non-glycosylated (peaks betweenRt 10 to15min) and glycosylated

(peaksbetweenRt16to20min)flavonoids.TheUV-spectraofthe peakatTr14.34minwassimilartotheflavonolquercetin.Thus,the

quercetinwasidentifiedfromtheretentiontime(Rt)comparison

usingstandard(Fig.1B).Duetothegoodphotoprotectiveactionof quercetin,thiscompoundwasHPLC-quantifiedintheM.taxifolia.

Thelinearitywasconfirmedbypreparing standardsolutions

of quercetin solutions in methanolat five concentrations.

Cali-brationcurve wasplotted and determinedusing thestandards

data:forquercetin,y=30000000x+14619andR2=0.9987,which

werelinearforspecifiedconcentrationranges.Thedetectionlimit was 0.0145mg/␮land quantification limit was 0.048mg/␮lfor

quercetin.The quantification resultsshow that theamounts of

quercetinpresentintheethanolicextractwashighabovethe detec-tionandquantificationlimits,furtheremphasizingthereliability

ofthemethod.Theprecisionandaccuracyofthemeasurements

werewithinallowablevalues;theaccuracydidnotallowvalues

that exceeded2.09%. Theconcentrationof quercetinpresent in

ethanolicextractfromM.taxifoliawas1.12mg/␮l.

Totalflavonoidcontentandantioxidantactivity

TheflavonoidcontentofM.taxifoliaextractcalculatedasthe quercetinequivalenceshows168±0.35␮g/␮lofquercetin,which isequivalentto10mgofeachethanolicextractweight.The antirad-icalactivityoftheantioxidantisshowintheTable3.Theseresults

showassociationbetweenantioxidativeactivitiesand flavonoid

(4)

Table3

AntioxidantactivityoftheethanolicextractobtainedfromMarcetiataxifolia.

250* 125 50 25 10 5

Extract 95.31 93.97 93.43 74.19 35.52 20.25

BHT* 94.64 94.07 86.58 57.16 30.20 18.38

AA** 97.03 96.62 96.98 96.57 74.32 24.60

* g/ml

** Butylatedhydroxytoluene

***Ascorbicacid

Sunprotectionfactor(SPF)ofthecrudeextract

TheethanolicextractofM.taxifoliahadthesunscreenactivity

evaluatedwiththemethoddevelopedbyMansuretal.,1986.The

resultsofthedeterminationsofinvitroSPFvaluesareshownin Fig.2.AccordingtotheBrazilianlaw,RDC30fromJune1,2012 (Anvisa,2012a),onlySPFgreaterthanorequalto6issuitablefor useincosmeticproductswithphotoprotectiveactivity.TheM. tax-ifoliaextractswithdifferentconcentrations(250and125␮g/␮l) hadsatisfactorysunscreenactivity(15.52and8.35,respectively), higherthantheminimumrequiredbyAnvisa.TheSPFvaluesofthe extractstestedwereconcentration-dependent,theincreasein con-centrationresultedinanincrementoftheSPF.Thisactivitycanbe attributedtotheflavonoidsfoundinspeciesoftheMarcetiafamily.

The plant extracts rich in flavonoids which are efficient in

absorbing ultraviolet light, usually show two maximum peaks

ofultravioletabsorption,one between240-280nmandanother

300-550nm(Bobinetal.,1995).Severalclassesofnatural

com-poundswereexaminedfortheirantioxidantandphotoprotective

activity.Recentstudies(Poloninietal.,2011)reviewedthe

impor-tanceof natural sunscreens in thecompositions ofcommercial

sunscreens and therefore analyzedtheir role in theprevention

of skincancer. Photoprotective propertieshave been evaluated

inextractsof agreat varietyof plants,extractsChrysanthemum

ramosumandCrocussativusL.provedtobegoodweather

reduc-ingagent-inducederythemaascomparedtobenzophenone4(Hu

andWang,1998).Violanteetal.(2009)havedevelopedstudieson thespeciesMacrosiphoniavelame,OxalishirsutissimaandLafoensia pacari,whichthesespeciesshowedabsorptionintheUVin␭max.

318nm,324nmand356nm.Thephytochemicalstudiesdescribed

thepresenceofflavonoids,andotherconstituentsastanninsand

alkaloids,whicharesubstancesdescribedwithaphotoprotective

action.TheCalophylluminophyllumextractisrichinvariousnatural sunscreencompounds,suchasbiflavonoids,etocotrienols tocofer-ols,andbroadabsorbanceintheUV,aswellasantioxidantactivity (Saidetal.,2007).Studiesusingthedry extractfromtheleaves ofEncholiriumspectabile,Bromeliaceae,describedapotent antiox-idantactivityand significantphotoprotective activitycorrelated withflavonoidcompoundspresent(Oliveiraetal.,2013).

0 5 10 15 20

250 200

150 100

50 0

SPF

Concentration (μg/ml)

Fig.2.SunProtectionFactor(SPF)oftheethanolicextractofMarcetiataxifolia.

0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6

1

20 40 60

Time (min)

Absorbance (306 nm)

Control

M. taxifolia

80 100 120 140

Fig.3.EvaluationofthephotoprotectivepotentialagainstUVAradiationbythe

Marcetiaethanolicextract.

UV-Ablockingactivityofthecrudeextract

The plant extracts shown had the ability to protect a

pho-tolabile solution (trans-resveratrol) from UVA radiation. When

trans-resveratrolisexposedtoUVAradiation,itundergoes

degra-dationwhichcanbeseenbytheabsorbancedecreasesduringthe

timeintervals(Kerrilee,2009).Itwasfoundthatduringthecontrol

boardofexpositiontoUVA radiation,there wasphotobleaching

of50.73%trans-resveratrol.TheplatewascoatedwithM. taxifo-liaextractandphotobleachingwaslesspronounced;theendofthe 120minexposureconversionoftrans-resveratroltocis-resveratrol was9.48%.ThisstudyshowedthattheextractfromtheM. taxifo-liaiscapableofpreventingUV-Aradiationfrompermeatingacross aPetridishlid(Fig.3).ThisstudyofM.taxifoliashoweditsgood abilityofphotoprotectionagainstUV-A.

Invitroeyeirritationtests(HET-CAM)

TheHET-CAMtestshowedthatM.taxifolia(250and125␮g/␮l) contendlowirritationpotential:1.93.Theseresultsindicatedthat theethanolextractofM.taxifoliaissuitableforuseincosmetics (Table4).Reportsonthetoxicologicalevaluationsofspeciesofthe Marcetiagenerawerenotfoundintheliterature.

In addition to the protection against UV-B radiation,

prod-uctsbeingcurrentlyresearchedalsohavephotoprotectiveactivity againstUV-Arays.Initially,itwasbelievedthatUV-Aradiationdid

notcausedamagetotheskin.However,studieshaveshowedthat

thisprocesscontributestoradiationandpromotestheappearance

ofphoto-agingskintumors.TheUV-Aradiationpenetratesmore

deeplyintothedermallayersoftheskin,unlikeUV-Bwhich is

absorbedintotheskinepidermis.UV-Ageneratesmoreoxidative

stressthandoesUV-B,andatlevelsfoundinsunlight,itistentimes moreefficientthanisUV-Bincausinglipidperoxidationleading

toplasmamembranedamage(Damiani,2006).Somestudieshave

demonstratedthatsunscreenphoto-instabilityisprimarilya prob-lemconcerningtheUV-Aregion(Maieretal.,2001;Hojerovaetal., 2011).

Table4

Classificationofextractsaccordingtothescoreofthephenomena.

Concentration (␮g/ml)

IrritationScore (IS)

Classification Irritancy

M.taxifolia 250 1.93 lowirritant

125 1.08 lowirritant

62,5 0.14 non-irritant

NaOH0,1M* 0.1M 12.6 irritant

Distilledwater** 0.0 non-irritant

* Positivecontrol

(5)

Table5

Dilution(mg/␮l)andSPFfortheformulationswiththeMarcetiataxifoliaethanolic.

MT5% MT10% MT20% MT30% Benzophenone5%

0.2mg/ml

1.241±0.119d 1.796±0.0800c 2.231±0.0494c 2.860±0.0655b 4.823±0.0907a

2.0mg/ml

6.397±0.0626e 7.336±0.2748d 13.360±0.0625c 14.530±0.0598b 38.530±0.3256a

5.0mg/ml

10.200 ± 0.3160e 15.810± 0.2379d 17.170± 0.0511c 27.460 ± 01150b 38.800 ± 0.01464a

10.0mg/ml

25.430±0.1806e 28.480±0.0265d 30.54±0.0505c 33.780±0754b 38.730±0.01201a

15.0mg/ml

32.620±0.1931e 33.150±0.0775d 34.590±0.3471c 35.340±0987b 39.100±0.0808a

20.0mg/ml

32.730± 0.1561d 33.30± 0.1103c 33.730± 0.0657b 33.890 ± 0887b 39.20 ± 0.0624a

30.0mg/ml

33.250±0.1402e 34.140±0.0340d 24.610±0.0209c 36.550±0417b 42.370±0.2960a

50.0mg/ml

37.310±0.1708c 38.430±0.0377b 42.550±0.2215a 43.110±0.0800a 39.840±0.2343a

Thelevelofsignificativewasp<0.05.Theequallettersrepresentstatisticallyequalvaluesforthesamedilution.

0 5 10 15 20 25 30 35 40 45 50

50 45 40 35 30 25 20 15 10 5 0

SPF

Diluition (mg/ml)

5% 10% 20% 30%

Benzophenone 5%

Fig.4. ProfileofsunscreenformulationswiththeMarcetiataxifoliaethanolicextract.

Currently,thepharmaceuticalandcosmeticindustries, along withgovernmentregulatoryandqualitycontrolofproducts,have usedalternativemethodologiesforassessingthepotentialforeye irritation. In this perspective, the National Health Surveillance Agency(Anvisa)hasadoptedtheGuidelinefortheSafetyEvaluation ofCosmeticProducts(Anvisa,2012b).TheinvitroHET-CAM,which providesinformationontheeye-irritatingproperties,isan essen-tialpartofthehazardidentificationofchemicalsandproducts.The HET-CAMbasicallyassessesvascularchangesandgeneratesresults which,inturn,comparedtotheanimalmodel,haveagreat relation-shipwithphenomenaobservedinconjunctiva,eveniftheyare,as arule,lighterweightthanchangesdetectedinothersystemssuch as,forexample,thoseinducedinisolatedorgans(Nóbregaetal., 2008)

DeterminationoftheSPFofsunscreens

Tukey’smultiple-comparisontestwasusedtoevaluatewhether

theSFPinthedilutionswasthesame,thereby formingaUV-B

sunscreenprofileforformulationsofM.taxifoliaextract(Fig.4).

TheSFPevaluationshowgoodresultsforformulationscontent

M.taxifoliaextracts(5,10,20and30%)whichwereobservedSFP≥6 dilutionfrom2mg/␮l(Table5).Forthespeciesinvestigated,itwas observedthatthedilutionof50mg/␮lwasclosetotheSFPstandard ofbenzophenone5%,inthefixedprotectivefactorof30-50,which

indicatesthat,accordingtotheRDC30/12,theformulationsmay

besuitableforverysensitiveskinsunburn,becauseoftheirhigh sunprotection,asdemonstratedintheinvitromethodology.

AnalyzingstatisticallytheSPFvaluesispossiblenotedthatthe formulationswithM.taxifoliaextract10%and20%(Table5)showed thesameSPFvaluesforthedilutionof0.2mg/␮l.Theformulations at20%and30%ataconcentrationof20mg/␮lwerealsostatistically equal.Thesameistruefortheconcentrationof50mg/␮landthe

standardformulationof5%ofbenzophenone.

Conclusion

TheethanolicextractofM.taxifoliashowgoodantioxidantand

photoprotectiveactivityagainstUV-BandUV-Aradiation.These

effects canbeattributedtoflavonoidderivatives presentin the

plant including quercetin.Sunscreens were developed and SPF

wasevaluated.TheformulationscontainingM.taxifoliaethanolic extractshowedSPFvaluesnearachemicalfilterfrequentlyusedin thepharmaceuticalindustry,benzophenone-3.TheM.taxifoliahas greatapotentialforuseasanactiveingredientforsunscreens.

Authors’Contributions

SCCChelpedwiththemeasurementoftheinvitroantioxidant

activity,totalflavonoidandHPLCanalysis.Shealsoparticipatedof thepreparationoftheformulations,interpretationofdataand sta-tisticalanalysis,evaluationoftheinvitrophotoprotectiveactivityof sunscreensandtheevaluationstabilitytests.CBDwasinchargeof theevaluationoftheinvitrophotoprotectiveactivityofsunscreens.

MBBhelpedwiththemeasurement oftheinvitroEye Irritation

Tests(HET-CAM)and carriedouttheinterpretationofdataand

statisticalanalysis.CRCBconductedstudiesoftheHPLCandthe

developmentofthesunscreenformulation.ABparticipatedinthe

coordinationoftheproject.Allauthorshavereadandapprovedthe finalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Agati,G.,Brunetti,C.,DiFerdinando,M.,Ferrini,F.,Pollastri,S.,Tattini,M.,2013.

Functionalrolesofflavonoidsinphotoprotection:newevidence,lessonsfrom thepast.PlantPhysiol.Biochem.72,35–45.

Anvisa,2012a.Resoluc¸ãoRDCn.30de1◦

.dejunhode2012.AgênciaNacionalde

(6)

Anvisa, 2012b. Guia para avaliac¸ão de seguranc¸a de produtos

cosméti-cos. Agência Nacional de Vigilância Sanitária,Brasília, DF. Disponível em

http://www.anvisa.gov.br

Bagley,D.M.,Rizvi,P.Y.,Kong,B.M.,1991.Factorsaffectinguseofthehen’segg

chorioallantoicmembraneasamodelforpredictingeyeirritationpotential.J. Toxicol-Cutan.Ocul.10,95–104.

Balogh,T.S.,Velasco,M.V.R.,Pedrial,C.A.,Kaneko,T.M.,2011.Protec¸ãoàradiac¸ão

ultravioleta:recursosdisponíveisnaatualidadeemfotoprotec¸ão.An.Bras. Der-matol.86,732–742.

Batistuzzo,J.A.O.,Eto,Y.,Itaya,M.,2006.Formuláriomédico-farmacêutico,3thed.

Pharmabooks,SãoPaulo.

Bobin,M.F.,Raymond,M.,Martini,M.C.,1995.Propriedadesdeabsorc¸ãoUVA/UVB

deprodutosnaturais.CosmetToiletries7,44–50.

Damiani,E.,Rosati,L.,Castagna,R.,Carloni,P.,Greci,L.,2006.Changesinultraviolet

absorbanceandhenceinprotectiveefficacyagainstlipidperoxidationoforganic sunscreensafterUVAirradiation.J.Photochem.Photobiol.B:Biol.82,204–213.

Dannhardt,G., Kreher, M., Nowe,U., 1996. Method for testing non-steroidal

anti-inflammatories:themodifedhen’seggchorioallantoicmembranetest (HET-CAMtest)comparedtootherprocedures.Arch.Pharm.(Weinheim)329, 301–310.

Debbasch,C.,Ebenhahn,C.,Dami,N.,Pericoi,M.,VanDenBerghe,C.,2005.Eye

irritationoflow-irritantcosmeticformulations:correlationofinvitroresults withclinicaldataandproductcomposition.FoodChem.Toxicol.43,155–165.

Giulietti,A.M.,Menezes,N.L.,Pirani,J.R.,Meguro,M.,Wanderley,M.G.L.,1987.Flora

daSerradoCipó,MinasGerais:caracterizac¸ãoelistadeespécies.Bol.Bot. Uni-versidadedeSãoPaulo96,1–151.

Gursoy,N.,Sarikurkcu,C.,Cengiz,M.,Solak,M.H.,2009.Antioxidantactivities,metal

contents,totalphenolicsandflavonoidsofsevenMorchellaspecies.FoodChem. Toxicol.47,2381–2388.

Hojerova,J.,Movcikova,A.,Mikul,M.,2011.Photoprotectiveefficacyand

photo-stabilityoffifteensunscreenproductshavingthesamelabelSPFsubjectedto naturalsunlight.Int.J.Pharm.408,27–38.

Hu,G.,Wang,X.,1998.ResearchonanaturalsunscreenfromChineseherbs.Int.J.

Cosmet.Sci.20,175–181.

ICCVAM,2010.RecommendedTestMethodProtocol.“Hen’seggtest-

chorioallan-toicmembrane(HET-CAM)testmethod”.

Kerrilee,E.,Allan,A.,Claire,E.,Lenehan,A.,Amanda,V.,2009.UVlightstabilityof␣

-cyclodextrin/resveratrolhost–guestcomplexesandisomerstabilityatvarying pH.Aust.J.Chem.62,921–926.

Lacombe,A.,Wu,V.C.H.,Tyler,S.,Edwards,K.,2010.Antimicrobialactionofthe

Americancranberryconstituents;phenolic,anthocyanins,andorganicacids, againstEscherichiacoliO157:H7.Int.J.FoodMicrobiol.139,102–107.

Leite,T.C.C.,Sena,A.R.,Silva,T.R.S.,Santos,A.K.A.,Uetanabaro,A.P.T.,Branco,A.,

2012.AntimicrobialactivityofMarcetiaDCspecies(Melastomataceae)and

analysisofitsflavonoidsbyreversephase-highperformanceliquid chromatog-raphycoupled-diodearraydetector.Pharmacogn.Mag.8,209–214.

Maier,H.,Schauberger,G.,Brunnhofer,K.,Honigsmann,H.,2001.Changeof

ultravio-letabsorbanceofsunscreensbyexposuretosolar-simulatedradiation.J.Invest. Dermatol.117,256–262.

Mansur,J.D.S.,Breder,M.N.R.,Mansur,M.C.D.A.,Azulay,R.D.,1986.Determinac¸ão

dofatordeprotec¸ãosolarporespectrofotometria.An.Bras.Dermatol.61,121– 124.

Martins,A.B.1989.RevisãotaxonômicadogêneroMarcetiaDC.(Melastomataceae).

Tesededoutorado.InstitutodeBiologiaVegetaldaUniversidadedeCampinas,

Campinas.

Mensor,L.L.,Menezes,F.S.,Leitão,G.G.,Reis,A.S.,Santos,T.C.D.,Coube,C.,Leitão,

S.G.,2001.ScrenningofBrazilianplantextractsforantioxidantactivitybythe

useofDPPHfreeradicalmethod.Phytother.Res.15,127–130.

Nóbrega,A.M.,Alves,E.N.,Presgrave,R.F.,Delgado,I.F.,2008.Avaliac¸ãoda

irri-tabilidadeocularinduzidaporingredientesdecosméticosatravésdotestede DraizeedosMétodosHET-CAMeRBC.Universitas:CiênciasdaSaúde.6,103– 120.

Oliveira,R.G.,Souza,G.R.,Guimarães,A.L.,Oliveira,A.P.,Morais,A.C.S.,CruzAraújo,

E.C.,Almeida,J.R.G.S.,2013.DriedextractsofEncholiriumspectabile

(Bromeli-aceae)presentantioxidantandphotoprotectiveactivitiesinvitro. J.Young Pharmacis.5,102–105.

Pietta,P.G.,2000.Flavonoidsasantioxidants.J.Nat.Prod.63,1035–1042.

Polonini,H.C.,Raposo,N.R.B.,Brandão,M.A.,2011.Fotoprotetoresnaturaisno

con-textodasaúdepúblicabrasileira.RevistadeAPS14,216–233.

Proenc¸a,K.D.S.,Oliveira,R.,Gonc¸alves,M.,Vila,M.,Chaud,M.,2009.Avaliac¸ãoda

estabilidadedeemulsõesO/Acomfotoprotetores.Rev.Bras.Ciênc.Farm.90, 132–136.

Reis,C.,Bieras,A.C.,Sajo,M.G.,2005.AnatomiafoliardeMelastomataceaedoCerrado

doestadodeSãoPaulo.Rev.Bras.Bot.28,451–466.

Ribeiro,C.,2010.CosmetologiaaplicadaàDermoestética,2thed.Pharmabooks,São

Paulo.

Said,T.,Dutot,M.,Martin,C.,Beaudeux,J.L.,Boucher,C.,Enee,E.,Rat,P.,2007.

Cyto-protectiveeffectagainstUV-inducedDNAdamageandoxidativestress:roleof newbiologicalUVfilter.Eur.J.Pharm.Sci.30,203–210.

Sayre,R.M.,Agin,P.P.,Levee,G.J.,Marlowe,E.,1979.Comparisonofinvivoandinvitro

testingofsunscreeningformulas.Photochem.Photobiol.29,559–565.

Vilela,F.M.P.,Fonseca,Y.M.,Vicentini,F.T.,Fonseca,M.J.V.,Amaral,M.D.P.H.D.,2011.

Determinationofthreeultravioletfiltersinsunscreenformulationsandfrom skinpenetrationstudiesbyhigh-performanceliquidchromatography.Quim. Nova34,879–883.

Violante,I.M.,Souza,I.M.,Venturini,C.L.,Ramalho,A.F.,Santos,R.A.,Ferrari,M.,

2009.InvitrosunscreenactivityevaluationofplantsextractsfromMatoGrosso

Imagem

Fig. 1. HPLC chromatogram of the ethanolic extract of Marcetia taxifolia (A):
Fig. 3. Evaluation of the photoprotective potential against UVA radiation by the Marcetia ethanolic extract.
Fig. 4. Profile of sunscreen formulations with the Marcetia taxifolia ethanolic extract.

Referências

Documentos relacionados

However the following structures should be emphasized as distinguishing characters of other Caulopterae species: opposite and spread wings in the axis of the two-winged

Moreover, the improvement of glycemic control in some patients with increased post-transplant time, reducing the dose of immunosuppressive drugs and other interventions

A liquid-liquid extraction (LLE) combined with high-performance liquid chromatography-diode array detection method for simultaneous analysis of four chemically and

We performed a preliminary phytochemical analysis by high-performance liquid chromatography-diode array detection (HPLC- DAD) and evaluated the oxidative damage to proteins and

Como objetivos específicos são considerados: avaliação da compliance das bordas do elemento micro a cada propagação de trinca; cálculo dos ciclos de carregamento para cada incremento

Desta forma, entendemos que nós educadores, talvez tenhamos uma tarefa maior do ensinar rudimentos teóricos sobre nossa arte, visto que “A prioridade universal do todo sobre as

Ethanolic extracts of ten species were evaluated through three antioxidant assays, in vitro , including 2,2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant activity and

This study was designed to investigate chemical composition, the total phenolic content, flavonoid content, antioxidant activity and to analyze through FT-IR spectroscopy method