• Nenhum resultado encontrado

Renormalization and forcing of horseshoe orbits

N/A
N/A
Protected

Academic year: 2021

Share "Renormalization and forcing of horseshoe orbits"

Copied!
6
0
0

Texto

(1)

Renormalization

and

forcing

of

horseshoe

orbits

Valentín Mendoza

DepartamentodeMatemática,UniversidadeFederaldeViçosa,MG,Brazil

a r t i c l e i n f o a b s t r a c t

Article history:

Received15February2014 Accepted3June2014 Availableonline12June2014 MSC: 37B10 37E30 Keywords: Horseshoeorbits Boylandorder Renormalization

InthispaperwedealwiththeBoylandforcingofhorseshoeorbits.Weprovethat thereexistsasetR ofrenormalizable horseshoeorbitscontainingonly quasi-one-dimensionalorbits, thatis, forthese orbitstheBoylandorder coincideswiththe unimodal order.

© 2014ElsevierB.V.All rights reserved.

1. Introduction

In[2],BoylandintroducedtheforcingrelationbetweenperiodicorbitsofthediskD2.Giventwoperiodic orbitsP andR,wesaythatP forces R,denotedbyP 2R,ifeveryhomeomorphismofD2 containingthe

braidtypeofP mustcontainthebraidtypeofR.Theset ofperiodicorbitsforcedbyP isdenotedbyΣP.

In this paper we are concerned with theforcing of Smale horseshoe periodic orbits. A horseshoe orbitP

is called quasi-one-dimensional ifP forces allorbitR suchthatP 1R,where 1 is theunimodalorder.

In[4],Hallgaveasetofquasi-one-dimensionalhorseshoeorbits,called NBTorbits(Non-Bogus Transition orbits) which are inbijectionwith Q∩ (0,1

2) and havetheproperty thattheirthickintervalmap induced

hasminimalperiodicorbitstructure,thatis,ifP isan NBTorbittheneverybraidtypeofaperiodicorbit of itsthickintervalmap θP isforcedbythebraidtypeof P .

In this paperwe obtainatype oforbits whichare quasi-one-dimensionaltoo althoughtheir associated thickintervalmapsarereducibleinthesenseofThurston[6],thatis,theyareisotopictoreducible homeo-morphismswhichhaveaninvariantsetofnon-homotopicallytrivialdisjointcurves{C1,· · · ,Cn}.Restricted

to thecomponents of D2\ {C

1,· · · ,Cn}, these reducible maps or one of itspower haveminimal periodic

orbitstructure.

E-mailaddress:valentin@ufv.br. http://dx.doi.org/10.1016/j.topol.2014.06.002 0166-8641/© 2014ElsevierB.V.All rights reserved.

(2)

Fig. 1. Dynamics of F .

Theorem1.There existsaset R⊃ NBT ofquasi-one-dimensional horseshoe orbits, thatis, if P ∈ R then ΣP ={R : P 1R}.

Theseorbitsaredefinedusingtherenormalizationoperatorwhichwasintroducedin[3]asthe∗-product. 2. Preliminaries

2.1. Boyland partialorder

LetDn bethepunctureddisk.LetMCG(Dn) bethegroupofisotopyclassesofhomeomorphismsof Dn,

which is called the mapping class group of Dn. Given a homeomorphism f : D2 → D2 of the disk D2

withaperiodicorbitP ,thebraid type ofP ,denotedbybt(P,f ) is definedasfollows: Takean orientation preservinghomeomorphismh: D2\ P → Dn thenbt(P,f ) istheconjugacyclass[h◦ f ◦ h−1]∈ MCG(Dn)

ofh◦ f ◦ h−1: Dn→ Dn.

LetBT be theunionofalltheperiodicbraidtypesandletbt(f ) bethesetformedbythebraidtypesof theperiodicorbitsoff . Wewillsaythatf : D2→ D2 exhibits abraidtypeβ ifthere existsan n-periodic

orbitP forf withβ = bt(P,f ).Nowwecandefinetherelation2onBT.Wesaythatβ1forces β2,denoted

byβ12β2,ifeveryhomeomorphism exhibitingβ1,exhibitsβ2 too.Thenwewillsaythataperiodicorbit P forces anotherperiodicorbitR,denotedbyP 2R,ifbt(P )2bt(R).

In[2],P.Boylandprovedthefollowing theorem.

Theorem2.([2, Theorem9.1]) The relation2 isapartial order. 2.2. Smale horseshoe

TheSmalehorseshoeisamapF : D2→ D2ofthediskwhichactsasinFig. 1.ThesetΩ =

j∈ZFj(V0 V1) is F -invariant and F|Ω is conjugated to the shift σ on the sequence space of two symbols 0 and 1, Σ2={0,1}Z,where

σ(si)i∈Z= (si+1)i∈Z. (1)

Theconjugacyh: Ω→ Σ2 isdefinedby

 h(x) i=  0 if Fi(x)∈ V0 1 if Fi(x)∈ V1 (2)

Tocomparehorseshoeorbitsitisnecessarytodefinetheunimodalorder.ItisatotalorderinΣ+={0,1}N

given bythe following rule:Let s= s0s1... and t= t0t1... be sequences inΣ+ such thatsi = ti fori≤ k

(3)

P 1 R if σ (R) 1 cP, ∀n ≥ 1. For every orbit P , there exists a homeomorphism θP thatrealizes the

combinatorics of P . This is obtained fatting the line diagram of P and it is called the tick map induced by P . See[4].

2.3. Renormalizedhorseshoe orbits

Let P and Q be two horseshoe periodicorbits with codes cP = Aan−1, where A = a0a1· · · an−2, and cQ= b0b1· · · bm−2bm−1 and periodsn andm, respectively.

Definition 3(Renormalization operator).Wewill writeP∗ Q forthenm-periodicorbitwithcode

cP∗Q= 

Ab1Ab2· · · Abm−2Abm−1 if (A) is even Ab1Ab2· · · Abm−2Abm−1 if (A) is odd

(3)

where (A)=n−2i=0 ai andbi= 1− bi.

The orbit P ∗ Q is called the renormalization of P and Q. If an orbit S satisfies S = P ∗ Q for some

P,Q∈ Σ2,itissaidthatS is renormalizable.Alsowewill denote P1∗ P2∗ · · · ∗ Pk =



· · ·(P1∗ P2)∗ P3



· · ·.

Example 4.IfP andQ have codescP = 101 andcQ= 1001 thenP∗ Q has codecP∗Q= 100101101100. 2.4. NBT orbits

There are atype of horseshoe orbitsfor which theBoyland partial order is well-understood.They are constructed inthefollowing way.Given arationalnumberq = mn ∈ Q := Q∩ (0,12),letLq bethestraight

line segmentjoining(0,0) and (n,m) in R2. Thenconstructafinite wordc

q= s0s1· · · sn asfollows:

si=



1 if Lq intersects some line y = k, k∈ Z, for x ∈ (i − 1, i + 1)

0 otherwise (4)

It followsthatcq ispalindromicandhastheform:

cq= 10μ1120μ212· · · 120μm−1120μm1. (5)

We willdenote Pq to theperiodicorbitsofperiodn+ 2 whichhavethecodescq10, whenthedistinction is

notimportantandletNBT ={Pq: q∈ Q}. In[4],Hall provedthefollowing result.

Theorem 5.Letq,q∈ Q. Then

(i) Pq isquasi-one-dimensional, thatis, Pq1R =⇒ Pq2R. (ii) q q⇐⇒ (cq01)1(cq01)∞⇐⇒ (cq01)2(cq01)

(4)

Fig. 2. The image θP∗Q(Ci) when P = 1001.

So theorem above says that the Boyland order restricted to the NBT orbits is equal to the unimodal order.

3. Forcingofrenormalizableorbits

ForprovingTheorem 1weshallneedthefollowingresult: Theorem6.LetP = A0

1 andQ be periodicorbits. Then

ΣP∗Q={R : P 2R} ∪ {P ∗ R : Q 2R}. (6)

Toprovetheresultaboveitwillbeneededtwo lemmaswhoseproofsareleft tothereader.

Lemma7.Leti,j∈ {1,· · · ,n− 1} be positiveintegerswithi= j andTM = P∗ Q andTm= σn(TM). Then (a) If(A) is eventhen A0∞1Tm1TM 1A1∞,

(b) If(A) is oddthen A1∞1Tm1TM 1A0∞,

(c) σi(P )1σj(P )⇐⇒ [σi(TM)1σj(TM) and σi(Tm)1σj(Tm)].

Lemma8.LetP = A0

1 andQ be twoperiodicorbits. If i,j ∈ {0,· · · ,m− 1},withi= j,then

σi(Q) >1σj(Q)⇐⇒ σin(P∗ Q) >1σjn(P∗ Q).

Proofof Theorem 6. LetθP∗Q be thethickmap induced byP ∗ Q.First wesee thatthe onlyiterates of P∗ Q satisfyingTm1σi(P ∗ Q)1TM aretheiteratesσin(P ∗ Q),with 0≤ i≤ m− 1;sothere existsa

curveCn−1 containingthese orbitsdisjoint from theothersand bounding aregion Dn−1. ByLemma 7(c)

and noting that σi(T

m) and σi(TM) have the same initial symbol for i ∈ {1,· · · ,n− 1}, it follows that {θi

P∗Q(Cn−1)}n−1i=1 hasthe samecombinatoricsas P . For i= 0,· · · ,n− 2,letCi = θi+1P∗Q(Cn−1) beacurve

which bounds a domain Di. It is possible to define θP∗Q such that θnP∗Q(Cn−1) = Cn−1. Then the line

diagram of {D0,· · · ,Dn−1} is as the line diagram of P and then θP∗Q has the same behaviour than θP

intheexteriorof∪Di.Since θP∗Q canbereduced byafamilyofcurves, wewill needstudy theThurston

representativeofθP∗QrestrictedtoD2\ ∪Ci.AsθP andθP∗Qhavethesamecombinatoricsintheexterior

of∪Di,theyhavethesameThurstonrepresentativeintheexteriorof∪Di.SoP andP∗ Q forcethesame

periodicorbitsintheexteriorof∪Di.Then{R : P 2R}⊂ ΣP∗Q.SeeFig. 2.

It isclearthatto findwhatorbitsareforcedbyP∗ Q in∪Di,itis enoughtostudy θPn∗Q restrictedto Dn−1.ByLemma 8, theline diagramofθn

P∗QinsideDn−1 isthesameasthelinediagram ofQ when(A)

iseven,and itisflippedwhen(A) is odd.SeeFig. 3.Soθn

P∗Q hasthesamecombinatoricsthanθQ.

As inLemma 8,we canprovethatQ2 R⇐⇒ P ∗ Q2 P∗ R.SoΣP∗Q ={R : P 2 R}∪ {P ∗ R : Q2R}. 2

Remark9.Theorem 6saysusthattolookfortheorbitsthatareforcedbyP∗ Q itisenoughtolookforthe orbitsthatare forcedbyP and theorbitsthatare forcedbyQ. Sowe canstudy thethickmaps induced

(5)

Fig. 3. The image θn

P∗Q(Cn−1).

byP andQ separately.Every ofthesethickmapscanbe reducedusingmethodsto determineitsminimal representative,e.g.[1,5].

Corollary 10.LetP1,P2,· · · ,Pk be NBTorbits. Then (a) ΣP1∗···∗Pk=

k

j=1{P1∗ · · · ∗ Pj−1∗ R : Pj1R},and (b) ΣP1∗···∗Pk={R : P1∗ · · · ∗ Pk1R}.

Proof. Item (a) follows directly from Theorem 6. Foritem (b) it is enoughto provethatif P andQ are

quasi-one-dimensionalhorseshoeorbitsthenP∗ Q isaquasi-one-dimensionalorbittoo. Supposethat(A)

is even.FromTheorem 6,

ΣP∗Q={R : P 1R} ∪ {P ∗ R : Q 1R}. (7)

HenceitfollowsthatΣP∗Q⊂ {S : P ∗ Q1S}.Wehavetoprovetheinclusion{S : P ∗ Q1S}⊂ ΣP∗Q.

If P 1 S then S ∈ ΣP∗Q. Let S withcS = s0s1· · · sk−1 be aperiodicorbit with P 1 S 1 P∗ Q. By

Lemma 7(a),(A0)∞1c∞S 1(A1)∞.ThisimpliesthatcS = Asn−1sn· · · and

(0A)∞1σn−1



c∞S = sn−1sn· · · 1(1A)∞,

and σn(c

S∞) 1 (A0)∞. In the other hand σn(cS∞) 1 cP∗Q∞. Then σn(cS∞) = As2n−1· · · and then cS = AsnAs2n−1· · ·. Continuing this process, it follows that S = P ∗ R where cR = sn−1s2n−1· · ·. So P ∗ R 1P∗ Q whichimpliesthatR1Q.SoS∈ {P ∗ R : Q1R} andtheproofisfinished. 2

Now weproceedto proveTheorem 1.

Proof of Theorem 1. Let {Pj}j∈N be the set of NBT orbits and consider the space NN of sequences of

(6)

RJ =

k=1

{Pj1∗ · · · ∗ Pjk} (8)

andR=J ∈NNRJ.ByCorollary 10(b),everyorbitofR isquasi-one-dimensional. 2

Acknowledgements

I would like to thanks to Toby Hall and Dylene de Barros for their comments which contributed to improvethispaper.

References

[1]M.Bestvina,M.Handel,Train-tracksforsurfacehomeomorphisms,Topology34(1995)109–140. [2]P.Boyland,Topologicalmethodsinsurfacedynamics,Topol.Appl.54(1994)223–298.

[3]P.Collet,J.-P.Eckmann,IteratedMapsontheIntervalasDynamicalSystems,Birkhauser,Boston,1980. [4]T.Hall,Thecreationofhorseshoes,Nonlinearity7(1994)861–924.

[5]H.Solari,M.Natiello,Minimalperiodicorbitsstructureof2-dimensionalhomeomorphisms,J.NonlinearSci.15 (3)(2005) 183–222.

[6]W.Thurston,Onthegeometry anddynamicsofdiffeomorphisms ofsurface,Bull., NewSer.,Am.Math.Soc.19(1988) 417–431.

Referências

Documentos relacionados

P REDIÇÃO DOS COEFICIENTES DE EXPANSÃO TÉRMICA DE BIODIESEIS DE DIVERSAS ORIGENS ATRAVÉS DA APLICAÇÃO DA REGRESSÃO LINEAR de autoria de César Augusto Canciam,

Segundo Courtois (2013), como regra geral, um contentor deve conter um número de peças equivalente a menos de um décimo do consumo diário, de modo a garantir um mínimo de fluidez

Dos movimentos analisados constatá- mos que os fundadores do MIETZ (Estremoz) e o MICRE (Redondo) são pessoas com vínculos remotos ao PCP; no MUB (Borba), no MUDA e no

as crises ocorrem em períodos que duram de sete dias a um ano, separados por períodos livres de dor de pelo menos três meses e cefaleia em salvas crónica quando as crises

Independentemente do tipo de sistema de drenagem público ou da sua inexistência, a montante da câmara de ramal de ligação os sistemas de drenagem de águas

No presente estudo, uma aplicação de Zn-incor- porado em volume reduzido de solo foi efetiva para corrigir a deficiência e manter os níveis nutricionais em condições ótimas para

Foram feitas a análise da variância, a análise de regres- são de níveis de nitrogênio sobre a produção de cada en- saio e a análise conjunta dos ensaios nos três anos.. A