• Nenhum resultado encontrado

NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

N/A
N/A
Protected

Academic year: 2017

Share "NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT"

Copied!
6
0
0

Texto

(1)

ORIGINAL ARTICLE

NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER

WHEAT

Klimenko S.B., Peshkova A.A., Dorofeev N.V

Siberian Institute of Plant Physiology and Biochemistry, SD RAS, Irkutsk, Russia

Phone: (3952)424659 Fax: (3952)510754

E-mail:

dorofeev@sifibr.irk.ru

Received 18 January 2006 .

Abstract - Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0 on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

(2)

ORIGINAL ARTICLE

Ш

Ц

Ш

и е

. .,

еш

. .,

р фее

. .

А

, 664033

И

,

/ 1243, .

,132,

E-mail:

dorofeev@sifibr.irk.ru

18 2006 .

.

,

, ё . И (+40 0 )

. ,

, ё

, ё .

ы : / /

,

.

ё

, .

.

, ( 100

) (Campbell, 2001).

( ) . - , . .

. Э

– ,

. (Cheng et al., 1992; Foyer et al., 1994).

.

.

. –

. К ,

(NO) (Dean, Harper, 1988; Yamasaki, Sakihama, 2000)

.

.

,

.

ё ,

(Kaiser et al., 1999).

. (Mg2+)

14-3-3 (Kaiser et al., 1999).

, , . .

(Kenjebaeva, Rakova, 1995; Garg et. al.,2001; Stoimenova et. al., 2003).

(3)

.

14-3-3 (Tucker, Ort, 2002; Yaneva et al., 2002).

.

(Triticum aestivum

L.). И

К .

12 , 20 ±2 0

ё 5000 .

,

. К

ё ,

.

60

20 ±2 0 40 ±2 0 .

ё .

7,6, 50

HEPES-К , 1 Э , 1%

0,001 .

,

1:3, 15

15 000g.

. ( )

HEPES-К 7,6, 5

Э , ( )

Э 10 MgCI2.

.

0,5 0,1

0,1 КNO3 0,1 .

0,1 0,005

2, .

5 30 0 ,

0,1 0,005 . Ч 2 - 3

0,5 1%- 1 N

l 0,5

0,02%-. Ч 10 4 . g 10

546 S 1-20 (“К rl Zeiss” ).

( ) ( )

2 . К

( . 1)

. Ч 4

70% .

(40 )

, 40

1,76 ,

2,1

. Ч 80

80 .

, ( . 2).

40%, 23%.

40

, 80

14 6

% .

, 12

.

40-41% .

(+40 0 ) 20

( . 3).

Ч 60

, 100

.

20 0C

40 .

.

75-97%

(4)

иц 1. И ( / )

, %

0 285,8±53,8 130,2±16,3 46,6

2 411,1±44,4 267,9±28,5 65,2

4 420,6±41,2 291,6±18,3 70,0

6 463,7±46,2 291,1±24,7 63,0

8 398,7±27,4 251,5±23,2 62,9

иц 2. И ( / )

, %

0 502,7±15,3 293,5±11,5 58,4

40 387,0±8,6 172,6±7,0 44,6

80 353,4±8,0 158,5±7,2 44,8

120 341,1±6,3 141,9±7,5 41,5

160 323,4±9,6 131,9±2,7 40,9

200 314,6±15,3 142,8±8,8 45,3

280 315,3±4,0 137,4±1,9 43,6

иц 3. ( / )

+ 40 0

%

12 t = 20 0C 0 258±20 108±9 42

60 t = 20 0C 60 466±29 252±14 54

100 20 t = 40 0C 20 353±15 148±8 42

140 60 t = 40 0C 60 370±40 153±28 44

180 100 t = 40 0C 100 415±4 174±9 46

220 40 t = 20 0C 40 452±28 235±14 52

220 80 t = 20 0C 80 451±10 239±4 53

(Wallace, 1986; , 1992).

. 2

1,5 .

,

.

2 .

46,6% ( )

70% (4 ).

И

(5)

-, .

2 73%

, 2

56%, 88 35%

(Kandlbinder et al., 2000).

И ,

– 5-10 (Kaiser et al., 1999).

(40

) , ( )

( ) 40

.

,

.

40

. ,

.

И ,

40 .

, ,

.

, .

К ,

( . 1 2). ,

ё

- , ё

, ё

-, ё

( ).

(Tucker et al., 2004).

,

-

( , 1986; И , 1986).

К ,

.

40 0

(Law, Crafts-Brandner, 1999).

( ,

.),

.

, ё

(+40 0 ),

( . 3.).

.

ё 20

12 .

42-44% .

20

,

. ,

.

, (+40 0 )

( )

( ).

.

ё

,

.

.

. . (1986) . .:

, 199 .

И . . (1986)

. .: , 319 . . . (1992)

// , 39,

111-118.

Campbell W.H. (2001) Structure and function of eukaryotic NAD(P)H:nitrate reductase // CMLS, Cell. Mol. Life Sci., 58, 194–204. Cheng C.L., Acedo G.N., Cristinsin M., Conkling

(6)

induction of Arabidopsis nitrate reductase gene transcription // Proc. Natl. Acad. Sci. U S A. 89(5), 1861-1864.

Dean J.V., Harper J.E. (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean // Plant Physiology, 88, 389-395. Foyer C.H., Lescure J.C., Lefebvre C., Morot-Gaudry

J.F., Vincentz M., Vaucheret H. (1994) Adaptations of Photosynthetic Electron Transport, Carbon Assimilation, and Carbon Partitioning in Transgenic Nicotiana plumbaginifolia Plants to Changes in Nitrate Reductase Activity // Plant Physiology, 104, 171-178.

Garg B.K., Kathju S., Burman U. (2001) Influence of water stress on water relations, photosynthetic parameters and nitrogen metabolism of moth bean genotypes // Biologia Plantarum, 44(20), 289-292.

Jones T.L., Tucker D.E., Ort D.R. (1998) Chilling Delays Circadian Pattern of Sucrose Phosphate Synthase and Nitrate Reductase Activity in Tomato // Plant Physiol., 118, 149-158.

Kaiser W.M., Weiner H., Huber S.C. (1999) Nitrate reductase in higher plants: A case study for transduction of environmental stimuli into control of catalytic activity // Physiologia Plantarum., 105, 385-390.

Kaiser W.M, Huber S.C. (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers // J. Exp. Bot., 52, 1981-1989.

Kandlbinder A, Weiner H, Kaiser W.M. (2000) Nitrate reductases from leaves of Ricinus (Ricinus communis L.) and spinach (Spinacia oleracea L.) have different regulatory properties // Journal of Experimental Botany, 51(347), 1099-1105.

Kenjebaeva S., Rakova N. (1995) Multiple forms of nitrate reductase and their role in nitrate assimilation in roots of wheat at low temperature or high salinity // Physiologia Plantarum, 93, 249-252.

Law R.D., Crafts-Brandner S.J. (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase // Plant Physiology, 120, 173 181.

Stoimenova M., Lidourel I.G.L., Ratcliffe R.G., Kaiser W.M. (2003) The role of nitrate reduction in the anoxic metabolism of roots II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity // Plant and Soil, 253, 155-167.

Tucker D.E., Ort D.R. (2002) Low temperature induces expression of nitrate reductase in tomato that temporarily overrides circadian regulation of activity // Photosynthesis Research, 72, 285–293.

Tucker D.E. Allen D.J., Ort D.R. (2004) Control of nitrate reductase by circadian and diurnal rhythms in tomato // Planta, 219, 277–285. Wallace W. (1986) Distribution of nitrate

assimilation between the root and shoot of legumes and a comparison with wheat // Physiologia Plantarum, 66, 630-636.

Yamasaki H., Sakihama Y. (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species // FEBS Letters, 468, 89-92.

Referências

Documentos relacionados

possible mechanism of silver nanoparticle synthesis at lower concentration which may involve nitrate reductase enzyme. B -

Relationship between plant top dry mass yield and nitrate reductase activity taken on the newly expanded lamina leaf (NL), in the first ( ) and second ( ) growth of the ‘Mombaça’

Nitrate reductase activity, nitrogenase activity, specific nitrogenase activity, concentration of N in leaves and nodules, and accumulation of N in shoots, of common bean

Water content (%) of seeds from various wheat genotypes, obtained right after harvesting and after 30 and 180 days of seed storage. In wheat and other winter cereal seeds, it

No campo do design, Marti Guixé 5 é uma referência, na medida em que inicia um novo percurso na história do design e a sua relação com os alimentos, criando uma nova forma de pensar

Main and interaction effects of production systems (hydroponic and organic) and leaf parts (midribs, outer adult leaf blades and young leaves) on the nitrate reductase activity

Leaf nitrogen concentration was not affected by treatments, but bacteria inoculation increased nitrate reductase activity in IACSP95-5000, and the highest activity was found in

The main enzymes found were nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT), glutamate dehydrogenase (GDH),