• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número5"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia25(2015)529–532

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Short

communication

Microsomal

metabolism

of

erythraline:

an

anxiolitic

spiroalkaloid

Lucas

Maciel

Mauriz

Marques

a,b

,

Fernando

Armani

Aguiar

a

,

Denise

Brentan

da

Silva

a,b

,

Daniel

Roberto

Callejon

b

,

Anderson

Rodrigo

Moraes

de

Oliveira

c

,

Norberto

Peporine

Lopes

a

,

João

Luís

Callegari

Lopes

a,∗

,

Thais

Guaratini

a,b,∗

aNúcleodePesquisaemProdutosNaturaiseSintéticos,FaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil bLychnofloraPesquisaeDesenvolvimentoemProdutosNaturaisLtda,CampusUSP,RibeirãoPreto,SP,Brazil

cDepartamentodeQuímica,FaculdadedeFilosofia,CiênciaseLetrasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25September2014 Accepted4May2015 Availableonline8July2015

Keywords:

Fabaceae Erythraline CYP450 Drugmetabolism Microsomalmodel

a

b

s

t

r

a

c

t

ThegenusErythrina,Fabaceae,iswidelydistributedintropicalandsubtropicalregions.Theirflowers, fruits,seedsandbarkarefrequentlyusedinfolkmedicineforitseffectsonthecentralnervoussystem suchasanticonvulsant,antidepressant,analgesic,sedative,andhypnoticeffects.Erythralinehasbeen reportedasoneoftheactivecompoundsfromErythrina,butuntilnowtherearenopharmacokinetics dataaboutthiscompoundandonlyfewresultsshowingaputativemetabolismwerereported.Toimprove theinformationabouterythralinemetabolism,thisarticlereportsanddiscusses,forthefirsttime,the

invitrometabolismbiotransformationoferythralinebycytochromeP450enzymes.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Naturalproductshavehistoricallyplayedamajorroleinthe dis-coveryanddevelopmentofadiversearrayoftherapeutics(Kurita and Linington,2015).Theyrepresent a rich sourceof chemical diversity,between25and50%ofapproveddrugsareoriginated fromnaturalproducts.However,discovery,isolation,and develop-mentofnaturalproductsaspharmaceuticaldrugsareexceptionally challenging,requiringamulti-disciplinaryapproachtounlocktheir potential(OgbourneandParsons,2014).

ThegenusErythrina,Fabaceae,iswidelydistributedintropical andsubtropicalregions(Aritaetal.,2014).ErythrinavernaVell.isa deciduoustreefoundmainlyinBraziliancerradosandother trop-icalregions.Itsflowers,fruits,seedsandbarkarefrequentlyused infolkmedicineduetotheireffectsonthecentralnervous sys-tem,suchas:anticonvulsant,antidepressant,analgesic,sedative andhypnoticeffects(Faggionetal.,2011;Flausinoetal.,2007a,b). Systematicphytochemicalinvestigationsreportedtheoccurrence ofoveronehundredstructuralErythrinaalkaloidsderivatives(Juma andMajinda,2004;Wanjalaetal.,2002).Biologicalstudies regard-ingitsanxiolyticpropertieshavesupportedthepopularuseand themechanismofactionwasdescribedas␣4␤2nicotinic recep-torsantagonist.Inthelastdecade,initialpharmaceuticalproducts

∗ Correspondingauthors.

E-mails:joaoluis@usp.br(J.L.C.Lopes),thais@lychnoflora.com.br(T.Guaratini).

werecommerciallyavailable,butuntilnowthereareno pharma-cokineticsdataoftheactivecompoundsandonlyfewresultsabout putativemetabolismhavebeenreported(Guaratinietal.,2014; Perdigaoetal.,2013).

Metabolism of a drugcandidate often decides whetherit is safeand effective for clinicalapplication.The understandingof specificdrugmetabolitesisoftenakeyforthesuccessofdrug dis-covery(Cusacketal.,2013;Chenetal.,2014)anditiscrucialto informseveralimportantstructuralpropertiesasnew pharmaco-logicallyinactiveortoxicentities,poorbioavailability,efficacy,and safety-relatedevents.Therefore,suchanearlyscreeningindrug developmentisnecessary(Fragaetal.,2011).

Ratand humanlivermicrosomes(RLMandHLM)aremainly employedformetaboliteprofilingpurposes(Spaggiarietal.,2014; Yuanetal.,2014).Thesystemcontainsthemaindrug-metabolizing enzymes,suchasthecytochromeP450(CYP450)familyandflavin monooxygenase(Chenetal.,2014),PhaseIandPhaseIIenzymes, whichcangeneratevaluableinformationtopredictandavoid prob-lemsduringinvivostudies(Nowaketal.,2014).

Inthisway,ourgrouphasbeendedicatedtoinvestigatePhase I metabolites for a series of natural products (Marques et al., 2014; Messiano et al., 2013; Moreiraet al., 2013).Analysis of erythraline (1, ERT) metabolization by pig microbiota suggests a high stability in intestinal portion, but applying bioorganic catalysis,oneputativemetabolitewasformedand identifiedas 8-oxo-erythraline (2) (Guaratini et al., 2014). Considering ERT (1)asa promising drugcandidate,itsmetabolismstill requires

http://dx.doi.org/10.1016/j.bjp.2015.05.011

(2)

530 L.M.M.Marquesetal./RevistaBrasileiradeFarmacognosia25(2015)529–532

clarifications. Therefore, the aim of the present work was to investigateitsinvitrometabolismbylivermicrosomesobtained fromrats,aswellasfromhumanbeings,inordertopredictthe invivometabolism,comparingwithpreviousrelatedresultsand toimprove pre-clinical information of alkaloids from Erythrina genus.

Materialsandmethods

TheERT(1)wasextractedfromErythrinavernaVell.,Fabaceae, accordingtopublishedprocedures(Guaratinietal.,2014)andsome controlanalogswereobtainedaspreviouslydescribed(Callejon etal.,2014).Sodiumchlorideandsodiumdihydrogenphosphate wereobtainedfromMerck(Darmstadt,Germany).Sodium hydrox-ide and potassium chloride were obtained from Nuclear (São Paulo,Brazil).Glycerolandtris-(hydroxymethyl)-aminomethane wereobtainedfromJ.T.Baker (Phillipsburg,NJ, USA), ethylene-diaminetetraacetic acid (EDTA) from Carlo Erba (Milan, Italy). NADP+,glucose-6-phosphateandglucose-6-phosphate

dehydro-genasewereobtainedfromSigma–Aldrich(St.Louis,MO,USA). Male Wistar rats weighing 180–220g were obtained from the School of Pharmaceutical Sciences of Ribeirão Preto, Uni-versity of Sao Paulo. The Ethical Committee from University of São Paulo approved the studies. Microsomal preparation wasperformedaccordingpublishedprocedures(Marquesetal., 2014). Ratliver microsome incubations(shaking water bath at 37◦C) wereperformed in10mlamber tubes in atotal incuba-tion volume of 1000␮l. Incubations contained 250␮l cofactor solution,35␮lratlivermicrosomes(29.6mgml−1microsomal pro-tein), 715␮l phosphate buffer (pH 7.4; 0.25moll−1) and 25l ERT(1;500␮gml−1).The cofactor solutionconsistedof NADP+ (0.25mmoll−1),glucose-6-phosphate(5mmoll−1)and glucose-6-phosphatedehydrogenase(0.5units)inTris–HClbuffer(Tris–HCl 0.05moll−1KCl0.15moll−1,pH7.4).

Humanlivermicrosomeincubations(BDGentestTM,Woburn,

MA,EUA)wereperformedaccordingClementsandLi(2011):to avoidmultiplefreeze–thawcyclesandmaintainenzymeactivity themicrosomesand NADPHregenerating system weredivided intosingleusefractionsandstoredat−94◦Cuntilneeded.Amber

tubesinatotalincubationvolumeof200␮lwereused.Incubations contained100␮lhumanlivermicrosome(4mgml−1microsomal protein),100␮lNADPHregenerating system(NRS)(40␮l0.5M phosphatebufferpH7.4,10␮lSolutionA,2␮lSolutionB, both fromBDGentestTM),5lERT(1;1.38mgml−1).

Afterprewarmingfor5minat37◦C, themetabolicreactions wereinitiatedbytheadditionoftheratandhumanliver micro-somes,separately.Tostopmetabolicreactionafter90min,itwas added4mland1mlofchloroform,respectively,toincubationswith ratandhumanlivermicrosomes.Then,thesamplepreparationwas performed.Controlincubationswereperformedintheabsenceof thecofactorsolutionandintheabsenceofthemicrosomal prepa-ration.Thedifferencebetween‘with’and ‘without’NADPHwas consideredCYP450-mediatedmetabolism.Toperformthe experi-ments,thesampleswerepooledfromtensingleincubations.

Aliquid–liquidextraction(LLE)procedurewasappliedtoextract theERT(1)fromtheratandhumanlivermicrosomes.Afterthe extractionprocedure,thesampleswereshakenfor15min(Vibrax

VXR agitator,IKA,Staufen, Germany)and centrifugedfor 5min at2860×g (HitachiCF16RXII,Himac,Tokyo,Japan). The

super-natantwascollected(3mland750␮l,respectively,fromratand humanmicrosomalpreparationsamples)andallowedto evapo-ratetodrynessunderagentlestreamofnitrogen.Then,theresidue wasreconstitutedin200␮lofmethanol,and1␮lwasinjectedinto thechromatographysystem.

In order to investigate the formation of metabolites, the samples were analyzed by a gas chromatograph (GC-MS-QP-2010, Shimadzu) coupled to a quadruple mass spectrometer with electron impact (EI) ionization at 70eV. The gas chro-matograph was equipped with an auto sampler AOC-20i, 1␮l splitinjections1/10wereperformedat250◦C.Separationswere carried out ona 5% phenyl methyl siloxane (DB-5ms) column (30m×0.25mm×0.25␮mfilmthickness).Theoventemperature

program for separation conditions were 100◦C for 0.8min fol-lowedbytemperatureincreasesto220◦Cat6Cmin−1,220Cfor 10min,temperatureincreasesto290◦Cat6Cmin−1,and290C for11min.Thecarriergaswasultrapureheliumhelium(grade5.5) atconstantflowratesof1.10mlmin−1.Amassrangeofm/z50–500 wasrecordedinthefull-scanmode.Finally,themetaboliteswere comparedwithauthenticallysamplespreviousisolated.

Toaccumulateenoughmetaboliteusedfor1HNMRanalysis,rat

livermicrosomeincubationwasperformedaspreviousdescribed to150individualtubes(ERT,1,2000␮gml−1).Then,thispoolwas submittedtosemipreparativeLCusingthefollowingconditions: C18 column (Shim-pack Prep-ODS, 5␮m, 20mm×25cm,

Shi-madzu),flowrate9mlmin−1andacetonitrile(B)andH2O(A)both withTFA0.02%(v/v)assolvents.Theelutionprofilewas0–25min (15–65%,B),25–30min(25–80%,B),30–32min(80–100%,B)and 32–35min(100%,B).The isolatedcompound wascharacterized by NMR (Bruker Avance® DRX-500) in a Shigemi symmetrical

susceptibility-matchedmicrotube.

Resultsanddiscussion

PureERT(1)elutes inGC–MSanalysisatRt 30.6min(Fig.1, charts A and B) and no other signal was observed. The chro-matogram of thetest reaction employing rat and humanliver microsomespresentedanewpeakatthesameRt29.81min show-ingthattherewasacorrelationbetweenbothmicrosomalmodels (Fig.1,chartsAandB).Theabsenceofsignalsintheblankand con-trolsamplesconfirmtheenzymaticconversionprobablythought anoxidativereaction.Theelectronionizationmassspectraofthe signal1atRt 29.81showanincrementof14massunits(Fig.1, chartD),relatedtoERT(Fig.1,chartC).Thisresultsuggestsan oxi-dationthroughacarbonylgroupformationaspreviousobserved forothernaturalproducts(Niehuesetal.,2012;Santosetal.,2005, 2008).Thefragmentationpatternofbothcompoundsshowed simi-larneutraleliminationsconfirmingthehomologybetweenthetwo structures.

Toconfirmthemetabolitestructurelarge-scaleratliver micro-someincubation wasperformedaspreviousdescribed (applied 150individualtubesofERTat2000␮gml−1).Then,thispoolwas submittedtosemipreparativeLCaffording900␮g.Afterthe sol-ventelimination,thesamplewascharacterizedbyNMR(Bruker Avance® DRX-500) in a Shigemi symmetrical

susceptibility-matchedmicrotube.The1HNMR(CDCl

3,500MHz)spectraofthe

isolatedmetaboliteexhibitedthesignals(seesupplementarydata associatedwiththisarticle):ıH6.33(m,H-1),6.72(s,H-14),6.72

(s,H-17),6.89(m,H-2),6.15(s,H-7),5.94(d,O-CH2-O),5.91(d,

O-CH2-O),3.90(m,H-3),3.78(m,H-10),3.68m(m,H-10),3.35(s,

OCH3),3.15(m,H-11),2.99(m,H-11),2.82(m,H-4),2.10(m,H-4).

(3)

L.M.M.Marquesetal./RevistaBrasileiradeFarmacognosia25(2015)529–532 531

30,0

100 90 80 70 60 50 40 30 20 10

40

51 65

77 91 103

112 130 152 180

191 208

213

226 239

264 266

282 297

60 80 100 120 140 160 180 200 220 240 260 280 300

100 90 80 70 60 50 40 30 20 10

51 63 77 89 105

116 139 152

165

176 194

196

222

250

252

280 278

296 311

40 60 80 100 120 140 160 180190 210 230 250 270 290 310 m/z m/z T

1 2

1,000,000 1,000,000

2

1

T

C

B

TIC TIC

A

B

C

D

C B

31,0 32,0 33,0 34,0

mm 30,0 31,0 32,0 33,0 mm34,0

Fig.1. RepresentativeGCchromatogramsofrat(chartA)andhumanmicrosomesextracts(chartB),signal1:8-oxo-erythraline(Rt=29.81min)andsignal2:ERT

(Rt=30.6min).LinesT(testsamples)ofERTmetabolismafterincubation;linesC(control)inbothmicrosomalpreparationwithoutNADPHcofactor;linesB(blank):

microsomalpreparationwithoutERT.Left:ratlivermicrosomes;right:humanlivermicrosomes.ChartCshowstheEI-MSdataofERT(Rt=30.6min)andchartDshowsthe

EI-MSdataof8-oxo-erythraline(Rt=29.81min).

ionmode)confirmedthemolecularstructure(observ.m/z312.1228 [M+H]+;calcd.forC

18H18NO4+312.1230,error=0.6ppm).

Conclusion

Thispaperdescribes,forthefirsttime,theCYP450-mediated metabolismofapromisingnaturalproduct,ERT(1),usingratand humanlivermicrosomes.Itsmetabolismshowedtheformationof thepreviouslyformed8-oxo-erythraline(2)bybioinorganic cataly-sis(Guaratinietal.,2014).Thiscompoundwaspreviouslyisolated asaminorcompoundinsomecultivarofE.vernaandbiological evaluationapplyingmacrophageandLeishmaniacellsrevealedlow cytotoxicactivityfortheERTanalogalkaloidsinvestigated.Inthis manner,thiscompoundshouldbeconsideredaspossible metabo-liteintheinvivometabolismanditstoxicologicaleffectmustbe furtherinvestigated.

Authors’contributions

LMMM,FAA,TG,DBS,DRCconductedextractionandisolation oftheeritralinandmetabolitesfromplantandinmicrosomal bio-transformation, respectively and the interpretation of all these data. LMMM, ARMO, NPL, JLCL and TG wrote and revised the manuscript.Allauthorsreadandapprovedthefinalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

(4)

532 L.M.M.Marquesetal./RevistaBrasileiradeFarmacognosia25(2015)529–532

CNPq(168114/2014-3),INCTifandRHAEforfellowshipsand finan-cialsupport.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.05.011.

References

Arita,T.,Miyazaki,S.,Teramoto,S.,Yoshitama,K.,2014.Majoranthocyanin biosyn-thesisinthebrilliantcrimsonpetalsfromErythrinacrista-galliL.Sci.Hortic.168, 272–280.

Callejon,D.R.,Riul,T.B.,Feitosa,L.G.P.,Guaratini,T.,Silva,D.B.,Adhikari,A.,Shrestha, R.L.S.,Marques,L.M.M.,Baruffi,M.D.,Lopes,J.L.C.,Lopes,N.P.,2014. Leishmanici-dalevaluationoftetrahydroprotoberberineandspirocyclicerythrina-alkaloids. Molecules19,5692–5703.

Chen,T.L.,Zhang,Y.B.,Xu,W.,Kang,T.G.,Yang,X.W.,2014.Biotransformationof isoimperatorinbyratlivermicrosomesanditsquantificationbyLC–MS/MS method.Fitoterapia93,88–97.

Clements,M.,Li,L.,2011.Strategyofusingmicrosome-basedmetaboliteproduction tofacilitatetheidentificationofendogenousmetabolitesbyliquid chromatog-raphymassspectrometry.Anal.Chim.Acta685,36–44.

Cusack,K.P.,Koolman,H.F.,Lange,U.E.W.,Peltier,H.M.,Piel,I.,Vasudevan,A.,2013.

Emergingtechnologiesformetabolitegenerationandstructuraldiversification. Bioorg.Med.Chem.Lett.23,5471–5483.

Faggion,S.A.,Cunha,A.O.S.,Fachim,H.A.,Gavin,A.S.,Santos,W.F.,Pereira,A.M.S., Beleboni,R.O.,2011.Anticonvulsantprofileofthealkaloids(+)-erythravineand (+)-11-␣-hydroxy-erythravineisolatedfromtheflowersofErythrinamulungu

MartexBenth(Leguminosae–Papilionaceae).EpilepsyBehav.20,441–446.

FlausinoJr.,O.,Pereira,A.M.,Bolzani,V.S.,deSouza,R.L.N.,2007a.Effectsof ery-thrinianalkaloidsisolatedfromErythrina mulungu(Papilionaceae) inmice submittedtoanimalmodelsofanxiety.Biol.Pharm.Bull.30,375–378.

FlausinoJr.,O.,Santos,L.A.,Verli,H.,Pereira,A.M.,Bolzani,V.S.,deSouza,R.L.N., 2007b.AnxiolyticeffectsoferythrinianalkaloidsfromErythrinamulungu.J.Nat. Prod.70,48–53.

Fraga, A.G.M., Silva, L.L., Fraga, C.A.M., Barreiro, E.J., 2011.

CYP1A2-mediated biotransformation of cardioactive 2-thienylidene-3,4-methylenedioxybenzoylhydrazine(LASSBio-294)byratlivermicrosomesand humanrecombinantCYPenzymes.Eur.J.Med.Chem.46,349–355.

Guaratini,T.,Silva,D.B.,Bizaro,A.C.,Sartori,L.R.,Humpf,H.U.,Lopes,N.P.,Lotufo, L.V.C.,Lopes,J.L.C.,2014.Invitrometabolismstudiesoferythraline,themajor spiroalkaloidfromErythrinaverna.BMCComplement.Altern.Med.14(61),2–5.

Juma,B.F.,Majinda,R.R.T.,2004.Erythrinalinealkaloidsfromtheflowersandpodsof

ErythrinalysistemonandtheirDPPHradicalscavengingproperties.

Phytochem-istry65,1397–1404.

Kurita,K.L.,Linington,R.G.,2015.Connectingphenotypeandchemotype: high-contentdiscoverystrategiesfornaturalproductsresearch.J.Nat.Prod.78, 587–596.

Mantle,P.G.,Laws, I.,Widdowson, D.A.,1984. 8-Oxo-erythraline, a naturally-occurringprincipal alkaloid fromErythrina crista-galli. Phytochemistry 23, 1336–1338.

Marques,L.M.M.,SilvaJr,E.A.,Gouvea,D.R.,Vessecchi,R.,Pupo,M.T.,Lopes,N.P.,Kato, M.J.,DeOliveira,A.R.M.,2014.Invitrometabolismofthealkaloidpiplartineby ratlivermicrosomes.J.Pharm.Biomed.95,113–120.

Messiano,G.B.,Santos,R.A.S.,Ferreira,L.S.,Simoes,R.A.,Jabor,V.A.P.,Kato,M.J., Lopes,N.P.,Pupo,M.T.,deOliveira,A.R.M.,2013.Invitrometabolismstudyof thepromisinganticanceragentthelignan(-)-grandisin.J.Pharm.Biomed.72, 240–244.

Moreira,F.L.,Souza,G.H.B.,Rodrigues,I.V.,Lopes,N.P.,DeOliveira,A.R.M.,2013.A non-michaelianbehavioroftheinvitrometabolismofthepentacyclictriterpene alfaandbetaamyrinsbyemployingratlivermicrosomes.J.Pharm.Biomed.84, 14–19.

Niehues,M.,Barros,V.P.M.,Emery,F.S.,Dias-Baruffi,M.,Assis,M.D.,Lopes,N.P., 2012.Biomimeticinvitrooxidationoflapachol:amodeltopredictandanalyse theinvivophaseImetabolismofbioactivecompounds.Eur.J.Med.Chem.54, 804–812.

Nowak,P.,Wozniakiewicz,M.,Koscielniak,P.,2014.Simulationofdrugmetabolism. TrendsAnal.Chem.59,42–49.

Ogbourne,S.M.,Parsons,P.G.,2014.Thevalueofnature’snaturalproductlibrary forthediscoveryofnewchemicalentities:thediscoveryofingenolmebutate. Fitoterapia98,36–44.

Perdigao,P.S.,Serrano,M.A.R.,FlausinoJr.,O.,Bolzani,V.S.,Guimaraes,M.Z.P., Castro, N.G., 2013. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian. PLoS ONE 8, e82726.

Santos,M.D.,Martins,P.R.,Santos,P.A.,Bortocan,R.,Iamamoto,Y.,Lopes,N.P.,2005.

Oxidativemetabolismof5-O-caffeoylquinicacid(chlorogenicacid),abioactive naturalproduct,bymetalloporphyrinandratlivermitochondria.Eur.J.Pharm. Sci.26,62–70.

Santos,M.D.,Iamamoto,Y.,Lopes,N.P.,2008.HPLC–ESI-MS/MSanalysisofoxidizes di-caffeoylquinic acids generated by metalloporphyrin-catalydes reactions. Quim.Nova31,767–770.

Spaggiari,D.,Geiser,L.,Serge,R.,2014.Couplingultra-high-pressureliquid chro-matographywithmass spectrometryfor in-vitrodrug-metabolismstudies. TrendsAnal.Chem.63,129–139.

Wanjala,C.C.W.,Juma,B.F.,Bojase,G.,Gache,B.A.,Majinda,R.R.T.,2002. Erythri-nalinealkaloidsandantimicrobialflavonoidsfromErythrinalatissima.Planta Med.68,640–642.

Yuan,L.,Jia,P.,Sun,Y.,Zhao,C.,Zhi,X.,Sheng,N.,Zhang,L.,2014.Studyofinvitro

Imagem

Fig. 1. Representative GC chromatograms of rat (chart A) and human microsomes extracts (chart B), signal 1: 8-oxo-erythraline (R t = 29.81 min) and signal 2: ERT (R t = 30.6 min)

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Diante dos fundamentos materialistas executados por György Lukács, Theodor Adorno, Antônio Candido e Roberto Schwarz, analisaremos O Amanuense Belmiro,

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados

O novo problema seria determinar qual dos chutes foi o mais veloz (Figura 6) para que fosse formado um ranking. Esse problema foi compartilhado com toda a turma em

In the hope to clarify the contribution of fructose on the pathomechanisms of brain damage observed in HFI patients, the aim of the present work was to investigate the in vivo and

Therefore, both the additive variance and the deviations of dominance contribute to the estimated gains via selection indexes and for the gains expressed by the progenies

O estudo apresentado neste artigo, teve como objectivo investigar a relação entre as atitudes dos médicos Psiquiatras em relação à SIDA e a sua percepção de risco de

O credor que não requerer perante o Juízo da execução a(s) adjudicação(ões) do(s) bem(ns) a ser(em) leiloado(s) antes da publicação deste Edital, só poderá adquiri- lo(s)