• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número4"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Chemical

constituents

from

Sidastrum

paniculatum

and

evaluation

of

their

leishmanicidal

activity

Yanna

C.F.

Teles

a

,

Otemberg

S.

Chaves

b

,

Maria

de

Fátima

Agra

b

,

Leônia

Maria

Batista

b

,

Aline

C.

de

Queiroz

c

,

Morgana

V.

de

Araújo

c

,

Magna

Suzana

Alexandre-Moreira

c

,

Raimundo

Braz-Filho

d

,

Maria

de

Fátima

V.

de

Souza

a,b,∗

aPós-graduac¸ãoemDesenvolvimentoeInovac¸ãoTecnológicaemMedicamentos,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil bPós-graduac¸ãoemProdutosNaturaiseSintéticosBioativos,UniversidadeFederaldaParaíba,JoãoPessoa,PB,Brazil

cLaboratóriodeFarmacologiaeImunidade,InstitutodeCiênciasBiológicasedaSaúde,UniversidadeFederaldeAlagoas,Maceió,AL,Brazil dLaboratóriodeCiênciasQuímicas,UniversidadeEstadualdoNorteFluminenseDarcyRibeiro,CamposdosGoytacazes,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2August2014

Accepted10February2015

Availableonline21March2015

Keywords:

Sidastrumpaniculatum

Malvaceae

Leishmaniabraziliensis

Antileishmanialactivity

a

b

s

t

r

a

c

t

Sidastrumpaniculatum(L.)Fryxell,Malvaceae,ispopularlyknowninBrazilas“malva-roxa”or “mal-vavisco”.ThespeciesisfoundmainlyinNortheastregionwhereitisusedbylocalstotreatspiderbites andbeestings.AimingtoidentifythechemicalcompoundsfromS.paniculatumsecondarymetabolism andtocontributetothechemotaxonomicknowledgeofMalvaceaefamily,aphytochemicalstudyofS. paniculatumwascarriedout.Besidesthat,theisolatedcompoundswereevaluatedforantileishmanial activityagainstpromastigotesofLeishmaniabraziliensis.Byusingchromatographictechniquesthestudy resultedtheisolationofeightcompounds:3-oxo-21␤-H-hop-22(29)-ene;sebifericacid;sitosterol3-O-␤

-d-glucopyranoside/stigmasterol3-O-␤-d-glucopyranoside;phaeophytina;132(S)-hydroxyphaeophytin

a;132(S)-hydroxy-(173)-ethoxyphaeophorbideaand 7,4-di-O-methylisoescutellarein.Thestructure ofallisolatedcompoundswaselucidatedbyspectroscopicanalysis,includingtwo-dimensionalNMR techniques.Inaddition,theisolatedcompoundsphaeophytina;132(S)-hydroxyphaeophytina;132(S )-hydroxy-(173)-ethoxyphaeophorbideaand7,4-di-O-methylisoescutellareinexhibitedantileishmanial activityagainstpromastigotesofL.braziliensis.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Sidastrum paniculatum (L.) Fryxell, Malvaceae, is popularly knowninBrazilas“malvaroxa”or“malvavisco”.Thespeciesiswide spreadinNortheastregion,especiallyinParaibaandPernambuco states(Baracho,1995).TheSidastrumgenuscompriseseightspecies withneotropicaldistribution,occurringfromMexicotoArgentina. PreviousphytochemicalstudiesonSidastrumspecieshavereported thepresence of steroids, phenolic acids, flavonoids and phaeo-phytins(Gomesetal.,2011a).FromS.paniculatumwerepreviously isolated steroids, a feruloyl derivativeand a glycosil flavonoid (Cavalcante et al., 2010).Many species from Malvaceae family areusedinfolkmedicinetotreatdiseases,S.paniculatumleaves are traditionally used as topical treatment to spider bites and

∗ Correspondingauthor.

E-mail:mfvanderlei@ltf.ufpb.br(M.d.F.V.d.Souza).

bee stings. Sidastrummicranthum leaves are used toprepare a tea to treat asthma and bronchitis (Gomes et al., 2011b).Sida rhombifoliaisusedinIndianfolkmedicineagainsthypertension, diabetes and gout(Chaveset al., 2013).Hibiscusesculentus and

Malvaneglectaareusedinpopularmedicinetotreatulcerand stom-achache.Infact,theseplantshaveshowedtopossessaneffective gastroprotectiveeffectagainstulcersinducedbyethanolin rats (Gürbüsetal.,2003,2005).The methanolextractof Herissantia crispa, species rich in phenolic compounds, showed antidiar-rhoeal and antiulcerogenicactivity onthe HCl/ethanol-induced gastric lesions(Lima etal., 2009).Other relevant pharmacolog-ical activities of Malvaceae species are well reported such as anti-inflammatory,antioxidantand antibacterialactivities(Silva et al., 2006; Falcão-Silva et al., 2009; Costa et al., 2009; Silva etal.,2005;Karouetal.,2005;Ghosaletal.,1975;Oliveiraetal., 2012).

Leishmanicidal activity against Leishmania major has also been reported for Malvaceae species (Rocha et al., 2005). The

http://dx.doi.org/10.1016/j.bjp.2015.02.002

(2)

leishmaniasisis caused by more than 20 species of protozoan parasitethatbelongstoLeishmaniagenusandhasgreat epidemio-logicalandclinicaldiversity(Kamhawi,2006;Mishraetal.,2009).

Leishmania(Viannia)braziliensisisendemicinLatinAmericaand isthecausativeagentofmucocutaneousdiseaseintheAméricas (Brelazetal.,2012).Thecurrent chemotherapeuticarsenal con-sistsofpentavalentantimony,pentamidine,variousformulations oftheantibioticamphotericinB,andrecentlymiltefosine(Croftand Olliaro,2011).Thesedrugsarewidelyprescribeddespitetheir tox-icity,highcostanddifficultadministration(Croftetal.,2006).All thesefactsshowtheurgentneedfortheresearchanddevelopment ofnewleishmanicidalcompounds,includingfromnaturalsources (Santosetal.,2008).

InordertoincreasetheknowledgeaboutS.paniculatum phy-toconstituentsandaimingtocontributetothechemotaxonomic knowledgeofMalvaceaefamily,thespeciesS.paniculatumwas sub-mittedtoaphytochemicalstudy.Inaddition,isolatedcompounds wereevaluatedforantileishmanialactivityagainstpromastigotes ofL.braziliensis.

Materialsandmethods

Generalexperimentalprocedures

Theisolationofchemicalconstituentswasperformedonglass chromatographic columns using Silica (ASTM, 230–400 mesh, Merck)orSephadexLH-20asstationaryphase.TLCwereperformed onsilica gel PF254 plates and the spots were visualized under

UVlight(254and366nm)andbyexposuretoiodinevaporand vanillin–sulphuricacidreagent. Isolatedcompounds were iden-tifiedbyInfrared(IR),Perkin-ElmerFT-IR-1750andShimadzu– Prestige21modelusingKBrdiscs;and1Dand2DNMRanalysis (1H500MHz,13C125MHzVarianand1H400MHz,13C100MHz

–Bruker)usingdeuteratedchloroform,DMSOorpyridine.Melting pointsweremeasuredinaMQAPF-302apparatus(Microquimica EquipamentosLtda).

Plantmaterial

TheaerialpartsofSidastrumpaniculatum(L.)Fryxell,Malvaceae, were collectedin Pedra da Boca Park, located in Araruna city, Paraiba/Brazil,inJune2008(SISBIOAuthorizationNumber 46923-2).TheplantwasidentifiedbyProf.Dr.MariadeFátimaAgra,anda voucherspecimen(JPB6051)wasauthenticatedanddepositedat LauroPiresXavierHerbarium(CCEN/UFPB).

Extractionandisolation

The plant material was dried in an oven at 40◦C for 72h.

Afterthat,itwasgroundedinamechanical mill,yielding3.7kg of a powder which wassubmitted tomaceration withethanol during three consecutive days. This process was repeated in order to maximize the extraction of chemical constituents. A rotaryevaporatorwasusedtoconcentratetheextractresulting 250g of crude ethanol extract (CEE). The CEE was partitioned with n-hexane, chloroform (CHCl3), ethyl acetate (EtOAc) and n-butanol. From this process were obtained 82g of n-hexane phase(HP), 32gof CHCl3 phase (CP),3gofEtOAcphase (EAP),

10g of n-butanol phase (BP) and 110g of hydroalcohol phase (HAP).

HP (7g) was subjectedto column chromatography with sil-icagel(210gofsilicagelpackedinaglasscolumnwith4cmof diameter)andelutedwithhexane,dichloromethaneandmethanol resulting25fractionswhichwereanalyzedandcombinedby ana-lyticalTLC.The05/06fractionyieldedaprecipitatethatwaswashed withhexane toyield 20mg of colorless crystals(1).The 10/12

fraction,acolorlesssolid,waspurewhenanalyzedbyTLC,being labeledascompound2(12mg).Thefraction20/22showedawhite powdersolubleinpyridine,thepowderwaswashedwithhexane resultingthemixtureofthecompounds3and4(30mg).The frac-tions13/18(900mg)wererechromatographed insilica column (27gofsilicagelinglasscolumnwith2cmofdiameter) result-ingthe isolation ofthecompounds 5 (50mg),6 (15mg)and 7

(19mg).

Analiquot(2g)ofEAPwaschromatographedinSephadex col-umn(Sephadexgellengthof30cm)usingmethanolassolvent.The fractionswereanalyzedbyTLC,joined,andthechromatography wasrepeatedtoisolatethecompound8(20mg).

InvitroactivityagainstL.braziliensis

Promastigotes of L. braziliensis (MHOM/BR/87/BA125) were obtainedfromDr.Valéria deMatosBorges (Centrode Pesquisa Gonc¸alo Moniz/FIOCRUZ/BA). The parasites were maintained

in vitro in Schneider’s medium, supplemented with 10% FBS and 2% human urine. Stock solutions of compounds and pentamidine (reference leishmanicidal drug) were prepared in DMSO immediately before use. The cytotoxicity of com-pounds isolated from S. paniculatum and pentamidine against promastigotes was determined. Stationary phase L. brazilien-sis promastigotes were plated in 96-well vessels (Nunc) at 1×105cellsperwell,inSchneider’smedium,supplementedwith

10% FBS and 2% human urine. Each compound solution was added at the following concentrations:0.01␮M, 0.1␮M,1␮M, 10␮Mand100␮M.

Cellswerealsoculturedinamediumfreeofcompoundsor vehi-cle(basalgrowthcontrol)orwithDMSO0.1%(vehicle control). After48h,extracellularloadofL.braziliensispromastigoteswas estimatedbycountingthepromastigotesinSchneider’smedium ina CELM automaticcellcounter (modelCC530)(Rangeletal., 1996).

Resultsanddiscussion

Structureelucidationofisolatedcompounds

Byusingtypicalchromatographicproceduresthecompounds

1–8wereisolatedfromtheaerialpartsofS.paniculatum.

TheIRspectraof1suggestedthepresenceofolefinic,methyl, methylene,methynichydrogensandcarbonylbyshowingbands at 3050;2943–2862 and 1708cm−1, respectively. The 1H NMR

showedsevenmethylsinglets,oneofthosepresenting characteris-ticchemicalshiftofprotonbondedtosp2carbon(ı

H1.72).Olefinic

protonswerefoundasabroadsinglet atıH 4.76indicatingthe

presenceofisopropenylgroup.The13CNMRshowed30carbons

and the isopropenyl group and the carbonyl were confirmed by the signals at ıC 148.64, ıC 110.06 and ıC 220.51. HMQC

and HMBCcorrelations showedthat thecarbonsareconsistent with a hopane-type skeleton with a carbonyl at position C-3. Comparisonswiththeliteratureledtoidentifythecompound1

as3-oxo-21␤-H-hop-22(29)-ene(Davidetal.,2004;Sousaetal., 2012).

Compound 2 showed IR bands at 1708, 2943, 2862 and 3435cm−1suggestingpresenceofhydroxyl,doublebondand

car-bonyl groups in the molecule. The 1H NMR spectra showed a

triterpenoidprofileand thepresenceoftwoisopropenylgroups wasindicated bythepresenceofvinylmethyls(ıH 1.77andıH

1.73)and exomethylenes protonsat ıH 4.76(2H),ıH 4.80 (1H)

and ıH 4.87(1H).The 13C NMR of compound 2 confirmedthe

(3)

113.00andıC110.09.The2Dcorrelationswerecarefullyanalyzed

thusthecompound2wasidentifiedassebifericacid,a3,4-seco -hopane-typetriterpene(Sousaetal.,2012;Pradhanetal.,1984). TriterpeneswereisolatedfromsomeMalvaceaespecies,suchas

S.micranthum,Herissantiatiubae,SidaacutaandAbutilon pakistan-icum(Gomesetal.,2011b;Silvaetal.,2009b;Chenetal.,2007; Ahmedetal.,1990).Hopanetriterpenesand3,4-seco-triterpenes havebeenrecentlyreportedfromWissadulaperiplocifolia(Teles etal.,2014).

1

23 24 6 5 4 3 2 10 1 25 11 12 28 13 19 20 21 18 17

14 16 30 29

O

15 27 9 8 7

2

2 1 25 23 24 4 5 6 7 8 9 11 12 28 13 19 20 21 18 14 27 15 16 17 30 29

HO

2

C

Thestructuralassignmentofthemixtureofcompounds3and

4wasperformedbasedonspectralanalysisandcomparisonswith theliterature(Kojimaetal.,1990;Rashedetal.,2014).Thedataare ingoodagreementwiththosereportedandthestructureswere identified asthemixture ofglucosyl steroids:sitosterol3-O-␤

-d-glucopyranoside(3)andstigmasterol3-O-␤-d-glucopyranoside

(4).Thesesteroidsarewidelyspreadinplants,beingimportant componentofvegetablecellwallandmembrane.Theyhavebeen previouslyreportedfrommanyMalvaceae,suchasW. periplocifo-lia,S.rhombifolia,Sidagalheirensis,H.crispaandBakeridesiapickelli

(Telesetal.,2014;Chavesetal.,2013;Silvaetal.,2006;Costaetal., 2007,2009).

3

R=

β

-

D

-glucopyranosyl

4

R=

β

-

D

-glucopyranosyl;

Δ

22,23

RO

3 2 1 4 10 18 9 7 5 6 11 12 19 21 20 22 23 24 28 29 27 25 26 17 13 14 16 15

Thesubstances5,6and7wereisolatedasdarkgreenamorphous solid,andshowedquitesimilarIRspectra.The1Hand13CNMR

indi-catedthatthecompoundsarechlorophyllderivatives.Comparisons withtheliteraturedataledtoidentifythecompoundsas phaeo-phytina(5),132-hydroxy-phaeophytina(6)(Nogueiraetal.,2013)

and132(S)-hydroxy-173-ethoxyphaeophorbidea (7)(Silvaetal., 2009a),previouslyreportedfromMalvaceaespeciesW. periplocifo-lia,S.rhombifoliaandS.galheirensis(Telesetal.,2014;Chavesetal., 2013;Silvaetal.,2006).Thesecompoundsareformedfrom chloro-phylldegradationbyactionofenzymessuchasMg-dechelatase

andchlorophyllase.Additionalstructuralmodificationscanoccur andrecentlynewstructuresofchlorophyllderivativesarebeing reported(Silvaetal.,2010).Researchersareinterestedin under-standingiftheybelongtothesecondarymetabolismofplantsonce theyhaveshowedtopossessmanybiologicalactivities(Telesetal., 2014).

5

R

1

=H; R

2

=phytol

6

R

1

=OH; R

2

=phytol

7

R

1

=OH; R

2

=CH

2

CH

3

HN

NH

N

N

O

O

H

H

H

H

H

O

O

171 133 134 132 121 81 71 21 2 1 20 31 32 7 6 5 4 3 82 8 131 13 15 14 16 17 18 19 12 11 10 9

R

2

R

1

Thecompound 8 wasisolatedasyellowpowder. By analyz-ing its 1H and 13C NMR, besides bidimensional NMR spectra,

it waspossibleidentifythe compound8 as 5,8-dihydroxy-7,4′

-dimethoxy-flavone(7,4′-di-O-methylisoescutellarein),previously

isolated from Sidastrum micrathum (Gomes et al., 2011b). Flavonoidsareconsideredacharacteristicgroupof constituents fromfamily.Flavones,flavonols,theirmethylandsulphur deriva-tives,andglucosylflavonoids,havebeenreportedfromMalvaceae species(Chavesetal.,2013;Gomesetal.,2011a;Silvaetal.,2006; Cavalcanteetal.,2010;Costaetal.,2007,2009;Silvaetal.,2005; NawwarandBuddrus,1981).

8

H

3

CO

OCH

3

OH

OH

O

O

5 6 7 8 9 4 10 3

2 1′ 2′

3′ 4′

5′ 6′

3-oxo-21␤-H-hop-22(29)-ene(1):mp 168–170C;IR: 2943,

2862,1708cm−1.1HNMR(500MHz,CDCl

3,ıppm):2.08(m,

H-1),2.24(m,H-2),1.95(m,H-5),1.10(m,H-6),1.10and2.01(m, H-7),1.42(m,H-9),1.10(m,H-11),1.42(m,H-12),1.32(m,H-13), 1.32(m,H-15),1.62(m,H-16),1.39(m,H-17),1.60(m,H-19),1.81 (m,H-20),2.66(m,H-21),1.02(s,H-23),1.00(s,H-24),0.73(s, H-25),1.14(s,H-26),0.86(s,H-27),0.68(s,H-28),4.76(bs,2H-29), 1.72(s,H-30).13CNMR(125MHz,CDCl

3,ı):31.59(C-1),33.78

(C-2),220.51(C-3),46.82(C-4),47.32(C-5),20.57(C-6),34.17(C-7), 41.65(C-8),43.30(C-9),36.17(C-10),21.96(C-11),24.27(C-12), 49.72(C-13),42.66(C-14),33.55(C-15),21.37(C-16),55.14(C-17), 44.82(C-18),41.53(C-19),27.30(C-20),46.24(C-21),148.64 (C-22),29.36(C-23),19.57(C-24),23.29(C-25),22.08(C-26),17.06 (C-27),15.96(C-28),110.06(29),25.04(C-30)(Davidetal.,2004; Sousaetal.,2012).

3,4-seco-21␤-H-hop-22(29)-en-3-oicacid(sebifericacid)(2):

mp178–180◦C;IR:1708cm−1;2941cm−1,3435cm−1.1HNMR

(500MHz,CDCl3,ı):2.25(m,H-1),1.85–2.44(m,H-2),2.04(m,

(4)

Table1

LeishmanicidaleffectofcompoundsisolatedfromS.paniculatumagainst

promastig-otesofL.braziliensis.

Treatment IC50a(␮M±S.E.M.) Maximumeffectb(%±S.E.M.)

Pentamidine 1.3±0.4 94.8±0.2**

3/4 >100 NA

5 77.2±3.9 59.5±0.3**

6 72.7±6.3 70.8±5.7**

7 89.0±1.9 56.5±1.4*

8 78.1±9.5 55.6±3.3*

H-17),1.60(m,H-19),1.78(m,H-20),2.67(m,H-21),4.87(s,H-23), 1.77(s,H-24),0.82(s,H-25),1.03(s,H-26),0.97(s,H-27),0.71(s, H-28),4.76(bs,H-29),1.73(s,H-30).13CNMR(125MHz,CDCl

3, ı):30.14(C-1),30.07(C-2),180.07(C-3),147.83(C-4),46.88 (C-5),22.83(C-6),26.70(C-7),41.35(C-8),43.21(C-9),37.94(C-10), 22.49(C-11),24.30(C-12),49.72(C-13),42.99(C-14),33.49(C-15), 21.60(C-16),55.86(C-17),44.76(C-18),42.01(C-19),27.31(C-20), 46.41(C-21),148.65(C-22),113.00(C-23),26.78(C-24),25.20 (C-25),17.02(C-26),16.39(C-27),16.21(C-28),110.09(29),25.01 (C-30)(Sousaetal.,2012;Pradhanetal.,1984).

Sitosterol3-O--d-glucopyranoside(3)/Stigmasterol3-O-

-d-glucopyranoside(4): The1H and 13C NMR spectral data are

consistentwithpublisheddata(Kojimaetal.,1990;Rashedetal., 2014).

Phaeophytina(5):The1Hand13CNMRspectraldataare

con-sistentwithpublisheddata(Nogueiraetal.,2013).

132(S)-hydroxy-phaeophytina(6):The1Hand13CNMR

spec-traldataareconsistentwithpublisheddata(Nogueiraetal.,2013).

132(S)-hydroxy-(173)-ethoxyphaeophorbidea(7):The1Hand

13CNMR spectraldataareconsistentwithpublisheddata(Silva etal.,2009a).

5,8-dihydroxy-7,4′-dimethoxy-flavone (7,4-Di-O

-Methylisoescutelarein) (8): 1H NMR (500MHz, DMSO-d

6, ı):

6.87(s,H-3),6.56(s,H-6),8.12(d,J=8.6Hz,H-2′),7.13(d,J=8.6Hz,

H-3′), 7.13(d, J=8.6Hz, H-5), 8.12(d, J=8.6Hz, H-6), 3.90 (s,

OCH3-7),3.86(s,OCH3-4′), 12.44(s,OH-5).13CNMR (125MHz,

DMSO-d6, ı):164.0 (C-2),103.6 (C-3),182.9(C-4), 153.6(C-5),

96.2(C-6),154.8(C-7),126.8(C-8),145.0(C-9),104.4(C-10),123.5 (C-1′), 129.0(C-2),115.1(C-3),162.9(C-4), 162.9(C-5),129.0

(C-6′),56.9(OCH

3-7),56.1(OCH3-4′)(Gomesetal.,2011a).

Leishmanicidalactivity

TheprotozoanparasiteL.braziliensisisthecausativeorganism fortheclinicallyimportantdiseasecutaneousandmucocutaneous leishmaniasis(Gonzalezetal.,2009).Thecurrentdrugsfor Leish-mania infections are inadequate due to low efficacy and high toxicity,andtheproblemisfurthercompoundedbytheincreasing prevalenceofdrug-resistantparasites.Currentbiomedicalresearch alwayshasitsfocusonthesearchfornewerintervention strate-giesandnaturalcompoundshavebeenusedasnoveltreatments forparasiticdiseases(Amatoetal.,2008;Ndjonkaetal.,2013).

Theantileishmanialactivityofcompounds3–8wasassessed againstextracellularpromastigotesofL.braziliensisascausative agentofcutaneousleishmaniasis.Asaparameterfor antileishma-nialactivity,themaximumleishmanicidaleffectand IC50 value

wereused.

Theobtainedresultsshowedthatthemixtureofphytosterols

3/4 was inactive against promastigote forms of L. braziliensis

(Table 1). The obtained result is in agreement with previous reportswhichdemonstratedthatstigmasterolandsitosterol3-O

-ˇ-d-glucosidewereinactiveagainstLeishmaniadonovani(Graziose etal.,2012;Kirmizibekmezetal.,2011;Camachoetal.,2002). Mor-ever,Torres-Santosetal.verifiedthatstigmasterolandsitosterol

werenotactiveagainstpromastigotesandintracellular amastig-otesofLeishmaniaamazonensis(Torres-Santosetal.,2004).

Dataarereportedasmeans±S.E.M.Differenceswith**p<0.01, *p<0.05 were considered significantin relation to DMSO 0.1% group.NA:Whenthecompoundisnotactiveuntil100␮M.(a)IC50

istheconcentrationrequiredtogive50%inhibition,calculatedby linearregressionanalysisfromtheKcvaluesatemployed concen-trations(100,10,1,0.1and0.01␮M).(b)EMisthemaximumeffect oftreatment.

Ontheotherhand,ithasbeenreportedtheuseofporphyrin compoundsfortheirabilitytoinhibitLeishmania(Hörtensteiner et al., 1998; Sakata et al., 1990). Previous works revealed that phaeophytins possess potent cytotoxic activities (Cheng et al., 2001).In this study,thethree phaeophytin-related compounds phaeophytin a (5), 132-hydroxy-(132-S)-phaeophytin a (6) and

132 (S)-hydroxy-173-ethoxyphaeophorbidea(7)exhibited

leish-manicidalactivityagainstpromastigotesofL.braziliensis,especially 132-hydroxy-(132-S)-phaeophytin a (6), showingthat the

addi-tionofhydroxylgroupin132-positionincreasedefficacy,butnot

potency.In addition,theimportance ofheme in Leishmaniasp. metabolismsjustifiesconsideringthepotentialofporphyrinsand theirprecursorsandderivativesaspotentialantiparasiticagents byinterferingwithhememetabolism(Abadaetal.,2013).Heme isone ofmanyindispensablenutrientsthat mustbescavenged fromthephagolysosomalcompartment by Leishmania(Naderer and McConville, 2008). In metazoa, heme biosynthesis occurs through8 highlyconservedchemical reactions, resultinginthe insertionofferrousironintotheprotoporphyrinIXring(Hamza andDailey,2012).However,severalunicellularorganisms,suchas

Leishmanialackseveraloftheenzymesnecessaryforacomplete heme-biosyntheticpathway(Koren ´yetal.,2013).Hemenotonly isacrucialcomponentofcytochromesintherespiratorychain,but alsofunctionsasanessentialcofactorforhemoproteins,suchasthe onesinvolvedinthebiosynthesisofpolyunsaturatedfattyacidsand sterols(Tripodietal.,2011).

Theflavone5,8-dihydroxy-7,4′-dimethoxyflavone(8)showed

activityagainstL.braziliensis.Thestructureantileishmanialactivity relationshipofflavoneshasbeendescribedandithasbeenshown that this class of flavonoids, consists of potentialantiprotozoal agents.ThepresenceofOHgroupsontheflavonebenzochromone skeletonenhancestheleishmanicidalpotential.Particularly impor-tantpositionsareC-5,C-7,andC-8(Silva-Filhoetal.,2009).Onthe otherhand,thereplacementoftheOHgroups,eitheronAorBrings, bymethoxylgroupswasdemonstratedtodecreasethe antiproto-zoalactivity(Tasdemiretal.,2006).Numerousnaturalcompound screenshavesuccessfullyidentifiednoveltreatmentsforparasitic diseases(Ndjonkaetal.,2013).Extractsobtainedfromplantsand purecompounds,suchascertaintypesofflavonoids,havebeen reportedtopossesssignificantantiprotozoalactivitywithnoside effects(Muzitanoetal.,2006;Fonseca-Silvaetal.,2011).Whilethe mechanismofactionofthe5,8-dihydroxy-7,4′-dimethoxyflavone

tokilltheseparasitesisnotyetknown,biochemicalexperiments withotherflavonesprovideinitialinsights.Amongnaturally occur-ringflavonoids,theflavonesquercetin,luteolinandbaicaleinare reportedastopoisomeraseIIinhibitor(Austinetal.,1992;Mittra etal.,2000).Therefore,wewillcontinuethisstudytoevaluatethe inhibitoryeffectsofthesesanalogsontopoisomeraseofLeishmania

aswellasothervalidatedchemotherapeutictarget.

Conclusion

(5)

3-O-␤-d-glucopyranoside (3/4); three chlorophyll derivatives:

phaeophytin a (5); 132-hydroxy-(132-S)-phaeophytin a (6);

132-hydroxy-(132-S)-phaeophorbidea(7);andaflavone:7,4

-di-O-methylisoescutelarein(8).

ThestudiedspeciesS.paniculatumhasdemonstratedquite sim-ilargroupofchemicalconstituentstoS.micranthum,S.galheirensis,

H.tiubaeandW.periplocifolia,showingarelatedchemotaxonomic profileofthesespecies.

The antileishmanial activity against promastigotes of L. braziliensisofcompounds5–8isbeingherereportedforthefirst time.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authors’contribution

YCFT,OSCandMFVScarriedoutthechromatographyisolation and identificationofcompounds. MFAcontributed in collecting plantsampleplant,identificationandherbariumdeposit.RB-Fand LMBcontributedonanalysesanddiscussiondata.ACQ,MVAand MSAMcarriedoutthebiologicalstudy.Alltheauthorshaveread thefinalmanuscriptandapprovedthesubmission.

Acknowledgments

The authors thank CAPES, MCT, FINEP, FAPEAL (Pronem 20110722-006-0018-0010), CNPQ (479822/2013-1), CNPQ (404344/2012-7), INCT-INOFAR/CNPq (573.564/2008-6) for the joint funding of this research project. The authors thank severalcolleaguesworking atthe FederalUniversity of Paraiba andFederalUniversityofAlagoasfortheirconstructivecriticism andassistanceincarryingoutthisproject.

References

Abada,Z.,Cojean,S.,Pomel,S.,Ferrié,L.,Akagah,B.,Lormier,A.T.,Loiseau,P.M.,

Figadère,B.,2013.Synthesisandantiprotozoalactivityoforiginalporphyrin

precursorsandderivatives.Eur.J.Med.Chem.67,158–165.

Ahmed,Z.,Kazmi,S.N.H.,Malik,A.,1990.Pakistanol,anewpentacyclictriterpene

fromAbutilonpakistanicum.J.Nat.Prod.53,1342–1344.

Amato,V.S.,Tuon,F.F.,Bacha,H.A.,Neto,V.A.,Nicodemo,A.C.,2008.Mucosal

leish-maniasis:currentscenarioandprospectsfortreatment.ActaTrop.105,1–9.

Austin,C.A.,Patel,S.,Ono,K.,Nakane,H.,Fisher,L.M.,1992.SitespecificDNAcleavage

bymammalianDNAtopoisomeraseIIinducedbynovelflavoneandcatechin derivatives.Biochem.J.282,883–889.

Baracho,G.S.O.,(BachareladoemBiologia)1995.GêneroSidastrumBakerF.

(Mal-vaceae)emPernambucoeParaíba,Brazil.Monografia.UniversidadeFederalda Paraíba,JoãoPessoa,PB.

Brelaz,M.C.,Oliveira,A.P.,Almeida,A.F.,Assis-Souza,M.,Brito,M.E.,Pereira,V.R.,

2012. Antigenicfractionsof Leishmania(Viannia)braziliensis:the immune

responsecharacterizationofpatientsattheinitialphaseofdisease.Parasite Immunol.34,183–239.

Cavalcante,J.M.S.,Nogueira,T.B.S.S.,Tomaz,A.C.A.,Silva,D.A.,Agra,M.F.,Carvalho,

P.R.C.,Ramos,S.R.R.,Nascimento,S.C.,Gonc¸alves-Silva,T.,Souza,M.F.V.,2010.

SteroidalandphenoliccompoundsfromSidastrum paniculatum(L.)Fryxell andevaluationofcytotoxicandanti-inflammatoryactivities.Quim.Nova33, 846–849.

Camacho,M.R.,Phillipson,J.D.,Croft,S.L.,Marley,D.,Kirby,G.C.,Warhurst,D.C.,

2002.AssessmentoftheantiprotozoalactivityofGalphimiaglaucaandthe

isolationofnewNor-secofriedelanesandNor-friedelanes.J. Nat.Prod.65, 1457–1461.

Chaves,O.S.,Gomes,R.A.,Tomaz,A.C.,Fernandes,M.G.,Grac¸asMendesJr.,L.,Agra,

M.F.,Braga,V.A.,Souza,M.F.V.,2013.SecondarymetabolitesfromSida

rhombi-foliaL.(Malvaceae)andthevasorelaxantactivityofcryptolepinone.Molecules 18,2769–2777.

Chen,C.,Chao,L.,Pan,M.,Liao,Y.,Chang,C.,2007.Tocopherolsandtriterpenoids

fromSidaacuta.J.Chin.Chem.Soc.54,41–45.

Cheng,H.H.,Wang,H.K.,Ito,J.,Bastow,K.F.,Tachibana,Y.,Nakanishi,Y.,Xu,Z.H.,Luo,

T.Y.,Lee,K.H.,2001.Cytotoxicpheophorbide-relatedcompoundsfrom

Cleroden-drumcalamitosumandC.crytophyllum.J.Nat.Prod.64,915–919.

Costa,D.A.,Matias,W.M.,Lima,I.O.,Xavier,A.L.,Costa,V.B.M.,Diniz,M.F.,Agra,M.F.,

Batista,L.M.,Souza,M.F.V.,Silva,D.A.,2009.Firstsecondarymetabolitesfrom

HerissantiacrispaL.(Brizicky)andthetoxicityactivityagainstArtemiasalina

Leach.Quim.Nova32,48–50.

Costa,D.A.,Silva,D.A.,Cavalcanti,A.C.,Medeiros,M.A.A.,Lima,J.T.,Cavalcante,J.M.S.,

Silva,B.A.,Agra,M.F.,Souza,M.F.V.,2007.ChemicalconstituentsfromBakeridesia

pickeliiMonteiro(Malvaceae)andtherelaxantactivityofkaempferol-3-O -beta-D-(6′′-E-p-coumaroyl)glucopyranosideonguinea-pigileum.Quim.Nova30, 901–903.

Croft,S.L.,Olliaro,P.,2011.Leishmaniasischemotherapy–challengesand

opportu-nities.Clin.Microbiol.Infect.17,1478–1483.

Croft,S.L.,Sundar,S.,Fairlamb,A.H.,2006.Drugresistanceinleishmaniasis.Clin.

Microbiol.Rev.19,111–126.

David,J.P.,Meira,M.,David,J.M.,Guedes,M.L.S.,2004.Triterpenoseferulatosde

alquiladeMaprouneaguianensis.Quim.Nova27,62–65.

Falcão-Silva,V.S.,Silva,D.A.,Souza,M.F.V.,Siqueira-Júnior,J.P.,2009.Modulationof

drugresistanceinStaphylococcusaureusbyakaempferolglycosidefrom Heris-santiatiubae(Malvaceae).Phytother.Res.23,1367–1370.

Fonseca-Silva,F.,Inacio,J.D.,Canto-Cavalheiro,M.M.,Almeida-Amaral,E.E.,2011.

Reactiveoxygenspeciesproductionandmitochondrialdysfunctioncontribute toquercetininduceddeathinLeishmaniaamazonensis.PLoSONE6,e14666.

Ghosal,S.,Chauhan,R.,Mehta,R.,1975.ChemicalconstituentsofMalvaceae:

alka-loidsofSidacordifolia.Phytochemistry14,830–832.

Graziose,R.,Rojas-Silva,P.,Rathinasabapathy,T.,Dekock,C.,Grace,M.H.,Poulev,A.,

Lila,M.A.,Smith,P.,Raskin,I.,2012.AntiparasiticcompoundsfromCornusflorida

L.withactivitiesagainstPlasmodiumfalciparumandLeishmaniatarentolae.J. Ethnopharmacol.142,456–461.

Gomes,R.A.,Ramirez,R.R.A.,Maciel,J.K.S.,Agra,M.F.,Souza,M.F.V.,Falcão-Silva,V.S.,

Siqueira-Junior,J.P.,2011a.PhenoliccompoundsfromSidastrummicranthum(A

St.-Hil.)fryxellandevaluationofacacetinand7,4′-di-O-methylisoscutellarein asmodulatorofbacterialdrugresistance.Quim.Nova34,1385–1388.

Gomes,R.A.,Agra,M.F., Souza,M.F.V.,2011b.Constituintesquímicosde

Sidas-trummicranthum(Malvaceae).In:34aReuniãoAnualdaSociedadeBrasileira

deQuímica,Florianópolis,Brazil.

Gonzalez, U., Pinart,M., Rengifo-Pardo,M., Macaya, A., Alvar, J.,Tweed, J.A.,

2009.InterventionsforAmericancutaneousandmucocutaneousleishmaniasis.

CochraneDatabaseSyst.Rev.,CD004834.

Gürbüs,I.,Üstün,O.,Yesilada,E.,Sezik,E.,Kutsal,O.,2003.Antiulcerogenicactivity

ofsomeplantsusedasfolkremedyinTurkey.J.Ethnopharmacol.88,93–97.

Gürbüs,I.,Özkan,A.M.,Yesilada,E.,Kutsal,O.,2005.Antiulcerogenicactivityofsome

plantsusedinfolkmedicineofPinarbasi(Kayseri,Turkey).J.Ethnopharmacol. 101,313–318.

Hamza,I.,Dailey,H.A.,2012.Oneringtorulethemall:traffickingofhemeand

hemesynthesisintermediatesinthemetazoans.Biochim.Biophys.Acta1823, 1617–1632.

Hörtensteiner,S.,Wüthrich,K.L.,Matile,P.,Ongania,K.H.,Krautler,B.,1998.Thekey

stepinchlorophyllbreakdowninhigherplants:cleavageofpheophorbidealpha macrocyclebyamonooxygenase.J.Biol.Chem.273,15335–15339.

Kamhawi,S.,2006.PhlebotominesandfliesandLeishmaniaparasites:friendsor

foes?TrendsParasitol.22,439–445.

Karou,D.,Savadogo,A.,Canini,A.,Yameogo,S.,Montesano,C.,Simpore,J.,Colizzi,

V.,Traore,A.S.,2005.AntibacterialactivityofthealkaloidsfromSidaacuta.Afr.

J.Biotechnol.4,1452–1457.

Kirmizibekmez,H.,Atay,I.,Kaiser,M.,Brun,R.,Cartagena,M.M.,Carballeira,N.M.,

Yesilada,E.,Tasdemir,D.,2011.AntiprotozoalactivityofMelampyrumarvense

anditsmetabolites.Phytother.Res.25,142–146.

Kojima,H.,Sato,N.,Hatano,A.,Ogura,H.,1990.SterolglucosidesfromPrunella

vulgaris.Phytochemistry29,2351–2355.

Koren ´y,L.,Oborník,M.,Lukeˇs,J.,2013.Makeit,takeit,orleaveit:hememetabolism

ofparasites.PLoSPathog.9,e1003088.

Lima,I.O.,Costa,V.B.M.,Matias,W.N.,Costa,D.A.,Silva,D.A.,Agra,M.F.,Souza,M.F.V.,

Lima,E.O.,Batista,L.M.,2009.BiologicalactivityofHerissantiacrispa(L.)Brizicky.

Rev.Bras.Farmacogn.19,249–254.

Mishra,B.B.,Singh,R.K.,Srivastava,A.,Tripathi,V.J.,Tiwari,V.K.,2009.Fighting

against leishmaniasis: search of alkaloids as future true potential anti-leishmanialagents.MiniRev.Med.Chem.9,107–123.

Mittra,B.,Saha,A.,Chowdhury,A.R.,Pal,C.,Mandal,S.,Mukhopadhyay,S.,

Bandopad-hyay,S.,Majumder,H.K.,2000.Luteolin,anabundantdietarycomponentisa

potentanti-leishmanialagentthatactsbyinducingtopoisomeraseII-mediated kinetoplastDNAcleavageleadingtoapoptosis.Mol.Med.6,527–541.

Muzitano,M.F.,Tinoco,L.W.,Guette,C.,Kaiser,C.R.,Rossi-Bergmann,B.,Costa,S.S.,

2006.Theantileishmanialactivityassessmentofunusualflavonoidsfrom

Kalan-choepinnata.Phytochemistry67,2071–2077.

Naderer, T.,McConville,M.J., 2008. TheLeishmania-macrophageinteraction:a

metabolicperspective.CellMicrobiol.10,301–308.

Nawwar,M.,Buddrus,J.,1981.Agossypetinglucuronidesulphatefromtheleaves

ofMalvasylvestris.Phytochemistry20,2446–2448.

Ndjonka,D.,Rapado,L.N.,Silber,A.M.,Liebau,E.,Wrenger,C.,2013.Natural

prod-uctsasasourcefortreatingneglectedparasiticdiseases.Int.J.Mol.Sci.14, 3395–3439.

Nogueira,T.B.,Nogueira,R.B.,Silva,D.A.,Tavares,J.F.,Lima,E.O.,Pereira,F.O.,

Fernan-des,M.M.,Medeiros,F.A.,Sarquis,R.S.F.,BrazFilho,R.,Maciel,J.K.S.,Souza,M.F.V.,

2013.FirstchemicalconstituentsfromCordiaexaltataLamandantimicrobial

activityoftwoneolignans.Molecules18,11086–11099.

Oliveira,A.M.F.,Pinheiro,L.S.,Pereira,C.K.S.,Matias,W.N.,Gomes,R.A.,Chaves,

O.S., Souza,M.F.V., Almeida, R.N., Assis,T.S.,2012. Totalphenoliccontent

(6)

Pradhan,B.P.,De,S.,Nath,A.,Shoolery,J.N.,1984.TriterpenoidacidsfromSapium sebiferum.Phytochemistry23,2593–2595.

Rangel,H., Dagger,F., Hernandez, A.,Liendo, A., Urbina, J.A.,1996. Naturally

azole-resistantLeishmaniabraziliensispromastigotesare rendered suscepti-bleinthepresenceofterbinafine:comparativestudywithazole-susceptible

Leishmania mexicana promastigotes. Antimicrob. Agents Chemother. 40, 2785–2791.

Rashed,K.,Ciric,A.,Glamoclija,J.,Calhelha,R.C.,Ferreira,I.C.F.R.,Sokovic,M.,2014.

AntimicrobialandcytotoxicactivitiesofAlnusrugosaL.aerialpartsand identi-ficationofthebioactivecomponents.Ind.CropsProd.59,189–196.

Rocha,L.G.,Almeida,J.R.G.S.,Macedo,R.O.,Barbosa-Filho,J.M.,2005.Areviewof

naturalproductswithantileishmanialactivity.Phytomedicine12,514–535.

Sakata, K., Yamamoto, K., Ishikawa, H., Yagi, A., Etoh, H., Ina, K., 1990.

Chlorophyllone-A,a newpheophorbide-Arelatedcompound isolatedfrom

Ruditapesphilippinarumasanantioxidativecompound.TetrahedronLett.31, 1165–1168.

Santos,D.O.,Coutinho,C.E.,Madeira,M.F.,Bottino,C.G.,Vieira,R.T.,Nascimento,

S.B.,Bernardino,A.,Bourguignon,S.C.,Corte-Real,S.,Pinho,R.T.,Rodrigues,C.R.,

Castro,H.C.,2008.Leishmaniasistreatment–achallengethatremains:areview.

Parasitol.Res.103,1–10.

Silva,D.A.,Chaves,M.C.O.,Costa,D.A.,Morais,M.R.R.,Nóbrega,F.B.P.,Souza,M.F.V.,

2005.FlavonoidsfromHerissantiatiubae.Pharm.Biol.43,197–200.

Silva,D.A.,Silva,T.M.S.,Lins,A.C.S.,Costa,D.A.,Cavalcante,J.M.S.,Matias,W.N.,Souza,

M.F.V.,Braz-Filho,R.,2006.ConstituintesQuímicoseatividadeantioxidantede

SidagalheirensisULBR(Malvaceae).Quim.Nova29,1250–1254.

Silva,M.S.,Tavares,J.F.,Queiroga,K.F.,Agra,M.F.,Barbosa-Filho, J.M.,Almeida,

J.R.G.S.,Silva,S.A.S.,2009a.AlcaloideseoutrosconstituintesdeXylopia

langs-dorffiana(Annonaceae).Quim.Nova32,1566–1570.

Silva,D.A.,Falcão-Silva,V.S.,Gomes,A.Y.S.,Costa,D.A.,Lemos,V.S.,Agra,M.F.,

Braz-Filho,R.,Siqueira-Junior,J.P.,Souza,M.F.V.,2009b.Triterpenesandphenolic

compoundsisolatedfromtheaerialpartsofHerissantiatiubaeandevaluation of5,4′,-dihydroxy-3,6,7,8,3-pentamethoxyflavoneasamodulatorofbacterial drugresistance.Pharm.Biol.47,279.

Silva,T.M.S.,Camara,C.A.,Barbosa-Filho,J.M.,Giulietti,A.M.,2010.Feoforbídeo

(Etoxi-Purpurina-18) isoladode GossypiumMustelinum(Malvaceae). Quim. Nova33,571–573.

Silva-Filho,A.A., Resende,D.O., Fukui, M.J., Santos,F.F., Pauletti,P.M., Cunha,

W.R., Silva, M.L.A., Gregório, L.E., Bastos, J.K., Nanayakkara, N.P.D., 2009.

Invitroantileishmanial,antiplasmodialandcytotoxicactivitiesofphenolics andtriterpenoidsfromBaccharisdracunculifoliaD.C.(Asteraceae).Fitoterapia 80,478–482.

Sousa,G.F.,Duarte,L.P.,Alcântara,A.F.C.,Silva,G.D.F.,Vieira-Filho,S.A.,Silva,R.R.,

Oliveira,D.M.,Takahashi,J.A.,2012.NewtriterpenesfromMaytenusrobusta:

structuralelucidationbasedonNMRexperimentaldataandtheoretical calcu-lations.Molecules17,13439–13456.

Tasdemir,D., Kaiser,M., Brun, R.,Yardley, V., Schmidt, T.J.,Tosun, F., Rüedi,

P.,2006.Antitrypanosomalandantileishmanialactivitiesofflavonoidsand

theiranalogues:invitro,invivo,structure–activityrelationship,and quantita-tivestructure–activityrelationshipstudies.Antimicrob.AgentsChemother.50, 1352–1364.

Teles,Y.C.F.,Gomes,R.A.,Oliveira,M.S.,Lucena,K.L.,Nascimento,J.S.,Agra,M.F.,Igoli,

J.O.,Gray,A.I.,Souza,M.F.V.,2014.PhytochemicalinvestigationofWissadula

periplocifolia(L.)C.Preslandevaluationofitsantibacterialactivity.QuimNova 37,1491–1495.

Torres-Santos,E.C.,Lopes,D.,Oliveira,R.R.,Carauta,J.P.,Falcao,C.A.,Kaplan,M.A.,

Rossi-Bergmann,B.,2004.Antileishmanialactivityofisolatedtriterpenoidsfrom

Pouroumaguianensis.Phytomedicine11,114–120.

Tripodi,K.E.,Menendez-Bravo,S.M.,Cricco,J.A.,2011.Roleofhemeand

Referências

Documentos relacionados

Some compounds isolated from fungi of the genus Alternaria that present phytotoxic activity.. The Cochliobolus genus produces

The crude extract and the compounds isolated were submitted to evaluation of the antifungal activity against nine yeast standard ATCC of the Candida genus.. The

Structure identification of isolated compounds involved analysis of spectral data of 1D and 2D-NMR.. The isolated compounds are here reported for the first time

Compounds isolated in the present study were tested for their antimicrobial activity against human pathogenic fungi and bacteria.. Besides microorganisms of medical importance,

The activity of five (1-5) abietane phenol derivatives against Leishmania infantum and Leishmania braziliensis was studied using promastigotes and axenic and

Activity of the isolated compounds 1-7 on intracellular amastigote forms of Leishmania ( Viannia ) braziliensis , Vero and THP-1 cell lines..

and drimane sesquiterpenes isolated from the stem bark against strains of Leishmania amazonensis and Leishmania braziliensis promastigotes and Plasmodium falciparum

Thirty one extracts of thirteen medicinal plants from the Brazilian Cerrado were therefore evaluated in vitro for their antiprotozoal activity against promastigotes of