• Nenhum resultado encontrado

equation of state of baryonic matter.

N/A
N/A
Protected

Academic year: 2021

Share "equation of state of baryonic matter."

Copied!
23
0
0

Texto

(1)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Density dependent magnetic field and the

equation of state of baryonic matter.

Rudiney Casali

Profa. Dra. D´

ebora P. Menezes

Universidade Federal de Santa Catarina / Universidade de Coimbra

Centro de Ciˆ

encias F´ısica e Matem´

aticas / Centro de F´ısica Computacional

Departamento de F´ısica / Departamento de F´ısica

(2)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Coopera¸c˜

ao Brasil-Portugal

Work developed in cooperation

with University of Coimbra,

under supervision of Professor

Constan¸ca Providˆ

encia.

Supported by:

(3)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Outlook

Used model.

Equations.

Chosen parameterization.

(4)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Lagrangian:

L

b

=

X

b=n,p,hyp

ψ

b

[i γ

µ

µ

+ q

b

γ

µ

A

µ

− g

ρb

τ

3b

γ

µ

~

ρ

µ

− m

b

(1)

−g

ωb

γ

µ

ω

µ

1

2

µ

N

k

b

σ

µν

F

µν

b

L

m

=

1

2

(∂

µ

σ∂

µ

σ − m

2

σ

σ

2

) −

1

3

bm

n

(g

σN

σ)

3

1

4

c(g

σN

σ)

4

(2)

+

1

2

m

2

ω

ω

µ

ω

µ

1

4

µν

µν

+

1

2

m

2

ρ

~

ρ

µ

· ~

ρ

µ

1

4

F

µν

F

µν

1

4

P

µν

P

µν

+

1

4!

ξg

4

ω

µ

ω

µ

)

2

+ Λ

ω

(g

ρ

2

ρ

~

µ

· ~

ρ

µ

)(g

ω

2

ω

µ

ω

µ

).

L

l

=

X

l =e,µ

ψ

l

[i γ

µ

µ

+ q

l

γ

µ

A

µ

− m

l

l

(3)

L = L

b

+ L

m

+ L

l

(4)

(5)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Lagrangian.

b

) - Baryon field

l

) - Lepton field

(σ) - Scalar meson

µ

) - Vectorial meson

µ

) - Isovetorial meson

g

σ

, g

ω

, g

ρ

- Meson-baryon

coupling constants

γ

µ

- Dirac Matrices

A

µ

= (V , ~

A) - Lorentz

tensor

k

p

= 1.79285,

k

n

= −1.91315

-Anomalous magnetic

moment (AMM)

τ

3

- Isospin projection

q

b

- Electrical charge of

the particle b

µ

N

- Nuclear magneton.

(6)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Lagrangian.

m

b

= (m

b

− g

σb

σ)

-Baryon effective mass

µν

= ∂

µ

ω

ν

− ∂

ν

ω

µ

P

µν

= ∂

µ

ρ

ν

− ∂

ν

ρ

µ

F

µν

= ∂

µ

A

ν

− ∂

ν

A

µ

σ

µν

=

2

i

µ

, γ

ν

]

-Electromagn´

etic tensor

ξ - Omega meson

self-interaction parameter

Λ

ω

- Parameter that

changes the density

dependence of the

symmetry energy

b and c - Parameters

related with the weights of

the non-linear scalar terms

(7)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Magnetic field.

B(n) = B

surf

+ B

0



1 − exp



− β

 n

n

0



γ



(5)

B

surf

= 10

15

G , n

0

= 0.153 fm

−3

Fast: γ = 4, β = 1.83 Slow: γ = 1, β = 1.92

The unit of the magnetic field is the critical field

B

c

(8)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Magnetic field.

10

15

10

16

10

17

10

18

10

19

0

0.1

0.2

0.3

0.4

0.5

0.6

B (G)

n (fm

-3

)

B

Fast

B

Slow

(9)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Magnetic field.

Dividing the work in two types:

Fixed magnetic field (FIX): The magnetic field is considerate

constant on the equations of state.

Variable density dependent magnetic field (VAR): The magnetic

field varies on the equations of state, see eq. (??).

Both cases consider a density dependent variable magnetic field

B term on the total energy density and pressure, eq. (??).

(10)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Mesonic field equations:

Utilizing the mean field approximation and the Euler-Lagrange

equations.:

m

2

σ

σ

0

= −cg

σ

4

σ

3

0

− bm

n

g

σ

3

σ

2

0

+ g

σ

n

s

(6)

m

∗2

ω

ω

0

= −

ξ

6

g

4

ω

ω

3

0

+ g

ω

n

b

m

∗2

ρ

ρ

03

= τ

3b

g

ρ

n

3

,

m

∗2

ρ

= m

2

ρ

+ 2Λ

ω

g

ρ

2

g

ω

2

ω

2

0

m

∗2

ω

= m

2

ω

+ 2Λ

ω

g

ρ

2

g

ω

2

ρ

2

03

g

iH

= X

iH

g

iN

X

σH

= 0.700,X

ωH

= 0.738,

X

ρH

= 0.600

n

s

= n

s

p

+ n

s

n

n

b

= n

p

+ n

n

n

3

=

(n

p

−n

n

)

2

(11)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Densities:

Scalar

1

:

n

b

s

=

q

p

Bm

p

2

ν

max

X

ν

X

s

q

m

∗2

p

+ 2νq

p

B − sµ

N

k

p

B

q

m

∗2

p

+ 2νq

p

B

(7)

× ln

p

F ,ν,s

p

+ E

F

p

q

m

∗2

p

+ 2νq

p

B − sµ

N

k

p

B

n

b

s

=

m

n

2

X

s



E

F

n

p

F ,s

n

− m

2

n

ln

p

F ,s

n

+ E

F

n

m

n



(12)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Densities:

Vectorial:

n

b

=

q

p

B

2

ν

max

X

ν

X

s

p

p

F ,ν,s

(8)

n

b

=

1

2

X

s

 1

3

(p

n

F ,s

)

3

1

2

N

k

n

B

×



m

n

p

n

F ,s

+ E

F

n2



arcsin

 m

n

E

n

F



π

2



n

l

=

|q

l

|B

2

ν

max

X

ν

X

s

p

F ,ν,s

l

n

B

=

X

b=n,p,hyp

n

b

+ n

l

(9)

(13)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Baryons:

b Mb(MeV) qb µb/µN kb p 938.3 1 2.79 1.79 n 939.6 0 -1.91 -1.91 Λ0 1115.7 0 -0.61 -0.61 Σ+ 1189.4 1 2.46 1.67 Σ0 1189.4 0 -1.61 -1.61 Σ− 1189.4 -1 -1.16 -0.38 Ξ0 1314.9 0 -1.25 -1.25 Ξ− 1314.9 -1 -0.65 0.06

Tabela:

Masses, charges, magnetic moments e anomalous magnetic

moments for baryons.

Where k

b

=

µ

µ

b

N

− q

b

m

p

m

b

.

(14)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Parametrizations:

Modelo mσ mω mρ gσ gω gρ GM1 512.0 783.0 770.0 8.910 10.610 8.196

Tabela:

Masses and coupling constants for mesons.

Modelo c b ξ Λω

GM1 -0.001070 0.002947 0.00 0.00

(15)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Energy spectra:

E

ν,s

b

=

r

p

2

z

+ (

q

m

p

+ 2νq

p

B − sµ

N

k

p

B)

2

+ g

ω

ω

0

+

1

2

g

ρ

ρ

0

(10)

E

s

b

=

r

p

2

z

+ (

q

m

n

+ p

2

− sµ

N

k

n

B)

2

+ g

ω

ω

0

1

2

g

ρ

ρ

0

,

ν = n +

1

2

−sgn(q

b

)

s

2

= 0, 1, 2, ... - landau levels for fermions

with electrical charge q

s is the spin, which assumes values +1 for spin up and −1 for

spin down

p

2

(16)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Momenta:

p

F ,ν,s

b

= E

F

b2

− [

q

m

∗2

b

+ 2νq

b

B − sµ

N

k

b

B]

2

(11)

p

b

F ,s

= E

F

b

− m

2

b

p

F ,ν,s

l

= E

F

l

− m

2

l

Where p

b

F ,ν,s

is the Fermi momentum for the charged baryons,

p

F ,s

b

for the neutron and p

l

F ,ν,s

for the leptons.

m

b

= m

− sµ

N

k

b

B, m

l

= m

l

2

− 2ν|q

l

B|.

(17)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Landau levels:

ν

max

=

 (E

b

F

+ sµ

N

k

b

B)

2

− m

b

2|q

b

|B



(12)

ν

max

=

 (E

l 2

F

) − m

l

2

2|q

l

|B



Landau levels are summed up to its maximum value, for which

the square of the Fermi moment of the particle is still positive.

(18)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Chemical Potencials:

µ

p

= E

F

p

+ g

ω

ω

0

+

1

2

g

ρ

ρ

0

(13)

µ

n

= E

F

n

+ g

ω

ω

0

1

2

g

ρ

ρ

0

µ

p

= µ

Σ

+

= µ

n

− µ

e

µ

Λ

= µ

Σ

0

= µ

Ξ

0

= µ

n

µ

Σ

= µ

Ξ

= µ

n

+ µ

e

µ

µ

= µ

e

X

b=n,p,hyp

q

b

n

b

+

X

l

q

l

n

l

= 0

(19)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Total energy density:

ε

m

=

X

b=p,n,hyp

ε

b

+

X

l =e,µ

ε

l

+

1

2

m

σ

σ

2

0

+

1

2

m

ω

ω

2

0

+

1

2

m

ρ

ρ

2

0

(14)

+

1

8

ξ(g

ω

ω

0

)

4

+

1

3

bm

n

(g

σ

σ

0

)

3

+

1

4

c(g

σ

σ

0

)

4

+3Λ

ω

(g

ω

ω

0

)

2

(g

ρ

ρ

0

)

2

,

(20)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Energy density:

ε

b

=

n

max

X

n=0

X

s

|q

b

|B

2



p

b

F ,n,s

E

F

b

+ (

q

m

2

b

+ 2q

b

Bn − sµ

N

k

b

B)

2

(15)

×ln

p

F ,n,s

b

+ E

F

b

(pm

2

b

+ 2q

b

Bn − sµ

N

k

b

B)



,

ε

b

=

1

2

X

s

1

2

E

b3

F

p

b

F ,n,s

2

3

N

k

b

BE

b3

F



arc sin

m

E

b

F

π

2



 1

3

N

k

b

B +

1

4

m



mp

F ,n,s

b

E

F

b

+ m

3

ln



E

b

F

+ p

b

F ,n,s

m



ε

l

=

n

max

X

n=0

X

s

|q

l

|B

2



p

F ,n,s

l

E

F

l

+ m

2

l

× ln

p

F ,n,s

l

+ E

F

l

m

l



(21)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Pressure and total energy densities:

P

m

=

X

i =e,µ,n,p,hyp

µ

i

n

i

− ε

m

(16)

Attributing the contributions of magnetic fields, we find the total

energy density and pressure:

ε

T

= ε

m

+

B

2

2

P

T

= P

m

+

B

2

(22)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

Symmetry energy and slope:

a

sym

=

1

2n

B

2

E

∂t

2

(18)

L

= 3n

0

∂a

sym

∂n

B

n

B

→n

0

n

0

= 0.153 fm

−3

- Nuclear saturation density

t =

n

n

−n

p

(23)

Density dependent magnetic field and the equation of state of baryonic matter. Rudiney Casali Profa. Dra. D´ebora P. Menezes

THANK YOU!

Referências

Documentos relacionados

Durante a realização do estágio foram desenvolvidas atividades em grandes animais (bovinos equinos, ovinos e suínos), na área de clínica, cirurgia e reprodução,

Valos de infiltração: estes são dispositivos de drenagem lateral, muitas vezes utilizados paralelamente às ruas, estradas, estacionamentos e conjuntos habitacionais, entre outros.

TST, AIRR 406/1990-038-01-40.0, DJ 08/10/2004: AGRAVO DE INSTRUMENTO. RECURSO DE REVISTA. EMBARGOS DECLARATÓRIOS INTERPOSTOS EM DESFAVOR DE DESPACHO DENEGATÓRIO

In conclusion, our study establishes that cytokines, important airway inflammation modulators, produced by different cell sources, can also contribute to the establishes that

Para obter informações detalhadas sobre os recursos e componentes do computador, como gerenciamento de energia, unidades, memória, segurança e outros recursos, clique em

Neste trabalho, propomos um método de pontos interiores do tipo preditor-corretor para programação linear em um contexto primal-dual, em que o próximo iterado é escolhido através de

Prevalência de parasitos intestinais na comunidade indígena Maxakali, Minas Gerais, Brasil, 2009 Prevalence of intestinal parasites in the Maxakali indigenous community in

Como você é o profissional legalmente habilitado para elaborar os atos constitutivos de uma empresa, não vai precisar de auxilio na escolha da forma jurídica