• Nenhum resultado encontrado

Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs

N/A
N/A
Protected

Academic year: 2021

Share "Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Zearalenone

adsorption

capacity

of

lactic

acid

bacteria

isolated

from

pigs

María

F.

Vega

a,∗

,

Susana

N.

Dieguez

a,b,d

,

Belén

Riccio

b

,

Sandra

Aranguren

b

,

Antonio

Giordano

b

,

Laura

Denzoin

b

,

Alejandro

L.

Soraci

b

,

María

O.

Tapia

b

,

Romina

Ross

c

,

Ana

Apás

c

,

Silvia

N.

González

c

aDepartamentodeTecnologíayCalidaddelosAlimentos,FacultaddeCienciasVeterinarias,UniversidadNacionaldelCentrodela

ProvinciadeBuenosAires,Tandil,BuenosAires,Argentina

bLaboratoriodeToxicologíaCIVETANCONICET,FacultaddeCienciasVeterinarias,UniversidadNacionaldelCentrodelaProvinciade

BuenosAires,Tandil,BuenosAires,Argentina

cDepartamentodeSaludPública,FacultaddeBioquímicaQuímicayFarmacia,UniversidadNacionaldeTucumán,SanMiguelde

Tucumán,Tucumán,Argentina

dComisióndeInvestigacionesCientíficasdelaProvinciadeBuenosAiresCICPBA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12November2014 Accepted17November2016 Availableonline27May2017 AssociateEditor:MarizaLandgraf

Keywords:

Zearalenone Adsorption Lacticacidbacteria

Lactobacillus

Pigs

a

b

s

t

r

a

c

t

The ability to adsorb zearalenone by fivestrain of lactic acid bacteria wasevaluated: fourstrainsofLactobacillusspp.isolatedfrompigrectalswabsandonecommercialstrain (Lactobacillusrhamnosus).Severalfactorsaffectingtheadsorptioncapacitywereevaluated in order to improve the adsorption ofthe mycotoxinby bacteria. The stability of the zearalenone–bacteriacomplexwasanalyzed.Ineverycase,bacterialadsorptioncapacity washigherthan40.0%.Thestrainshowingthehighestadsorption(68.2%)wasselectedfor thefollowingstepsofthisresearch.Theadsorptionpercentagesobtainedafterprocessing 6.5and7.5mLMRSbrothwere57.40%+3.53and64.46%+0.76,respectively.Thestability ofzearalenone–bacteriacomplexwasevaluatedbysuccessivelyrinsing.Inthefirst rins-ingstep42.26%+0.414wasstillbound.Inthesecondrinsingstep25.12%+0.664wasstill bound,whereas15.82%+0.675remainedinthepelletafterthethirdrinse.Resultsobtained demonstratedthatLacticAcidBacteriahascapacitytoadsorbzearalenone.Finally adsorp-tionwasincreasedusingahighervolumeofinitialbroth.Theseresultscouldbeusedto designanewlyophilizedpowderfordetoxification,usinglacticacidbacteriaaspotential zearalenoneadsorbents.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:mfvega@vet.unicen.edu.ar(M.F.Vega).

http://dx.doi.org/10.1016/j.bjm.2017.05.001

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Zearalenone(ZEA)isaworldwidedistributed mycotoxin as indicatedbytheInternationalAgencyforResearchonCancer (IARC).1–3 Itstoxicityandincidencewasconfirmedbyrecent reports.4,5Thisresorcyliclactoneisproducedmainlyby

Fusa-riumgraminearumand isone ofthe mostimportanttoxins causingseriousreproductivefailuresinpigproduction,dueto itsabilitytocouple17-␤-estradiolreceptors.Thisinterference withcytosolicestrogenreceptorsoftargetcellsmakesitan endocrinedisruptor.Whenthedangerousnessofthis myco-toxinisconsidered,twofactorsareimportant:itsstabilityto heat,milling,storageandprocessingoffeedingstuffs,6andthe severityoftheintoxication,eveniftheingestiontakesplace onlyforafewdaysasindicatedbyAnadónetal.7

Severalphysicochemicalmethodsfordetoxificationhave beenwidelyused,butthetendencyistousebiological meth-odsthat donot cause nutritional and palatability changes infeed.8 Thereare severalfoodadditivesfor decontamina-tionand/or detoxificationofanimalfeedstuffs,suchasthe commercialadsorbentMycosorb® (AlltechInc.),inwhichthe structureofyeastglucanlayerismodifiedtoincreaseits affin-ityandbindingrateofmycotoxinsabovethatofthenative cellwallproduct.9 Inspiteofitsgreaterefficacy,theuseof Mycosorbislimitedbecauseofitshighprice.

InteractionsbetweenFusariummycotoxins,ZEA,its deriva-tive␣-zearalenol(␣-ZOL)andfood-gradestrainsof Lactobacil-lushavebeenreportedbyseveralresearchers.10–17El-Nezami et al.13 demonstrated that, afterco-incubation of ZEA and

Lactobacillus,aconsiderableproportion(38.0%–46.0%)ofthese mycotoxins were recovered from bacterial pellets. Bacteria showedcapacitytoadsorbtoxins and,asexpected, results demonstrated thatthe bindingdependedon bacterial con-centration. Co-incubation of ZEA and ␣-ZOL with bacteria significantly affected the percentage of toxin bound, sug-gestingthat thesetoxinsmay sharethe samebindingsite. RecentlyTinyiroetal.18usingsomeBacillusstrains,showed thatthe adsorptionpercentagewashigh (78.0%and95.0%) andvariationdependedonthe strainused. ZEAadsorption abilitybyPlanococcusspphasalsobeendemonstratedbyLu etal.19

Two fundamental rules are considered when bacterial

strainsareisolated inorder tobeadministeredtoanimals. Thefirstisthehostspecificity,itisessentialtoachieveagood adaptation.20,21Thesecondistheproximityoftheecosystem, itisvitalthatthemicroorganismsareisolatedinthesame placewhereitactsonthehost.22,23

Forallthesereasons,thepurposeofthepresentworkwas tostudytheZEAadsorptioncapacityoflacticacidbacteria iso-latedfrompigrectalswabsunderinvitroconditions,inorder tobroadenscientificknowledgeonfeedadditivesbasedonthe useoflacticacidbacteriaasZEAbinders.

Materials

and

methods

Bacterialstrainsandcultureconditions

Lactobacillus rhamnosus (R1) (Lyofast LR B Sacco) was pur-chasedfromSaccoSRL(Cadorago,Italy).Thisstrainwasused

as reference because of its demonstrated ability toadsorb ZEA.12,13,24

ThetestedLactobacillusstrains(L1,L2,L3,andL4)were iso-latedfrom7pigletskeptonasinglefarm.Thepiglets,aged 21–60days,wereclinicallyhealthyandnoantibioticshadbeen administered duringtheir lives.All sampleswere obtained withinthesameday.Thestrainswerecollectedwithakit con-tainingaswabandatransportmedium(LAPTgsemisolidagar withoutsugars). Afterbeingdeliveredtothelaboratory,the swabswerebrokenoffintopeptonewater,thedilutionswere made and inoculated onto solid medium: LAPTg Agar,25–27 thentheplateswereincubatedinmicroaerophilia(candlejar system)at37◦Cfor48h.

Strainsoflacticacidbacteria(LAB):L1,L2,L3andL4were isolatedatthe“LaboratoriodeToxicología”atthe“Universidad NacionaldelCentrodelaProvinciadeBuenosAires”Tandil, BuenosAires,Argentina.LABstrainswerekeptat−20◦Cin

LAPTgbroth(1.5%peptone,1%tryptone,1%glucose,1%yeast extract,and0.1%Tween80),pH6.826containing15%glycerol (v/v)untiluse.

Reactivationprocess

Thestrainsweredefrostedat37◦Cfor15min,thentheywere inoculated and incubated in LAPTg broth for24h at37◦C inmicroaerophiliabeforegenotypicanspeciesidentification. Beforeadsorptionprocesstworeactivationtimesweretested: 24h(t1)and72h(t2).

Genotypicidentification

ThestrainsisolatedforthisworkL1,L2,L3andL4,were char-acterizedaslactobacillibyPCR,accordingtothemethodology describedbyDubernetetal.28Industrialstrainsprovidedby SaccoS.A.:L.rhamnosus(R1),Lactobacillusdelbrueckii(R2), Lacto-bacilluscasei(R3)andLactobacillushelveticus(R4)wereusedonly forgenotypicidentificationaspositivecontrol.Identification wasmadebyamplifyingspecificregionofDNA.The amplifi-cationproductswerevisualizedbyelectrophoresisinagarose gelsstainedwithethidiumbromide.29Generalprimersfor lac-tobacilliLbLMA1-rev(5-CTCAAAACTTTCAAACAAAGT-3 andR16-15-CTTGTACACACCGCCCGTCA-3)wereused.28

Speciesidentification

Genotypicidentificationwascarriedoutbypartial16SrRNA

gene sequencing. Genomic DNA was extracted

accord-ing to Pospiech and Neumann.30 Oligonucleotide primers

(PLB16, 5-AGAGTTTGATCCTGGCTCAG-3, and MLB16,

5-GGCTGCTGGCACGTAGTTAG-3) were used to amplify the

variable(V1)regionofthe16SribosomalRNAgeneaccording totheprotocol describedbyseveralauthors.31–33 PCR prod-uctswereelectrophoresedin1%(wt/vol)agarosegels,stained and visualizedasdescribedabove. Ampliconswereexcised

from the gel and purified using a GFXPCR DNA gel band

purification kit (GE Healthcare, UK). Purified PCR products

were sequenced atCERELA-CONICET, Tucumán, Argentina,

byusing an ABI3130 DNAsequencer (Applied Biosystems,

Foster,CA).rRNAgenesequencealignmentswereperformed

(3)

identification querieswere fulfilled byaBLAST search36 in GenBank(http://www.ncbi.nlm.nih.gov/GenBank/)andinthe RibosomalDatabaseProject.37

DeterminationofGrowthbyOpticalDensity(OD560nm)

Thequantifyingofthetotalnumberofcellsforeachstrain(R1, L1,L2,L3,andL4)wasmadeusingaturbidimetricmethod. TheOD560nmofthebacterialsuspensionincludeslivingcells,

deadcells,andnoncellularmaterialthatabsorbs/scattersthe lightandindicatesdetotalmassachieved.Thewavelengthof thespectrophotometer(UV-VisSpectrofotometerPharmacia LKBBiochromLimited,UltrospectIII,Cambridge,England)was setat560nm.Onemilliliterofthesterilebrothwhichwas usedtogrowbacteria(LAPTgorMRS)wasusedtocalibrate theequipmenttozeroabsorbanceand1mLofeachsample wasusedtomeasuretheOD560nm.

Pelletsadsorptionprocess

InfirstplaceastockZEAsolutionwaspreparedby dissolv-ing25mgZEA(99.5%purity,Sigma,St.Louis,USA)in125mL chloroform(HPLCgrade,Biopack,Argentina)toobtainafinal concentrationof200␮g/mL.Thissolutionwaskeptat−18◦C

untilitsuse.95␮LofthestockZEAsolutionwereevaporated todrynessunderanN2currentat60◦C.Thedryresiduewas

resuspended in 50␮L ofmethanol (HPLC grade, Sintorgan, Argentina)and1500␮Lofa0.9%NaCl(Sigma,St.Louis,USA) (SP1)or0.9%CaCl2(Sigma,St.Louis,USA)(SP2)togiveaZEA

concentrationof12.3␮g/mLinbothsolutions.

Insecondplacetheadsorptionpelletswereprepared.LAB

wereactivatedandgrowninLAPTgmedium.Cultureswere

incubatedinmicroaerophilia(candlejarsystem)for72hat 37◦C.OD560nmwasmeasured,thenbacteriawereharvestedby

centrifugation(SigmaLaborzentrifugen1K15,St.Luis,United States)at5900×g,4◦C,15min.

FinallybacterialpelletswererinsedtwicewithNaCl0.9% solutionandthenresuspendedin1.5mLofSP1solutionorSP2 solutionaccordinglyandincubatedfor1hourat37◦C,with gentlestirringevery30minasindicatedbyBueno.11

After incubation, the solutions were centrifugated

(5900×g, 4◦C, 15min), then the supernatant was

fil-tered through a 0.22␮m nylon membrane and analyzed

byHPLC–UV.11,38

Asacontroltodemonstratethattheadsorptionprocess recoversallthemycotoxinreferencestrain(R1)wasused.ZEA inthesupernatantandinthepellet(extractedwithmethanol)

were quantified,thesetwoconcentrations wereadded and

comparedwiththeinitialmycotoxin.

ZEAdeterminationbyHPLC

TheHPLC system was equipped with a Gilson 151 UV-Vis

detector, and Gilson 712 software (Gilson, Inc., Middleton, USA).SeparationwasachievedbyHPLC,usingaC18 station-aryphase, 250mm×4.6mmi.d., 5␮mcolumn. Themobile phaseconsistedofacetonitrile(HPLCgrade,Sintorgan,Villa Marteli,Argentina):water(ultrapurified,Elga)mixture(55:45)

workingin isocratic mode at1.2mL/min.The columnwas

maintainedat30◦C.Theinjectionvolumewas20␮Landthe

chromatographicruntimewas20min.Detectionwascarried out at 236nm.39 To quantify ZEA using external standard calibrationsevenconcentrations0.63,1.25,2.5,5,10,15and

20␮g/mL were prepared with standards (Sigma St. Louis,

USA), the responseswere foundtobelinear (coefficientof correlation>0.998).Recordedretentiontimesfor␤-ZOL,␣-ZOL andZEAwere6.70min;9.24min;and17.19minrespectively.

Adsorptionpercentage(ADS%)quantification

ADS%wasquantifiedbycomparingmycotoxinspeakareasin thesupernatantobtainedaftertheadsorptionprocesstopeak areasforSP1orSP2solutionswithoutbacterialaddition, rep-resentingpositivecontrols.TheADS%ofZEAwascalculated accordingtoEq.(1).38,40

ADS%=100−AUC2∗100

AUC1 (1)

Being:

ADS%:adsorptionpercentage.

AUC2:peakareaofthemycotoxininthesupernatantafter

theadsorptionprocess.

AUC1:peakareaofthemycotoxininthepositivecontrol

(SP1orSP2).

Strainselection

Two parameters were used for LAB strain selection: The

OD560nmachievedafterthereactivationprocess,usedas

indi-catorofmassproduction,andADS%.Weusedbothvariables followingEq.(2)becauseweconsiderthattheyhavethesame importanceforstrainselection.

X= OD560nm∗0.5+ADS%∗0.5

0.5+0.5 (2)

Being:

X=meanofOD560nmandADS%.

OD560nm=opticaldensity.

ADS%=adsorptionpercentage.

Optimizationofadsorptionprocessconditions

Withtheaimofincreasingadsorptionpercentage,usingthe selectedstrain,fourvariablesofthetechniquedevelopedby Bueno11wereevaluated.

(i) Culturemedia usedin the reactivationprocess: bacte-rialgrowthwascomparedintwoculturemedia:MRSand LAPTg.FirstbacterialgrowthwasdeterminedbyOD560nm

andcellswereobservedbyscanningelectronmicroscopy (SEM)(JEOL35CFfromJEOL Ltd.,Tokyo, Japan).Finally bacteria were cultured until OD560nm=1 was reached.

Thisvaluewasstandardizedforeverystrain.The adsor-bentpelletswereobtainedforbothculturemediaandthe ADS%werecalculated.

(ii) Contactsolution:theeffectsofsolutionsSP1andSP2on adsorptionpercentagewerecompared.

(iii) Initialvolumeofculturemedia:theeffectsofaninitial volumeof7.5mLand6.5mLwerecompared.

(4)

(iv) Viable and non-viable strain: the effects of sterilizing (120◦C,15min)andnon-sterilizingstrainwerecompared.

Evaluationoftheselectedmethod

Using data from 3 samples on 4 separate days of assay

theselectedmethodwasalsoevaluated.Theprecisionwas expressedbytherelativestandarddeviation(RSD).Notethat theRSDiscalledassameasthecoefficientofvariation(CV) instatistics.Withindayprecision(repeatability) was calcu-lated by the mean coefficient ofvariation (CV) which was requiredtobelessthan15%inaccordancewiththeGuidance forIndustry–BioanalyticalMethodValidationpreparedbythe BiopharmaceuticsCoordinatingCommitteeintheCenterfor DrugEvaluationandResearch(CDER)incooperationwiththe CenterforVeterinaryMedicine(CVM) attheFoodandDrug Administration.41Betweendaysprecision(intermediate pre-cision)wasexpressedasbetweendayscoefficientofvariation (CVbd),whichwascalculatedusingEq.(3).42

CVbd=

SDbd∗100

 (3)

Being:

=averagemedia.

SDbd=betweendaysstandarddeviation(calculatedasthe

squarerootofbetweendaysvariance).

Between daysvariance isobtainedaftersubtracting the contribution of within day variability, using the following Eq.(4) SD2bd=SD2()+(n−1) n ∗SD 2 wd (4) Being:

SD2()=varianceofeverydaymean.

n=numberofobservationsperday.

SD2

wd=averagewithindayvariance.

SD2wd=



D d=1



n r=1(xdr− ¯xd)2 D∗ (n−1) (5) where:

D=totalnumberofdays.

n=totalnumberofreplicatesperday.

xdr=resultforreplicaterondayd.

¯xd=averageofallreplicatesondayd.

SD2 =



D d=1



¯xd− ¯¯x



2 (D−1) (6) where:

D=totalnumberofdays.

¯xd=averageofallreplicatesondayd.

¯¯x =averageofallresults.

Scanningelectronmicroscopy(SEM)

Thepelletsobtainedafterthereactivationprocessandafter

the adsorptionprocess were fixedwith amodifier

Karnof-sky’ssolution(1.6%glutaraldehyde+2.6%paraformaldehyde

in0.1Msodiumphosphatebuffer(pH7.2)).After24hat4◦C, they were dehydrated by successive passages in solutions (ethylalcohol–acetone)withgreatergraduationofethyl alco-holeachtime(30%,50%,70%,90%y100%),thelapseforeach passagewas10min.Afterdrying,thesamplesweregluedon stubs using carbon tape and coatedwith gold(ion sputter JFC-1100).BacteriawereanalyzedusingaJEOL35CFscanning electronmicroscope.

StabilityoftheZEA-selectedLactoctobacilluscomplex

UsingthestrainwiththehighestADS%,ZEAdissociationwas studybysuccessiverinses.Infirstplace,theselected adsorp-tion process was carried out,and then the pelletobtained wassuspendedin1.0mLofpurifiedwaterandmaintainedat roomtemperaturefor10min.Then,thesuspensionobtained wascentrifugedat5900×g,4◦C,15min,andfinallyZEA con-centrationwas analyzedinthesupernatant. Thisstepwas repeateduptothreetimes.Attheend,ZEAremainingbound wasrecoveredwith1.0mLofmethanol.ZEAquantificationin allsupernatantswasperformedbyHPLCasindicatedinZEA determination.ZEAboundtothebacterialpelletwas calcu-latedaccordingtoEq.(7).

ln(ZEAboundM)=ln



InitialZEA%ADS

100



(7) Being:

%ADS=adsorptionpercentage.

Initial ZEA=␮M of Initial ZEA in the positive control SP1=38.64␮M.

BiotransformationofZEA

Themetabolization ofZEA into ␣-ZOLand ␤-ZOLwasalso

investigatedbecauseZEA concentrationcouldbereduceas aconsequenceofbiotransformationasindicatedbyBoswald etal.43andnotbecauseofZEA–bacteriacomplexformation. HPLCanalysisofamixedstandardsolutioncontainingZEA and bothmetabolites wasusedtoidentifythe presenceor absenceofeachcompound.

Statisticalanalysis

All samples were analyzed in triplicate. Results were

expressedasmean±standarddeviation(SD).Datawere sta-tisticallyevaluatedusingtheInfoStatprogram,2010.(InfoStat groupFCA,UniversidadNacionaldeCórdoba,Argentina).A two-tailed Student’st-test forpaired samples(p<0.05) was usedtodeterminesignificantdifferencesbetweentreatments.

Results

and

discussion

Genotypicidentification

ResultsfromthePCRmoleculartechniqueareshowninFig.1. AllstrainsassayedandthereferencestrainsL.rhamnosus(R1),

L.delbrueckii(R2),L.casei(R3)andL.helveticus(R4)werepositive (amplified)withgeneralprimersforLactobacillus.Inthe nega-tivecontrol(Ct),asisexpected,noamplificationwasobserved.

(5)

L4 R4 L1 6 R1 8 7 5 R2 R3 C1 C2 C3 C4 L2 L3 Ct

Fig.1–PCRamplificationproductsforLactobacilliisolatedfrompigrectalswaps(L1–L2–L3–L4),andisolatedfromother sources(5–6–7–8–C1–C2–C3–C4)andreferencestrains(R1–R2–R3–R4)usinggeneralprimers:LbLMA1-revyR16-1.Ct,control (withoutanybacterialstrain).

Speciesidentification

ThecomparativeanalysisofthesequencesobtainedfromL4 strainwiththosedescribed invarious databases,showed a highidentitywithstrainsbelongingtoPhylum“Firmicutes” Class “Bacilli” Order “Lactobacillales” Family

“Lactobacil-laceae” Gender “Lactobacillus” and within this genus to

species“plantarum”and“pentosus”.Giventhephylogenetic proximityofthesespecies,additionalstudieswereperformed todifferentiatebetweenthem.L4straindidnotferment glyc-erolandD-xylose,whicharetypicallyfermentedbyL.pentosus

butnotbyL.plantarum.44,45 Theseresultsindicate thatthe selectedstrain(L4)wasaL.plantarum.

Adsorptionprocess

When time t2 (72h) was used in the reactivation

pro-cess the reference strain R1 gave an adsorption value of 79.8%±6.8.Thisresultwassimilartotheresultsobtainedby El-Nezami12whennonviablebacteriawereused(80%).With thisreactivation timeit wasprobablethatwaste and dead cellsbegantoaccumulateanditcausedsomechangesinthe adsorptionprocess.Inthenextassayreactivationtimet1(24h)

wasused.Thischangegaveanadsorptionvalueof30.5%±5.4, itwasclosethanvaluesreportedforviablecells.13

ForR1strain,thesumoftheZEApercentages,inthe super-natantandinthemethanolusedtoextractmycotoxininthe pelletwas97.73%.Thisvaluewas closeto100%mycotoxin whichindicatedthatthemethodachievedahighmycotoxin extraction.

Strainselection

The strains L1, L2,L3 and L4 showed adsorption percent-agesbetween46%and64%(Table1),thesewerehigherthan thoseshowedbyBueno11andsimilartothosedescribedby El-Nezami.13ThesecondparameteranalyzedwasOD

560nm,

asBueno11indicatedinordertoachieveagoodbacteria pro-duction,thevalueshouldbe1orhigher.Onlyinonecase(L1 strain)thevaluewaslower.Accordingtoourresults,L4strain achievedthehighestaverage(X)betweenOD560nmandADS%,

soit wasdecidedtousethisstraininsubsequentresearch. Severalgeneraofbacteriahavebeenstudiedtoevaluatetheir

Table1–Resultsoftheparametersusedforstrain selection[OD560nm,%ADSandaverage(X)ofboth

values)].Reactivationtimeused24h.

Strain Adsorptionparameters OD560nm %ADS (X)average L4 1.062+0.085a 64.2+1.5c 32.618c L3 1.361+0.118b 47.6+1.5b 24.501b L2 1.426+0.143b 49.1+0.0b 25.278b L1 0.905+0.014a 46.5+5.8b 23.698b L.rhamnosus(R1) 1.129+0.019a 30.5+5.4a 15.825a Resultswererepresentedasmean±SD.Differentsuperscript let-tersinthesamecolumnindicatestatisticalsignificantdifferences (p<0.05).

zearalenoneadsorptionability.Bueno11 reportedadsorption levels ranging from 0 to 36.44% for Bifidobacteria, 1.74 to 33.69%forLactobacilli,and0to59.09%forActinomycetes. El-Nezami13reportedtheZEAadsorptionpercentagesoftwofood gradestrains(L.rhamnosusGGandL.rhamnosusLC705). Fur-thermore,Luetal19studiedZEAadsorptionbyPlanococcusspp,

achieving21.82%adsorptionforviablebacteriaand42.82%for inactivatedbacteria.

Resultswere representedasmean±SD.Different

super-script letters in the same column indicate statistical

significantdifferences(p<0.05).

Evaluationoftheadsorptionprocessconditions

FortheselectedLactobacillusstrainL4thechangeofvarious parametersinordertoimprovetheadsorptionprocesswas evaluated.

Culturemediacomparison,L4showedsignificantlyhigher OD560nm in MRS (1.707±0.16) than in LAPTg (1.101±0.15)

thesedifferenceswerestatisticallysignificant(p<0.05).With respecttoadsorptionpercentages,usingthesame OD560nm

(1) higher results were also obtained using MRS media

(57.38%±4.68)thanLAPTg(49.33%±4.10),butthesedifference werenotstatisticallysignificant(p>0.05).Takingintoaccount afutureindustrialuseandobservingthatMRSbrothachieved thehigherproductionitwasselectedasculturemedia.

In addition, scanning electron microscopy revealed few differencescomparing bacterialmorphologyduring incuba-tion inboth broths(Fig.2Aand B),bacillus seemed longer andthinnerwhenculturedinLAPTgthaninMRS(markedin

(6)

Fig.2–ScanningelectronmicrographsofL4strainin(A)LAPTgmedia,(B)MRSmedia,(C)aftertheadsorptionprocess.

Fig.2Awithasquare),thatshouldbestudiedinfuture investi-gations.Thesechangeswouldindicatedifferentmorphology ofthe cellular walland could explaindifferent adsorption percentageachievedwhenthisdifferentculturemediawere usedinthe reactivationprocess priorZEA adsorption. Fur-thermore,afterthe adsorptionprocess,L4 presentsseveral intercellularbonds(markedinFig.2Cwithcircles),thisbeing aninterestingstrainpropertythatshouldbestudiedinfuture investigations(Fig.2C).

Ahigher%ADSwasobtainedafterincubationwithSP1than withSP2 solution, (57.28%±1.85 and 49.33%±6.11, respec-tively). These differences were not statistically significant (p>0.05), whichindicatesthat achangeofcontactsolution doesnotproduceasignificantchangeintheadsorption.For thisreason,thetechniquewasnotchangedandSP1was main-tainedascontactsolution.

Adsorption percentages obtained after processing 6.5

and7.5mLMRSbrothwere57.40%±3.53and 64.46%±0.76, respectively. These differences were statisticallysignificant (p<0.05).Thereforetheuseof7.5mLofmediawasselected tocarryouttheadsorptionprocess.

Aftersterilizingculturemedia,theADS%was82.4%±3.3 and73.5%±1.0forviablestrainADS%.Thesedifferenceswere statisticallysignificant(p<0.05).Thesefindingscouldbe con-sideredinordertodecideifnon-viablebacteriamaybeused asmycotoxinsadsorbentwithhigherADS%orviablebacteria withlowerADS%butwithpossibleprobioticeffectatthesame time.Thesefindingsconfirmtheresultsofotherresearches.13

Table2showstheADS%obtainedbyprocessingthreedaily

samplesforfourdifferentdays, underidenticalconditions.

Relative standard deviations (%RSD) were calculated for

each day, these values 1.81 to 7.23 were similar withthat obtainedbyKolfk-Clauwetal.,39usingthesametechnology fordeterminationofZEA(HPLCUV),andtheyneverexceed thevalueof15%thatwasourgoalproposal.Repeatability(Sr),

also known as within-run precision was calculated,under identicalconditionssuccessivemeasurementsobtainedwere close in a value of 6.00. Using the overall mean obtained (70.10)andtherelativestandarddeviationmaximumallowed (15%),themaximstandarddeviationclaimedwas10.52.This valuewasless thanSDachievedineach dayand lessthan therepeatabilityobtained.

Resultswere representedas mean±SD.Different super-scriptlettersinthesamerowindicatesignificantdifferences (p<0.05). 0 1 2 3 0.5 0.14 0.37 1.00 2.72 7.39 20.09 ln (Z EA b ound (uM)) Number of washes 26.3 6.1 9.7 16.3

Fig.3–ZEAremainingfromZEA–L4complexafter successiverinsing.

Withindayprecision(repeatability)andbetweenday pre-cisionwerecalculatedandasrequiredbothvalueswereless than15%.

StabilityoftheZEA–bacteriacomplex

UsingtheimprovedprocesswithaninitialZEAconcentration of38.7␮M,theinitialadsorptionpercentagewas68.20%±1.74 (ZEAbound:26.3␮M).Inthefirstrinsingstep42.26%±0.414 wasstillboundtothepellet(ZEAbound:16.3␮M).Inthe sec-ondrinsingstep,25.12%±0.664wasstillboundtothepellet (ZEAbound:9.7␮M),whereas15.82%±0.675remainedinthe pellet(ZEAbound6.1␮M)afterthethirdrinse.

Fig.3showsln(ZEAbound)vsnumberofwashes. Dissoci-ationofZEAwasrelativelylinear.Thedissociationconstant, whichcouldbeestimatedfromtheslope,washigherthanthat obtainedbyEl-Nezamietal.12Theseresultscouldprobablybe duetotheuseofdifferentbacteriastrainsthanthoseusedby El-Nezamietal.,12specificallyintermsoftheirdifferencesin thecellwall.Somecompoundsofthecellwallarereally impor-tantintheadsorptionprocessasindicatedbyYiannikouris etal.46,47

(7)

Table2–Adsorptionpercentage(%ADS)ofL4aftertheadsorptionprocessforthreesamplesinfourdifferentdays. Estimationofrepeatability(withindayprecision)andintermediateprecision(betweendayprecision).

Day1 Day2 Day3 Day4 Mean SD2

() SD2wd SD2bd

%ADS 64.46 65.30 75.61 75.01 70.095() 31.409 36.042 55.437

SD 1.17a 1.35a 5.47a 1.73a

%RSD(CV) 1.81 2.06 7.23 2.31

Resultswererepresentedasmean±SD.Differentsuperscriptlettersinthesamerowindicatesignificantdifferences(p<0.05).Withinday precision(repeatability)andbetweendayprecisionwerecalculatedandasrequiredbothvalueswerelessthan15%.

Within-dayprecision:3.36%.Between-dayprecision:10.62%.

B

β zearalenol α zearalenol

Zearalenone

Retention time Area% Compound 6.70 6 557 656 β zearalenol 9.24 8 125 206 α zearalenol 17.19 9 503 858 zearalenone

Retention time Area Area %

1.23 23312 6.387

1.86 268498 73.558

4.41 3780 1.036

18.14 69425 19.020

Retention time Area Area %

1.75 224226 17.961 1.95 161726 12.955 2.99 3086 0.247 3.51 5006 0.401 4.39 4599 0.368 6.27 16010 1.282 18.19 833743 66.785

A

C

D

SP1 (ZEA)

Fig.4–Chromatographicprofiles.(A)Chromatographicprofileofstandards:zearalenol,zearalenolandzearalenona.(B) ChromatographicprofileofZEAsolution(SP1).(C)ChromatographicprofileofL4supernatantafterco-incubatingwithZEA (1h,37◦C).(D)ChromatographicprofileofZEAfromL4pelletaftersolubilizationwithmethanol.

(8)

ZearalenonedeterminationbyHPLCchromatography

ResultsfromamixedstandardsolutionofZEA,␣and␤ zear-alenolareshowedinFig.4A.ResultsfromSP1solutionwithout contactwithadsorbentare showedinFig.4B,peaks corre-sponding to␣and ␤ zearalenolwerenot observed.Results fromthesupernatantofL4strainafterincubation(37◦C,1h) withthemycotoxinareshowedinFig.4C,peaks correspond-ing to␣ and ␤ zearalenolwere notobserved. Resultsfrom L4 pellet after resuspension withmethanol are showed in

Fig.4D.Peakcorrespondingto␤zearalenolwithasmallArea %wasobserved,peakcorrespondingto␣zearalenolwasnot observed,itwasimportanttodemonstratedthatprobablythis

Lactobacillusdidnotmetabolizethemycotoxinasindicatedby El-Nezamietal.13.ThesumofZEAinsupernatantandin pel-letwasalmosttheinitialZEAaddedinSP1solution,itshowed thattheinitialmycotoxinin(SP1)solutionwasalmost com-pletelyrecovered.

Conclusions

This work demonstrated that a Lactobacillus plantarum (L4 strain)isolatedfrompigshasgreatpotentialasadsorbentof themycotoxinzearalenone.Theresultsshowedthebest con-ditionsfortheadsorptionprocess.Theinitialculturemedium usedforbacterialreactivation,theviabilityofthecellsand

the amount ofbacterial mass measured by OD560nm were

stronglyinvolvedinthepercentageofadsorptionofL. plan-tarumtoZEA.Thestudiesshowedhighstabilityofthecomplex bacteria–mycotoxinand the absence ofmetabolites ofthe toxin.This study is the first stepin the developmentof a newZEAadsorbentbasedonalyophilizedpowderofalocally isolatedstrainand other componentsthathelptoimprove reproductivehealth.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This work is part of a project entitled “Detoxificación de lamicotoxinazearalenona enalimentosparacerdos medi-antemétodosmicrobiológicos”whichisfinanciallysupported

by the “Comisión de Investigación Científica (CIC)” and

developedinthefollowinglaboratories:Departmentof

Pub-lic Health (FBQF – UNT – Tucuman, Tucuman, Argentina),

Laboratory of Toxicology (SNITV) (FCV – UNCPBA, Tandil,

Buenos Aires, Argentina), and Department of Technology

and Qualityof Food(FCV – UNCPBA,Tandil, Buenos Aires, Argentina).

We are grateful to Dr Peter Purslow from Canada,

Departamento de Calidad y Tecnología de los Alimentos,

UniversidadNacionaldelCentrode laProvinciadeBuenos Aires, Tandil, Argentina, for his valuable revision of the manuscript.

r

e

f

e

r

e

n

c

e

s

1.IARC.Somenaturallyoccurringsubstances:fooditemsand

constituents,heterocyclicaromaticaminesandmycotoxins.

IARCMonogrEvalCarcinogRisksHum.1993;56:397–444.

2.IARC.Somefoodadditives,feedadditivesandnaturally

occurringsubstances.IARCMonogrEvalCarcinogRisksHum.

1983;31:279–291.

3.IARC.Overallevaluationofcarcinogenicitytohumans.IARC

Monogr.1999;1:1–36.

4.EFSA.Scientificopinionontherisksforpublichealthrelated

tothepresenceofzearalenoneinfood.EFSAJ.2011;9(6):

2197.

5.ZinedineA,SorianoJM,MoltoJC,ManesJ.Reviewonthe

toxicity,occurrence,metabolism,detoxification,regulations

andintakeofzearalenone:anoestrogenicmycotoxin.Food

ChemToxicol.2007;45(1):1–18.

6.RyuD,HannaMA,EskridgeKM,BullermanLB.Heatstability

ofzearalenoneinanaqueousbufferedmodelsystem.JAgric

FoodChem.2003;51(6):1746–1748.

7.AnadónA,CéspedesA,CaballeroV,Martínez-Larra ˜nagaMR,

MartínezMA.Mycotoxinsofmajorimpactinpigproduction

andhumanhealthimplications.AdvTecnolPorcina.

2005;2(5):33–60.

8.BataÁ,LásztityR.Detoxificationofmycotoxincontaminated

foodandfeedbymicroorganisms.TrendsFoodSciTechnol.

1999;10:223–228.

9.FeganDF,SpringP.Recognizingtherealityoftheaquaculture

mycotoxinproblem:searchingforacommonandeffective

solution;nutritionalbiotechnologyinthefeedandfood

industries.In:ProceedingsofAlltech’s23rdAnnualSymposium.

TheNewEnergyCrisis:Food,FeedorFuel?.2007.

10.AbbesS,BenSalah-AbbesJ,SharafiH,NoghabiKA,Oueslati

R.InteractionofLactobacillusplantarumMON03withTunisian

montmorilloniteclayandabilityofthecompositeto

immobilizeZearalenoneinvitroandcounteract

immunotoxicityinvivo.ImmunopharmImmunotoxicol.

2012;34(6):944–950.

11.BuenoDJ.Detoxificacióndemicotoxinas

presentesenalimentosdeavesdecorral,inCentrodeReferencia paraLactobacilos(CERELA)–DepartamentodeBiologíaMolecular, FacultaddeCienciasExactas,Físico-QuímicasyNaturales delaUniversidadNacionaldeRíoCuarto(UNRC).Centrode

ReferenciaparaLactobacilos(CERELA),UniversidadNacional

deTucumán:SanMigueldeTucumán(Tucumán);2003.p.

CapítuloV.

12.El-NezamiH,PolychronakiN,LeeYK,etal.Chemical

moietiesandinteractionsinvolvedinthebindingof

zearalenonetothesurfaceofLactobacillusrhamnosusstrains

GG.JAgricFoodChem.2004;52(14):4577–4581.

13.El-NezamiH,PolychronakiN,SalminenS,MykkanenH.

Bindingratherthanmetabolismmayexplaintheinteraction

oftwofood-GradeLactobacillusstrainswithzearalenone

anditsderivative(␣)alpha-Zearalenol.ApplEnvironMicrobiol.

2002;68(7):3545–3549.

14.KristensenNB,SlothKH,HojbergO,SpliidNH,JensenC,

ThogersenR.Effectsofmicrobialinoculantsoncornsilage

fermentation,microbialcontents,aerobicstability,andmilk

productionunderfieldconditions.JDairySci.

2010;93(8):3764–3774.

15.MokoenaMP,ChelulePK,GqaleniN.Reductionoffumonisin

B1andzearalenonebylacticacidbacteriainfermented

maizemeal.JFoodProt.2005;68(10):2095

–2099.

16.NiderkornV,BoudraH,MorgaviDP.BindingofFusarium

mycotoxinsbyfermentativebacteriainvitro.JApplMicrobiol.

(9)

17.NiderkornV,MorgaviDP,PujosE,TissandierA,BoudraH.

Screeningoffermentativebacteriafortheirabilitytobind

andbiotransformdeoxynivalenol,zearalenoneand

fumonisinsinaninvitrosimulatedcornsilagemodel.Food

AdditContam.2007;24(4):406–415.

18.TinyiroSE,WokadalaC,XuD,YaoW.Adsorptionand

degradationofzearalenonebybacillusstrains.FoliaMicrobiol

(Praha).2011;56(4):321–327.

19.LuQ,LiangX,ChenF.DetoxificationofZearalenonebyviable

andinactivatedcellsofPlanococcussp.FoodControl.

2011;22(2):191–195.

20.FullerR.Probiotics2:ApplicationsandPracticalAspects.

Londres:Chapman&Hall;1997.

21.JuradoGH,AguirreFD,RamírezTC.Caracterizaciónde

bacteriasprobióticasaisladasdelintestinogruesodecerdos

comoalternativaalusodeantibióticos.RevMVZCórdoba.

2009;14(2):1723–1735.

22.FullerR.Probioticsinmanandanimals.JApplBacteriol.

1989;66(5):365–378.

23.HavenaarR,TenBrinkB,Huisin’tVeldtJHJ.Probiotics:The

ScientificBasis.London:Chapman&Hall;1992.

24.DogiCA,FochesatoA,ArmandoR,etal.Selectionoflactic

acidbacteriatopromoteanefficientsilagefermentation

capableofinhibitingtheactivityofAspergillusparasiticusand

Fusariumgramineraumandmycotoxinproduction.JAppl Microbiol.2013;114(6):1650–1660.

25.RaibaudP,CauletM.Lactobacillipredominantinthe

gastrointestinaltractoftheadultswine.CRHebdSeances

AcadSci.1957;244(6):816–818.

26.RaibaudP,CauletM,GalpinJV,MoquotG.Studiesonthe

bacterialfloraofthealimentarytractofpigs.II.Streptococci:

selectiveenumerationanddifferentiationofthedominant

group.JApplBacteriol.1961;24:285–306.

27.RaibaudP,CauletM,MocquotG.Quantitativestudyof

lactobacilliandcoliformbacteriainthedigestivetractofthe

adultpig.CRHebdSeancesAcadSci.1957;244(5):

683–685.

28.DubernetS,DesmasuresN,GueguenM.APCR-based

methodforidentificationoflactobacilliatthegenuslevel.

FEMSMicrobiolLett.2002;214(2):271–275.

29.KwonYM,CoxMM.Improvedefficacyofwholegenome

amplificationfrombacterialcells.Biotechniques.2004;37(1),

40,42,44.

30.PospiechA,NeumannB.Aversatilequick-prepofgenomic

DNAfromgram-positivebacteria.TrendsGenet.

1995;11(6):217–218.

31.HebertEM,RayaRR,TailliezP,deGioriGS.Characterization

ofnaturalisolatesofLactobacillusstrainstobeusedas

starterculturesindairyfermentation.IntJFoodMicrobiol.

2000;59(1–2):19–27.

32.KloseV,BayerK,BruckbeckR,SchatzmayrG,LoibnerAP.

Invitroantagonisticactivitiesofanimalintestinalstrains

againstswine-associatedpathogens.VetMicrobiol.

2010;144(3–4):515–521.

33.KullenMJ,Sanozky-DawesRB,CrowellDC,KlaenhammerTR.

UseoftheDNAsequenceofvariableregionsofthe16SrRNA

geneforrapidandaccurateidentificationofbacteriainthe

Lactobacillusacidophiluscomplex.JApplMicrobiol.

2000;89(3):511–516.

34.EdgarRC.MUSCLE:amultiplesequencealignmentmethod

withreducedtimeandspacecomplexity.BMCBioinform.

2004;5:113.

35.EdgarRC.MUSCLE:multiplesequencealignmentwithhigh

accuracyandhighthroughput.NucleicAcidsRes.

2004;32(5):1792–1797.

36.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215(3):403–410.

37.ColeJR,WangQ,CardenasE,etal.TheRibosomalDatabase

Project:improvedalignmentsandnewtoolsforrRNA

analysis.NucleicAcidsRes.2009;37(Database

issue):D141–D145.

38.BuenoDJ,DiMarcoL,OliverG,BardonA.Invitrobindingof

zearalenonetodifferentadsorbents.JFoodProt.

2005;68(3):613–615.

39.Kolfk-ClauwM,AyouniF,TardieuD.HPLCassayof

zearalenoneandreducedmetabolitesenS9fractionsofduck

liver.RevMedVeter.2007;158(10):504–508.

40.ArmandoMR,PizzolittoRP,DogiCA,etal.Adsorptionof

ochratoxinAandzearalenonebypotentialprobiotic

Saccharomycescerevisiaestrainsanditsrelationwithcell

wallthickness.JApplMicrobiol.2012;113(2):256–264.

41.U.S.DepartmentofHealthandHumanServices,Foodand DrugAdministration(FDA),CenterforDrugEvaluationand Research(CDER),CenterforVeterinaryMedicine(CVM).

GuidanceforIndustry–BioanalyticalMethodValidation;2001. Accessed27.06.15.Availablefrom:http://www.fda.gov/ downloads/Drugs/GuidanceComplianceRegulatory

Information/Guidances/ucm070107.pdf.

42.ChesherD.Evaluatingassayprecision.ClinBiochemRev.

2008;29(suppl1):S23–S26.

43.BoswaldC,EngelhardtG,VogelH,WallnoferPR.Metabolism

oftheFusariummycotoxinszearalenoneanddeoxynivalenol

byyeaststrainsoftechnologicalrelevance.NatToxins.

1995;3(3):138–144.

44.YoshidaS,OkanoK,TanakaT,OginoC,KondoA.

Homo-d-lacticacidproductionfrommixedsugarsusing

xylose-assimilatingoperon-integratedLactobacillus

plantarum.ApplMicrobiolBiotechnol.2011;92(1):67–76.

45.ZanoniP,FarrowJAE,PhillipsBA,CollinsMD.Lactobacillus

pentosus(FredPeterson,andAnderson)sp.nov.,norn,rev.Int JSistemBacteriol.1987;37(4):339–341.

46.YiannikourisA,AndreG,BuleonA,etal.Comprehensive

conformationalstudyofkeyinteractionsinvolvedin

zearalenonecomplexationwithbeta-d-glucans.

Biomacromolecules.2004;5(6):2176–2185.

47.YiannikourisA,FrancoisJ,PoughonL,etal.Adsorptionof

Zearalenonebybeta-d-glucansintheSaccharomycescerevisiae

Referências

Documentos relacionados

Dúvida não pode haver, portanto, de que nas modernas parcerias do Estado com o Terceiro Setor, assemelhadas que são a contratos de prestação de serviços, a prestadora — uma

Se comparados com as empresas, os sindicatos possuem uma cultura organizacional um tanto quanto diferente, mas peculiar devido ao fato de ter algumas características

Inhibition halos (mean ± standard deviation, mm) of indigenous lactic acid bacteria isolated from intestinal tract of yellow tail lambari ( Astyanax bimaculatus ) against strains

A Rostock Fermentation Test (RFT) was performed to compare the ensilabillity potential among four epiphytic lactic acid bacteria (LAB) strains isolated from TD. Further,

The aim of this study is to examine the relationship between working capital management and firms’ performance, under three assumptions: in a general overview of the

Tendo em vista a desproporção entre suas forças, poderes e ideologias, essa interpretação faz emer- gir a reflexão sobre como a cidadania e as forças exógenas que têm alterado

Em alguns locais não existia uma correta diferenciação nem locais próprios para lixo (Figura 32). Figura 32 - Plástico de proteção de planos magnéticos espalhado no chão Figura

Condições gerais - riscos sobre a saúde: Problemas de saúde desencadeados pelas condições de trabalho e dos riscos ambientais: hipertensão arterial, disritmia cardíaca,