• Nenhum resultado encontrado

Urbanization effects on different biological organization levels of an estuarine polychaete tolerant to pollution

N/A
N/A
Protected

Academic year: 2021

Share "Urbanization effects on different biological organization levels of an estuarine polychaete tolerant to pollution"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Ecological

Indicators

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e /e c o l i n d

Urbanization

effects

on

different

biological

organization

levels

of

an

estuarine

polychaete

tolerant

to

pollution

Wilson

Antonio

Weis

a,∗

,

Carlos

Henrique

Lemes

Soares

b

,

Daiane

Paula

Cunha

de

Quadros

c

,

Mauana

Scheneider

c

,

Paulo

Roberto

Pagliosa

a,d

aUniversidadeFederaldeSantaCatarina,NúcleodeEstudosdoMar,88040-900Florianópolis,SC,Brazil bUniversidadeFederaldeSantaCatarina,DepartamentodeBioquímica,88040-900Florianópolis,SC,Brazil cUniversidadeFederaldeSantaCatarina,DepartamentodeQuímica,88040-900Florianópolis,SC,Brazil

dUniversidadeFederaldeSantaCatarina,DepartamentodeGeociências,LaboratóriodeBiodiversidadeeConservac¸ãoMarinha,88040-900Florianópolis, SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4July2016

Receivedinrevisedform25October2016 Accepted26October2016

Availableonline6November2016 Keywords: Bioindicator Biomarker Bodysize Estuarinepollution Micronuclei Turnoverratio

a

b

s

t

r

a

c

t

Estuarinespeciesexposedtodiffusecontaminantsmighttriggereitherpositiveornegativefeedbacksin manybiologicalscales.Theirlifehistorytraitsperformingatdifferentbiologicalorganizationlevelscould proposeanorganismasausefulindicatorofenvironmentalpollution,mainlyaddressedassensitiveor tolerantspecies.Totracktheeffectsofcontaminantsfromthemoleculartothepopulationlevelofthe polychaeteLaeonereisacutaweutilizeaframeworkofbiomarkers.ForthispurposeweassessedtheL. acutafrequencyofmicronucleiatthemolecularlevel,thebodysizeandbiomassatindividuallevel,and theproduction-to-biomassratioatpopulationlevelinfiveurbanizedandfivenon-urbanizedestuariesin southernBrazil.L.acutahadsignificantlyvaryingpositiveandnegativefeedbacksbetweenurbanizedand non-urbanizedestuariesatmultiplebiologicalscales.Thesegeneralizedeffectsinallbiological organiza-tionscalesindicateapollutionimpactonthepolychaete.Themainresponsesaccountedforindividuals becominglengthyandweighty,butwithmoleculardamage.TheL.acutaallocationofenergytobody enlargementinpollutedenvironments,andaconsequentreducedpopulationturnover,contradictsthe expectedfromanopportunistspecies.ThedamagesinDNAandtheinternalstrategiesofindividuals,as antioxidantdefensemechanisms,couldfavorresistanceofthepopulationandtolerancetopollutants. Allofthesecharacteristicsinducebioaccumulationandcouldcausebottom-uppollutiontransfer com-promisingtheestuarinefoodweb.Theseresults,ascertainthatL.acutacouldbeconsideredasatolerant species,insteadofanopportunistic,andasausefulindicatorofenvironmentalpollutioninestuaries.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Coastalurbanizationhasincreasedthedischargeofdiffusetoxic

substancesinto water bodies responsiblefor acuteand chronic

degradationof the estuarinebiota. In advanced situations, this

processcauseseliminationofsensitivespeciesanddominanceof

themosttolerantoropportunisticindividuals(KlerksandWeis,

1986; Bickham et al., 2000; D’Alessandro et al., 2015). Along

theirevolutionaryhistory, tolerantspecies mighthave selected

∗ Correspondingauthor.

E-mailaddresses:wilson.antonio.weis@gmail.com,wilsonweis@yahoo.com.bt (W.A.Weis),chlsoares@globo.com(C.H.L.Soares),

daiane.quadros@ibirama.ifc.edu.br(D.P.C.deQuadros),

mauana.schneider@gmail.com(M.Scheneider),paulo.pagliosa@ufsc.br (P.R.Pagliosa).

lifetraitswithadaptivevalues (fitness)that arenowadays

cou-pled withor benefitedfrom contaminants(Kawecki and Ebert,

2004).Notwithstanding,speciesexposedtocontaminantsusually

presentnegativeresponsesingenetic,physiological,

morphologi-calandbehaviorallevels(Merschetal.,1996;Fleegeretal.,2003;

Schiedeketal.,2006;Catalanoetal.,2012).Thedescriptionof

bio-logicalmechanismsundersuchevolutionaryandecologicalscales

hasbeenacurrentchallengetoelucidatehowspeciesfunctionas

tolerantstoenvironmentalpollution.

Evaluationoftheeffectsofcontaminantsusuallyinvolvesan

outlinedbulkofbiomarkers(Monserratetal.,2007).Tointegrally

comprehendthoseeffects,thebiomarkersneedtobeprocessedin

manybiologicalscales,asspeciesmayexperiencestressat

differ-entlevelsofbiologicalorganizationthroughoutthemedleyfrom

moleculartothecommunitylevel.Amongtheimplicationstothe

environmentalmanagementofinvestigatingmanybiological

orga-http://dx.doi.org/10.1016/j.ecolind.2016.10.029 1470-160X/©2016ElsevierLtd.Allrightsreserved.

(2)

nizationlevels,theassessmentofchangesinlowerbiologicallevels

canbeusedtoavoidfurthereffectsonhigherlevels,whentheyhave

notyethappened.However,theusesandresponsesofbiomarkers

inmolecularorsubcellularlevelsininvertebratesarestillpoorly

knownandfragmented(Dixonetal.,2002).Conversely,the

expres-sionofbothqualitativeandquantitativedamagetoDNAisvery

similarbetweeninvertebratesand highercomplexityorganisms

(Dixonetal.,2002;Haggeretal.,2002;Jha,2004).These

similar-itiescouldbeusedtodriveendeavorsinresearcheswithmarine

invertebrates.

Polychaetesnumericallydominatetheestuarinecommunities

livinginthewater-sedimentinterface,haveashortlifespanand

arelessmotilethanotherbenthicmacroinvertebrates,andthus

responsivetochanges in theirsurroundingenvironment. Allof

thesecharacteristicsconferthegenericstatusofgoodindicators

ofenvironmentalhealth(Durouetal.,2007;Botter-Carvalhoetal.,

2011).TheNereididaepolychaeteLaeonereisacutaiswidelyspread

in South AmericanAtlantic estuariesand sheltered areas,from

2◦S (Brazil) to 42◦S (Argentina) (Orensanz and Gianuca, 1974;

Pamplinetal.,2007).EarlystudieshaveindicatedL.acutatohave

an opportunistic behavior because of their relatively short life

cycleandrapidsedimentrecolonizationstrategies(NettoandLana,

1994;OmenaandAmaral,2000).Furtherstudieshighlightedthe

speciesaspertainingtoatolerantassemblageinurbanized

estu-aries(PagliosaandBarbosa,2006).Thiswassuggestedaftertheir

densityandbiomasswerefoundtoberelatedtothegeneralstate

oftheenvironment,bothinwaterandsediments,thansimplyto

modificationsinthesediment.Morerecently,thepotentialityofL.

acutaasatolerantbioindicatorofpollutionhasstimulatedthe

map-pingoftheirhistologicalandmorphologicalalterations,aswellas

biochemicalresponses,accumulation,andbiotransformationafter

exposuretocontaminants(Geracitanoetal.,2002;Ferreira-Cravo

etal.,2008; Ventura-Limaetal.,2011).However,anintegrated

biomarkersassessmentatdifferentlevelsofbiologicalorganization

ofL.acutaunderurbanizationeffectsisstilllacking.

Theaimofthisstudywastoassesstheeffectsofdiffuse

pol-lutioncausedbyurbanizationinestuariesatdifferentbiological

organizationlevelsofthepolychaeteL.acuta.Forthispurposewe

usedthebiomarkersfrequencyofmicronucleiatsubcellularlevel,

bodysizeandbiomassattheindividuallevel,and

production-to-biomassratioatthepopulationlevel.Thisframeworkwasapplied

inurbanizedandnon-urbanizedestuaries.Thus,we expectedL.

acutabiomarkerstoindicatetheenvironmentalhealthdifferences

betweenestuaries typeswhich would bedetected in alllevels

of biological organization.It ishypothesized that L.acuta from

urbanizedestuarieswillexhibit higherfrequencies of

micronu-cleiincells,lowerindividualbody sizesandbiomass,aswellas

higherproduction-to-biomassratioinpopulationswhencompared

tothosefromnon-urbanizedestuaries.

2. Materialandmethods

ThestudywasconductedfromAugusttoSeptemberin2014

attenestuarieslocatedbetweenthecoordinates25◦5S–48◦3W

and27◦5S–48◦4W(Fig.1).Thecoastalregionistypically

com-posedof bights foundedby quaternary sedimentsturning over

marine,tidal,andriver-lakeplainscrossedbyestuaries.The

cli-mateishumidsubtropicalwithrainfallwelldistributedthroughout

theyear.Theannualmeantemperatureis20◦Cwithseasonal

dif-ferencesrangingfrom17to22◦C.Thetidalregimeismicrotidal

withaverageamplitudeof0.83mforspringtidesand0.15mfor

neaptides(Cruz,1998).TheestuarinebasinsinsouthBrazilare

generallywellpreservedareas(highestconcentrationsrecorded:

1␮MofP,52␮MofN,27mg/kgofCu,28mg/kgofPb,105mg/kg

ofZn)interspersedwithurbanizedareas(highestconcentrations

E10 E4 E9 E2 E1 E3 E5 E7 E6 E8

Fig.1. Mapindicatingthe10estuariesinSouthernBrazil.E1-CosteiradoPirajubaé, E2–ItacorubiRiver,E3-MaruimRiver,E4-Saguac¸uBay,E5-AririuRiver,E6-Ribeirão daIlha,E7-LagoinhadoLeste,E8-MassiambuRiver,E9-RatonesRiver,E10-SaiMirim River.

recorded:12␮MofP,217␮MofN,46mg/kgofCu,56mg/kgof

Pb,144mg/kgofZn)(Pagliosa,2005;Pagliosaetal.,2006a,b,2016;

Rovaietal.,2013).Then,weperformedavisualinterpretationof

aerialimagescomplementedbyfieldsurveys,andusedexistent

dataofwaterandsedimentqualitytoselect.Inthissense,wehave

determinedtwotypesofestuariesforourstudyinrelationtothe

degreeofanthropogenicenvironmentaldisturbance:(i)urbanized

estuaries,wheneveravailable,indicatedbythewaterandsediment

data,andwhenagreatextentoftheestuarinebasinswascomposed

ofresidential,commercialorindustrialareaswithclearsignsof

disturbedlandscape;and(ii)non-urbanizedestuaries,whenever

available,indicatedbythewaterandsedimentdata,andwhenthe

estuarinebasinpresentsjustasmallorabsenceofsignsofanthropic

interventionsand visuallythephysiognomyof thelandscapeis

preserved.Thestudyestuarieswerespacedfrom05kmto200km

andbelongedtoadifferentwatershed,avoidingconfoundeffectof

urbanization.

InordertoassesstheresponsesofL.acutatoenvironmental

con-ditions,threesiteswererandomlyestablishedinshallowwatersat

themouthoffiveurbanizedandfivenon-urbanizedestuaries.The

mouthsoftheestuarieswerechosenforsamplingbecausetheysink

thecontinentalmaterialandmightthereforerepresentthegeneral

healthofthesesmallsystems.Ateachsite,individualsofL.acuta,

sedimentandwaterweresampled.Theeffectsofurbanizationon

differentlevelsofbiologicalorganizationofthepolychaetewere

(3)

level;(ii)thebodysizeandbiomass,attheindividuallevel;and(iii)

theproduction-to-biomassratio(P/B),atthepopulationlevel.

2.1. Molecularlevel

Ateachsite,multipleindividualsofL.acutawerecarefullyand

manuallycollectedusing aspatulaand tweezers,and heldin a

containerwithsedimentandwaterfromthelocalsource.Inthe

laboratory,allcontainersweremaintainedwithaeration.Then,we

randomlychose10aliveandunharmedorganisms(nobreakage

duringhandling)fromeachsamplingsitetoevaluatethefrequency

ofmicronucleiin cells. Theposteriorsegmentsofalive

individ-ualswereremovedusingascalpel andwerekeptforfourdays

inaquarium(naturalvariabilityoflightandtemperature)

receiv-ingdehydratedbrineshrimp(Branchipusstagnalis)asfood.Atthe

end of this period, theregenerated tissues were removed,

dis-aggregated intoacetic acidand methanol at a ratioof 3:1 and

centrifugedat900rpmforfourminutes. Thebulkof the

mate-rialresulting fromthedisaggregation ofthe 10specimens was

fixedinmethanolandstainedwithMay-GrünwaldGiemsa5%and

dilutedinphosphate bufferfor10min.Micronuclei frequencies

wereevaluatedunderalightmicroscope(OlympusCX21SF1,100×

magnification)bycountingonethousandcells per site (bulkof

10individuals).Micronucleiwereconsideredasthecorpusclesof

smallerdiameters,entirelyseparatedandwhichweresimilarin

colorandmorphologytothemainnuclei.Themicronucleitestwas

adaptedfromFenech(2000).

2.2. Individuallevel

From thecontainer, we randomlyselect 10 otheralive and

unharmedorganismsfromeachsamplingsitetomeasurefor

indi-vidualsize and biomass. The body lengthwas taken from the

anterior prostomium to posterior pygidium of each individual

underaZeissopticalstereoscope(DiscoveryV12;10␮mprecision)

coupledtoadigitalcamera(AxioCamMRc5).Additionally,thewet

weightofeachindividualwasmeasured(BELAnalyticalbalance;

0.0001gprecisionandinternalcalibrationM124AI24V550mA).

2.3. Populationlevel

Thebiomassvaluesofsampledindividualsfromeachsitewere

usedtocalculateempiricallytheproduction-to-biomassratioof

thepopulation.Weusedthefollowingformulaadaptedfromthe

modelofBrey(2012):

log10P/B= 7.947(−2.294log10M−2409.856×(1/(T +273))

+0.548+582851×(log10M×(1/(T+273)))

Where,P=production,B=meanpopulationbiomass,M=mean

individualbiomass(weusedaglobaldatabankonbody

composi-tionofaquaticorganismstogettheenergycontent(Joule)permg

ofwetmass;Breyetal.,2010),andT=meanseasonaltemperature

(weusedthehistorical,from1960to2015,meantemperaturevalue

of17.6◦Cfromthesampledmonthsforallsites;INMET(2016).The

value0.548isaproductoftheadaptedmodel,sinceallorganisms

belongtoAnnelida(taxon=1),areinfaunal(mobility=1),andoccur

inintertidalhabitats(depth=0m).

ThepopulationP/Bratioistherenovationorreplacementof

biologicalmaterial,thusbeingthequantityofmatterandenergy

potentiallyavailableforhighertrophiclevel.Theempiricmodel

ofBrey(2012)usedtocalculatepopulationproductivitywasbuilt

usingsample-baseddataandwasoriginallytreatedasascaleof

area(mg/m2).Inordertovalidatetheperformanceofthe

empiri-calmodelusingindividual-baseddata(i.e.,samplinganumberof

individualsinapopulationinsteadofsamplingindividualsofthe

populationlivinginaspecifiedarea),weusedpreviouslypublished

informationonL.acutapopulation(OmenaandAmaral,2000).The

datasetismadeoftwo year-longmonthlysamplesandwithL.

acuta populationsstructuredin fourdifferentcohorts. We

esti-matedtheP/Bratiosbasedonmeanindividualbiomass(mg)and

basedonmeanindividualbiomasspersquaremeter(mg/m2).The

comparisonbetweentheP/Bratioscalculatedwithsample-based

dataandindividual-baseddatawerefoundtobenotsignificant

(ANOVA, F(1,40)=0.080;P=0.778). We thereforeassumed that a

production-to-biomassratiousingindividual-baseddatacouldbe

usedtorepresentpopulationleveltestinourstudy.

2.4. Environmentaldata

Ateachestuaryandsite,samplesofnear-bottomwaterwere

collected in 500mL polyethylene bottle,previously cleaned by

immersion in 50% HCl, washedwith deionized water and kept

refrigeratedat4◦C.Determinationoftotal nitrogen,total

phos-phorusand totalphenols wasperformedby spectrophotometry

according toStandard Methods (APHA,1998), using a UV

visi-ble (FEMTO spectrophotometer 700 Plus). For the particlesize

analyses,weusedhomogenizedsedimentsub-samplesofa

stan-dardized weight (50g). The sand fraction was assessed by dry

sievingusingmeshesamong−1.5and4.0Phy,andfinefractions

wereaccessedviapipettingat20◦C(Suguio,1973).Thealuminum,

cadmium,chromium,copperandleadcontentsinsedimentswere

obtainedbycontrAA600highresolutioncontinuumsourceatomic

absorptionspectrometer(HR-CSGF-AAS,AnalytikJenaAG,Jena,

Germany)withatransverselyheatedgraphitetubeatomizer.The

samplesdigestionswereprecededwithadditionof2.5mLHNO3

67%and7.5mLHCl37%forapproximately3.0g,usingaTOPwave

IVlaboratorymicrowavedigestionsystem(AnalytikJenaAG,Jena,

Germany). Thestandard solutionof Al,Cd,Cr, Cu and Pbwere

preparedfromstockconcentratesolutioncontaining1000mgL−1

(Merck,Darmstadt,Germany)withnitricacidwereusedto

pre-paretheexternalcalibrationcurve.Additionally,toprovideabasis

forassertingtheabsenceofsedimenttoxicity(asexpectedfor

non-urbanizedestuaries)wecontrastedthemetalconcentrationsfound

withtheConsensus-BasedThreshold EffectConcentration (TEC;

MacDonaldet al., 2000).Similarly, toasserting sediment

toxic-ity(asexpectedforurbanizedestuaries)wecontrastedthemetal

concentrationsfoundwiththeConsensus-BasedProbable Effect

Concentration(PEC;MacDonaldetal.,2000).

2.5. Dataanalysis

In order to assess the relationship between samples of the

biomarkers at multiple biological scales of the polychaete and

samples of environmental conditions of estuaries, a

distance-basedredundancyanalysis(dbRDA;LegendreandAnderson,1999;

McArdleandAnderson,2001)wasused.Inthisanalysis,theaxes

ofordinationsarelinearcombinationsoftheenvironmental

vari-ables that bestexplain thebiological variation. TheBray-Curtis

coefficient and Euclidean distance were used on squared-root

transformedbiological andenvironmentaldata,respectively.To

modelthechangesineachofthebiologicalvariables

represent-ingdifferentbiologicalorganizationlevels(micronucleifrequency,

bodysize,biomass,andP/Bratio)relatedtotheenvironmental

con-ditions,weusedacanonicalanalysisofprincipalcoordinates(CAP;

AndersonandWills,2003).TheCAPanalyseshowwellthe

mul-tivariateenvironmentaldatacanpredictthepositionofsamples

along a continuousvalues ofeach biomarker.CAPavoids

over-parameterization(i.e.,toavoidincludingtoomanyaxesandfinding

(4)

coor-dbRDA (88.8% of fitted, 77.2 of total variation)

dbRDA (11.3% of fitted, 10% of tottal variation)

Non-urbanized Estuaries

Urbanized Estuaries

Fig.2.Distance-basedRDAordinationrelatingsedimentandwaterparameterstoL.acutaresponses(micronucleifrequency,bodysize,biomass,andP/Bratio)inurbanized andnon-urbanizedestuaries.

dinateaxesthatminimizealeave-one-outresidualsumofsquares

(AndersonandRobinson,2003).

Additionally,thebiologicalandenvironmentalvariableswere

individuallyevaluatedusinghierarchicalnestedanalysesof

vari-ance.Thefactor“condition”wasfixed(twolevels:urbanizedvs

non-urbanized)andthefactor“estuary”wasrandomandnested

withintheconditionfactor(fivelevels:fiveestuarieswithineach

estuarytype).Thethree siteswithineach estuaryprovidedthe

replicates.The nested design providesan estimate of the

con-tributionofeachestuarytothetotalvariationamong replicates

withintheurbanizedandnon-urbanizedcomparison.Partitioning

ofthevariancesassociatedwitheachfactorpermitsunconfounded

comparisonsatanyofthechosenfactors(Underwood,1997).

Addi-tionally,componentsofvariationwerecalculatedtoestimatethe

percentage of variability attributed to each factor and for the

residualbyrestricted maximumlikelihood estimation(Pinheiro

andBates,1996).Datawerepreviouslytestedforheterogeneity

ofvariancewiththeCochrantestandsquared-roottransformed

whenever necessary. For theANOVAs, we used the GAD

pack-age(Sandrini-NetoandCamargo,2012)intheRenvironment(R DevelopmentCoreTeam,2013),andforthedbRDAandCAPwe

usedthePERMANOVA+add-onPRIMERsoftware(Andersonand

Gorley,2007).

3. Results

ThespatialdistributionofL.acutasampleswasdistinctbetween

theurbanizedandnon-urbanizedestuaries,whilethreereplicates

fromanon-urbanizedestuaryappearedinanintermediate

posi-tion(dbRDAwith89.6%oftheexplainedvariation;Fig.2).Samples

fromurbanizedestuarieswerecharacterizedbyhighercontentof

metals(lead,cadmium,andchrome)insedimentandhigher

con-centrationsofdissolvednutrients(phosphorusandnitrogen)and

phenolinwater.Otherwise,biologicalsamplesofnon-urbanized

estuariesweremorerelatedwithsandysedimentsandwellsorted

grains(lowvariance).Nevertheless,theintermediategroupof

non-urbanizedsamplesappearedtogroupwithcontentofcopperand

verypoorlysortedgrains(largevariance).

Allrecordedmetalconcentrationsinnon-urbanizedestuaries

were lower than the Consensus-Based Probable Effect

Concen-tration (PEC) and just one estuary (estuary 6) reported higher

concentrationsthantheConsensus-BasedThresholdEffect

Concen-tration(TEC),indicatinganabsenceofsedimenttoxicity(Fig.3).

Conversely,thechromium,copper,andleadconcentrationsinall

sites ofurbanizedestuaries(exceptestuary 5for copper) were

higherthantheTEC andsomeestuaries(mainly forchromium)

werehigherthanthePEC,indicatingthepresenceofsediment

tox-icity.

Theanalysisofvariancesofenvironmentalvariables showed

significantly higher values for aluminum, cadmium, lead and

sorting in sediment as well as nitrogen in water from

urban-ized estuaries than from non-urbanized ones (Tables 1 and 2;

Figs.3and4).Themagnitudeoftheeffectsforallofthosevariables

presented thegreatestpercentage ofexplanationrelated tothe

factorcondition(allcomponentsofvariation>50%).Neither

envi-ronmentalvariableshowedhighervaluesinnon-urbanizedthan

urbanizedestuariesandthepercentage ofsand,contentof

cop-perandchromeinsediment,andconcentrationofphosphorusand

phenolsinwaterwerenotdifferentbetweenthetwoestuary

con-ditions.Thelowestvaluesofcomponentsofvariation(between27

and42%)highlightedthelowimportanceoffactorconditionsfor

thesevariables.Contrarily,allvariablesfromsedimentandwater

weresignificantlydifferentbetweenestuariesnestedwithin

con-dition.Thismeansthatthevariationwithinagroupofestuariesis

differentingeneraltothevariationwithintheothergroupof

estu-aries.Ingeneral,theurbanizedestuariesweremoreheterogeneous

amongthemselvesthannon-urbanizedestuaries(meananderror

inFigs.3and4).Themagnitudeoftheeffectsofthefactorestuary

nestedinfactorconditionwaslowwhenthefactorconditionforthe

samevariablewassignificant(between23and33%)andincreased

onlyalittlewhenthefactorconditionwasnotsignificant(between

(5)

Al ( µ g/g) 0.00 0 0.01 0 0.02 0 0.030 Cd ( µ g/g) 0.0 0 0.0 4 0.08 0.12 Cr ( µ g/g) 02 0 4 0 60 80 . . . . _ _ _ _ _ _ _ _ _ Cu ( µ g/g) 05 1 0 15 20 Pb ( µ g/g) 02468 10 12 14 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Urbanized

Non

−urbani

zed

TEC PEC

Fig.3.Metalsedimenttoxicity(mean±1SD)inurbanizedandnon-urbanized estu-aries.UnderlinesrepresenttheConsensus-BasedThresholdEffectConcentration (TEC)andtheConsensus-BasedProbableEffectConcentration(PEC),accordingto MacDonaldetal.(2000).SeeFig.1fororiginalnamesofestuaries.

groupsofestuariestoexplainallvariabilityfoundintheanalysisof

variance.

All parameters presenting the different levels of biological

organizationofL.acutaweresignificantlydifferentbetweenthe

Table1

Resultofhierarchicalnestedanalysisofvarianceandcomponentofvariation(CV) ofmetalfromsedimentsinurbanizedandnon-urbanized(Condition)estuaries.

Source Anova CV(%) Df MS F-ratio P-value Al Condition 1 0.071 15.418 0.004 57.038 Estuary(Condition) 8 0.005 34.818 <0.001 33.103 Residuals 20 <0.001 9.859 Cd Condition 1 0.138 12.686 0.007 50.059 Estuary(Condition) 8 0.011 8.806 <0.001 30.829 Residuals 20 0.001 19.112 Cr Condition 1 36.744 3.624 0.093 37.578 Estuary(Condition) 8 10.140 67.556 <0.001 51.490 Residuals 20 0.150 10.932 Cu Condition 1 12.989 4.536 0.065 41.701 Estuary(Condition) 8 2.864 91.362 <0.001 49.314 Residuals 20 0.031 8.985 Pb Condition 1 9.280 13.329 0.006 52.626 Estuary(Condition) 8 0.696 14.977 <0.001 32.375 Residuals 20 0.047 14.999

InboldP<0.05,Df=degreesoffreedom,MS=meansquare.

Table2

Resultofhierarchicalnestedanalysisofvarianceandcomponentofvariation(CV)

ofsedimentandwaterparametersinurbanizedandnon-urbanized(Condition)

estuaries. Source Anova CV(%) Df MS F-ratio P-value SEDIMENT Sand Condition 1 62.368 4.337 0.070 38.151 Estuary(Condition) 8 14.380 25.297 <0.001 45.767 Residuals 20 0.568 16.082 GrainSorting Condition 1 3.765 12.778 0.007 49.717 Estuary(Condition) 8 0.295 7.851 <0.001 30.260 Residuals 20 0.037 20.023 WATER N Condition 1 0.020 16.980 0.003 49.880 Estuary(Condition) 8 0.001 3.211 0.016 23.153 Residuals 20 <0.001 26.967 P Condition 1 0.088 3.356 0.104 27.796 Estuary(Condition) 8 0.026 3.358 0.013 33.929 Residuals 20 0.008 38.275 Phenol Condition 1 0.010 2.473 0.155 26.587 Estuary(Condition) 8 0.004 9.900 <0.001 46.446 Residuals 20 <0.001 26.966

InboldP<0.05,Df=degreesoffreedom,MS=meansquare.

conditionsurbanizedand non-urbanized,and among thefactor

estuariesnestedinconditions(Table3;Fig.5).Thelowerlevels

ofbiologicalorganization(frequencyofmicronucleiatmolecular

level;body sizeandbiomassatindividuallevel)showedhigher

valuesinurbanizedthaninnon-urbanizedestuaries.Contrarily,the

higherlevelofbiologicalorganizationassessed,P/Bratioof

popu-lation,wassignificantlyhigherinnon-urbanizedestuariesthanin

urbanizedones.Themagnitudesoftheeffectsofthefactor

con-ditionwerealwayshigh(between54and66%)andofthefactor

(6)

Fig.4.Sedimentandwatervariables(mean±1SD)inurbanizedandnon-urbanized estuaries.SeeFig.1fororiginalnamesofestuaries.

componentofvariationindicatethatcontributionofthevariation

withingroupsofestuariesis lessimportantforthetotalspatial

variabilityfoundthan thevariation betweentheurbanizedand

non-urbanizedcondition.

TheCAPanalysesfoundastronglinearrelationshipamongeach

L.acutabiologicalparametersandthesedimentandwater

proper-Table3

Resultofhierarchicalnestedanalysisofvarianceandcomponentofvariation(CV)of L.acutadifferentlevelsofbiologicalorganizationinurbanizedandnon-urbanized (Condition)estuaries.

Source Anova CV(%)

Df MS F-ratio P-value

Micronucleifrequency(1000cells−1)

Condition 1 11.981 13.837 0.005 54.195 Estuary(Condition) 8 0.866 20.948 <0.001 33.006 Residuals 20 0.041 12.800 Bodysize(cm) Condition 1 1.778 35.095 <0.001 59.456 Estuary(Condition) 8 0.051 3.387 0.013 19.114 Residuals 20 0.015 21.430 Biomass(mg) Condition 1 7.783 66.136 <0.001 66.537 Estuary(Condition) 8 0.118 3.013 0.021 15.069 Residuals 20 0.039 18.394 P/Bratio(y−1) Condition 1 17.115 26.764 <0.001 60.415 Estuary(Condition) 8 0.639 10.422 0.013 25.306 Residuals 20 0.061 14.279

InboldP<0.05,Df=degreesoffreedom,MS=meansquare.

tiesrepresentativeoftheurbanizedandnon-urbanizedestuaries

(Fig.6).Thesquaredcanonicalcorrelationwashighandpositivefor

micronucleifrequency(2=0.86),bodysize(2=0.79)andbiomass

(␦2=0.93),andhighandnegativefortheP/Bratio(2=0.82).

Addi-tionally,theCAPanalysisformicronucleifrequencyshowedthree

replicatedsitesofthenon-urbanizedestuarieswereintermediately

groupedamongsitesoftheurbanizedestuaries.

4. Discussion

L.acutahad significantlyvaryingpositiveand negative

feed-backsbetweenurbanizedandnon-urbanizedestuariesatmultiple

biologicalscales.Theseresultsindicatethatthebiomarkersshowed

thedifferencesinenvironmentalhealth ofthestudiedestuaries

in southern Brazilquitewell.In fact,the environmental

condi-tionsofurbanizedestuarieswereexceedingtheconsensus-based

thresholdeffectconcentration(TEC)andinsomesiteseven

sur-passedtheconsensus-basedprobableeffectconcentration(PEC).

Conversely,non-urbanizedestuariesneverreachedthePEClevels

andrarelysurpassedtheTEClevels.Then,weconfirmour

hypoth-esisthatbiomarkerscandetectenvironmentalhealthdifferences

betweenestuariestypesinalllevelsofbiologicalorganization

stud-ied.Thedetectedgeneralizedeffectsinallbiologicalorganization

scalesindicatea pollutionimpactonL.acuta.Thepopulationof

thepollutiontolerantpolychaeteisgrowingmore,the

individu-alsareincreasinginbodymassandbodysize,butthemolecules

arestandingdamaged.Furthermost,thereisacomprehensivefield

investigationstressingchangesinestuarinesoft-bottom

commu-nitiesconnectedwithchangesinL.acutapopulation,expressedas

increasedabundance,sizeandbiomass(Souzaetal.,2016;Pagliosa

andBarbosa,2006;Souzaetal.,2013;Braukoetal.,2015;Gusmão etal.,2016;MagalhãesandBarros,2011).Ontheotherhand,there

isacollectionoflaboratoryexperimentsevidencingchangesinL.

acutabehavior,histology(coelomobliteration,separation ofthe

cuticlefromepidermis),tissue(lossofthedigestiveepithelium)

andbiochemicalparameters(catalase,superoxidedismutase,lipid

peroxidation, andglutathioneS-transferase) causedby different

pollutants(Geracitanoetal.,2002;Ferreira-Cravoetal.,2008;Leão

etal.,2008;Ventura-Limaetal.,2011).Alloftheseevidencesevoke

twoquestionsaboutL.acutaresponsestopollution:(i)atthehigher

scalesofbiologicalorganization(fromindividualtocommunity),

(7)

Fig.5. BiomarkersofL.acutadifferentlevelsofbiologicalorganization(mean±1SD) inurbanizedandnon-urbanizedestuaries.SeeFig.1fororiginalnamesofestuaries.

vagueforotherspeciesthataremoresensitivetopollution.The

advantagecomesmostly fromchangingphenotypicexpressions

relatedwithbodysizeandbiomass.Asfoundinotherinvertebrates

(Hoffmannetal.,2004),thesechangesinsizeandbiomasscould

berootedintheincreasedL.acutachromosomenumbers(2n=38;

15 10 5 0 -0.4 -0.2 0 0.2 0.4 6 5 4 3 2 1 -0.4 -0.2 0 0.2 0.4 800 600 400 200 0 -0.4 -0.2 0 0.2 0.4 9.5 8.5 7.5 6.5 5.5 -0.4 -0.2 0 0.2 0.4 Non-urbanized Estuaries Urbanized Estuaries

Fig.6. Canonicalanalysisofprincipalcoordinates(CAP)tomodeltherelationships ofsedimentandwatervariablestoL.acutaresponses(micronucleifrequency,body size,biomass,andP/Bratio)inurbanizedandnon-urbanizedestuaries.

∼36%morethanothersnereidids)andtheconsequentincreased

potentialforchromosomalmutationsrelatedtoinversions(4-fold

morenucleoliperinterphasecellasin othernereidids)(Ipucha

etal.,2007).Infact,L.acutaissodifferenttootherfamilyspecies

(8)

inphylogeneticanalysisofthenereidids(Santosetal.,2006);(ii)

atmorebasallevelsofbiologicalorganization(frommoleculeto

organ)thespeciesdevelopedstrategiestodealwithexcessive

pol-lutantsandtoxins.Thesubstancesareaccumulatedinregionsof

thebody,tissuesandcells,andmucusappearstobeakey

sub-stanceforprimaryprotection,favoringthebiotransformationof

contaminants(Leãoetal.,2008).Theresultantpermanenceand

resistanceoftheenlargedorganismwithaccumulated

contami-nantsintheirbodyareeye-catchingpreytoconsumers(Ienoetal.,

2000),whichmightcauseabottom-uppollutiontransfer

(biomag-nification)alongtheestuarinefoodweb.

Theresponsemechanismsoforganismstopollutionare

usu-allyrapidlyandevidentlyobservedatmolecularandcellularscales

butbecomeratherdifficulttodefineathigherlevelsdueto

evolu-tionarydistanceandenvironmentalcomplexity(Smoldersetal.,

2004; Sulmon et al., 2015).Here, we detectedorganisms with

micronucleusfrequency,atypeofDNAdamage,threetimeshigher

inurbanizedthaninnon-urbanizedestuaries,indicatinggeneral

genotoxicityofmetalsintheformer(Sanchez-Galanetal.,1999;

Ayllónet al.,2000; Andradeetal., 2004).Further,we recorded

L.acutaDNAdamagebutnoindividualorpopulationchangesin

thesitesofoneestuarytypifiedasnon-urbanizedandpresenting

non-expectedgreatconcentrationsoflead,copper,chromiumand

aluminuminsediments,indicatinganearlystageofgenotoxicity.

Metalsexertgenotoxicactionaloneorthroughsynergisticaction.

Insub-lethalconcentrationsandchronicform,theycouldcause

markedchanges in antioxidant enzymes,suggesting the

induc-tionofoxidativestresswithimplicationsforcellrepairsystems

(Livingstone, 2003; Nusettiet al., 2005)which affects theDNA

molecule(Meneghini, 1997).Amongalltypes ofDNA damages,

strandbreak andthesubsequentmicronucleusformationisthe

mostchallengingtothecellsoncethecontinuousformationofsuch

breaksmaycontributetogenomicinstability(Halazonetisetal.,

2008).

Estuarinespecies living inurbanizedareas areusually

char-acterizedby small organisms withlow individual biomass and

r-strategists (Elliottand Quintino, 2007).L. acutais a typical

r-strategist species with no parental care, and the presence of

femaleswithlargematureoocytesandrecruitsthroughouttheyear

(OmenaandAmaral,2000;Santosetal.,2006;MartinandBastida,

2006).Conversely,inthepresentstudy,thesizeandbiomassof

L.acutaindividualsaturbanizedestuariesweretwo-tothree-fold

higherthanthoseofthenon-urbanized.Possibly,theexposureof

organismstosublethalamountsofxenobioticstriggersadaptive

responsesprovidinggreaterabilitytotolerance(KlerksandWeis,

1987;Adams,2005).Polychaetesadvantagesofanincreasedsize

couldcomefromtheconcentrationofmetalsinthetissuestending

toadecreaseintheincreasedsizedandageoforganisms(Mendez

andPáez-Osuna,1998),meaningthatlargerorganismsaremore

likelytosuccessfullythriveundercontamination.Whensubjected

tolowtomoderateconcentrationsofxenobiotics,L.acutaresponds

bypositivelyactivatingdetoxifyingenzymesin sufficient

quan-titiestopreventdamagecaused byoxidativestress(Geracitano

etal.,2004a,b).Additionally,theproductionofmucussubstantially

increasesthe antioxidantdefense system(Moraes etal., 2006).

Thus, living in polluted environment requires many metabolic

responsesthat demands high-energy expenditure toorganisms

(Bayneetal.,1979;Smoldersetal.,2004).Inaddition,the

poly-chaetemaytakeadvantagestrategyforsurvivinginareaswithan

increasedorganicmaterialinsediments.Hence,forL.acuta

pop-ulationthisexcessiveenergymightberequiredtoincreasebody

sizeandbiomasscoupledwithactivatingresponsesrelated,

espe-cially,totheantioxidantdefensemechanisms.Asaconsequenceof

energyallocationtotoleratetheenvironmentalpollutionin

urban-izedestuaries,theproductiontobiomassratioofL.acutatended

todecrease.Thatisthecontrarytotheexpectedtoanopportunist

species,whenusuallypopulationshighdensityandbiomassin

pol-lutedsitesaresupportedbyindividualswithsmallersizeranges

andhigherproductionvalueswithaturnoverratiohigherthanin

non-pollutedsitesorwhenpollutionwasended(Allaetal.,2006;

Méndezetal.,1997).Allpresentedevidencesinmolecular,

individ-ualandpopulationsascertainL.acutaasatolerantspecies,instead

ofanopportunist,andisausefulindicatorofenvironmental

pollu-tioninestuaries.

Ourresultsshowedanenvironmentalpollutionimpactin all

levelsofbiological organizationofL.acuta inurbanized

estuar-ies,whichindicatethateveninnon-heavypollutedestuaries,the

synergismsofdiffusecontaminantscouldcauseageneralized

bio-logicaleffect.Themainresponseinhigherbiologicalorganization

levels of the polychaete(above individuallevel) appears to be

changesintheirphenotypeexpressionrelatedwithincreasedbody

sizeandbiomass,andtheconsequentdecreasedP/Bratio.However,

whatappearstobeacompetitiveadvantageathigherbiological

lev-elsishighcostatlowerlevels(bellowindividuallevel),withDNA

damage.Wedetectedtheeffectsofcontaminantsonmolecular

lev-elsoccurearlier,whichmightfavordecisionmakingbymanagers

andstakeholderaspreventivepracticesbeforetheemergenceof

damagestopopulationsorcommunitieslevels.Alltheselife

his-torycharacteristicsof L.acuta point toa tolerancetopollution

performance,whichisadesirablefeatureforausefulbioindicator.

Theapproachusedheretotracktheeffectsofcontaminantsat

multiplebiologicalscalesusingaframeworkofbiomarkersshowed

accuratewhencontrastedwiththeenvironmentaldata.Allused

biomarkersarefriendlyandeasytouse.Themicronucleifrequency

isa lowercostandmore timeefficienttousethanother

tradi-tionalmolecularapproaches,asproteomicoumetabolomic.The

biomarkers atindividual levelare widespreadusedand do not

needanyadditionalmaterialthanthealreadyusedinbenthic

ecol-ogy.TheempiricalpopulationP/Bratioisapowerfultoolalready

implemented,butunfortunatelyscarcelyused.Allusedbiomarkers

seemtobeparticularlyeffectivetohighlightdifferencesin

envi-ronmentalhealthandcouldbeanalternativemethodtodetermine

estuarinepollutioncondition.

Acknowledgments

Theauthorswish toacknowledgesupportfromtheBrazilian

NationalResearchCouncil(CNPq).WAWwassupportedbygrants

fromtheCAPESFoundation,MinistryofEducationofBrazil.

References

APHA,A.,1998.Standardmethodsfortheexaminationofwaterandwastewater, 20.

Adams,S.M.,2005.Assessingcauseandeffectofmultiplestressorsonmarine systems.Mar.Pollut.Bull.51,649–657,http://dx.doi.org/10.1016/j.marpolbul. 2004.11.040.

Alla,A.A.,Gillet,P.,Deutsch,B.,Moukrim,A.,Bergayou,H.,2006.ResponseofNereis diversicolor(Polychaeta,Nereidae)populationstoreducedwastewater dischargeinthepollutedestuaryofOuedSouss,BayofAgadir,Morocco.Estuar. Coast.Shelf´ıs70,633–642,http://dx.doi.org/10.1016/j.ecss.2006.01.028/t. Anderson,M.J.,Gorley,R.N.,2007.PERMANOVA+forPRIMER:GuidetoSoftware

andStatisticAlMethods.PRIMER-E,Plymouth,UK.

Anderson,M.J.,Robinson,J.,2003.Generalizeddiscriminantanalysisbasedon distances.Aust.N.Z.J.Stat.45,301–318,http://dx.doi.org/10.1111/1467-842X. 00285.

Anderson,M.J.,Wills,T.J.,2003.Canonicalanalysisofprincipalcoordinates:a usefulmethodofconstrainedordinationforecology.Ecology84,511–525, http://dx.doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2. Andrade,V.M.,Silva,J.,Silva,F.R.,Heuser,V.D.,Dias,F.J.,Yoneama,M.L.,Freitas,

T.R.O.,2004.Fishasbioindicatorstoassesstheeffectsofpollutionintwo SoutherBrazilianriversusingthecometassayandmicronucleustest.Environ. Mol.Mutagen.44,459–468,http://dx.doi.org/10.1002/em.20070.

Ayllón,F.,Suciu,R.,Gephard,S.,Juanes,F.,Garcia-Vasque,z.,2000.Conventional armamentwastesinducemicronucleiinwildbrowntroutSalmotrutta.Mutat. Res.470,169–176,http://dx.doi.org/10.1016/s1383-5718(00)00101-7. Bayne,B.L.,Moore,M.N.,Widdows,J.,Livingstone,D.R.,Salkeld,P.,1979.

(9)

pollution:studieswithbivalvemollusk.Philos.Trans.R.Soc.Lond.B286, 563–581,http://dx.doi.org/10.1098/rstb.1979.0046.

Bickham,J.W.,Sandhu,S.,Hebert,P.D.N.,Chikhi,L.,Athwal,R.,2000.Effectsof chemicalcontaminantsongeneticdiversityinnaturalpopulations: implicationsforbiomonitoringandecotoxicology.Mutat.Res.463,33–51, http://dx.doi.org/10.1016/S1383-5742(00)00004-1.

Botter-Carvalho,M.L.,Carvalho,P.V.V.,Santos,P.J.P.,2011.Recoveryof

macrobenthosindefaunatedtropicalestuarinesediments.Mar.Pollut.Bull.62, 1867–1876,http://dx.doi.org/10.1016/j.marpolbul.2011.04.044.

Brauko,K.M.,Souza,F.M.,Muniz,P.,Camargo,M.G.,Lana,P.C.,2015.Spatial variabilityofthreebenthicindicesformarinequalityassessmentina subtropicalestuaryofSouthernBrazil.Mar.Pollut.Bull.91,454–460. Brey,T.,Müller-Wiegmann,C.,Zittier,Z.M.C.,Hagen,W.,2010.Bodycomposition

inaquaticorganisms—aglobaldatabankofrelationshipsbetweenmass, elementcomposition.,andenergycontent.J.SeaRes.64,334–340. Brey,T.,2012.Amulti-parameterartificialneuralnetworkmodeltoestimate

macrobenthicinvertebrateproductivityandproduction.Limnol.Oceanogr. Methods10,581–589,http://dx.doi.org/10.4319/lom.2012.10.581. Catalano,B.,Moltedo,G.,Martuccio,G.,Gastaldi,L.,Virno-Lamberti,C.,Lauria,A.,

Ausili,A.,2012.CanHedistediversicolor(Nereidae,Polychaete)beconsidered agoodcandidateinevaluatingPAHcontamination?Amultimarkerapproach. Chemosphere86,875–882,http://dx.doi.org/10.1016/j.chemosphere.2011.10. 040.

Cruz,O.,1998.AIlhadeSantaCatarinaeocontinentepróximo;umestudode geomorfologiacosteira.EditoradaUFSC,Florianópolis,Brasil,276p. D’Alessandro,L.A.,Hoehme,S.,Henney,A.,Drasdo,D.,Klingmüller,U.,2015.

Unravelinglivercomplexityfrommoleculartoorganlevel:challengesand perspectives.Prog.Biophys.Mol.Biol.117,78–786,http://dx.doi.org/10.1016/j. pbiomolbio.2014.11.005.

Dixon,D.R.,Pruski,A.M.,Dixon,L.R.,Jha,A.N.,2002.Marineinvertebrate eco-genotoxicology:amethodologicaloverview.Mutagenesis17,495–507. Durou,C.,Poirier,L.,Amiard,J.C.,Budzinski,H.,Gnassia-Barelli,M.,Lemenach,K.,

Peluhet,L.,Mouneyrac,C.,Roméo,M.,Amiard-Triquet,C.,2007.Biomonitoring inacleanandamulti-contaminatedestuarybasedonbiomarkersand chemicalanalysesintheendobenthicwormNereisdiversicolor.Environ.Pollut. 148,445–458,http://dx.doi.org/10.1016/j.envpol.2006.12.022.

Elliott,M.,Quintino,V.,2007.Theestuarinequalityparadox,environmental homeostasisandthedifficultyofdetectinganthropogenicstressinnaturally stressedareas.Mar.Pollut.Bull.54,640–645.

Fenech,M.,2000.Theinvitromicronucleustechnique.Mutat.Res.455,81–95, http://dx.doi.org/10.1016/S0027-5107(00)00065-8.

Ferreira-Cravo,M.,Ventura-Lima,J.,Sandrini,J.Z.,Amado,L.L.,Geracitano,L.A., Rebelo,M.,Bianchini,A.,Monserrat,J.M.,2008.Antioxidantresponsesin differentbodyregionsofthepolychaetaLaeonereisacuta(Nereididae)exposed tocopper.Ecotoxicol.Environ.Saf.72,388–393,http://dx.doi.org/10.1016/j. ecoenv.2008.07.003.

Fleeger,J.W.,Carman,K.R.,Nisbet,R.M.,2003.Indirecteffectsofcontaminantsin aquaticecosystems.Sci.TotalEnviron.317,207–233,http://dx.doi.org/10. 1016/S0048-9697(03)00141-4.

Geracitano,L.,Monserrat,J.M.,Bianchini,A.,2002.Physiologicalandantioxidant enzymeresponsestoacuteandchronicexposureofLaeonereisacuta (Polychaeta,Nereididae)tocopper.J.Exp.Mar.Biol.Ecol.277,145–156,http:// dx.doi.org/10.1016/S0022-0981(02)00306-4.

Geracitano,L.,Monserrat,J.M.,Bianchini,A.,2004a.Histologicalandmorphological alterationsinducedbycopperexposureinLaeonereisacuta(Polychaeta, Nereididae).Mar.Environ.Res.58,263–267,http://dx.doi.org/10.1016/j. marenvres.2004.03.069.

Geracitano,L.,Monserrat,J.M.,Bianchini,A.,2004b.OxidativestressinLaeonereis acuta(PolychaetaNereididae):environmentalandseasonaleffects.Mar. Environ.Res.58,625–630,http://dx.doi.org/10.1016/j.marenvres.2004.03.053. Gusmão,J.B.,Brauko,K.M.,Eriksson,B.K.,Lana,P.C.,2016.Functionaldiversityof

macrobenthicassemblagesdecreasesinresponsetosewagedischarges.Ecol. Indic.66,65–75.

Hagger,J.A.,Fisher,A.S.,Hill,S.J.,Depledge,M.H.,Jha,A.N.,2002.Genotoxic, cytotoxicandontogeneticeffectsoftri-n-butyltinonthemarineworm, Platynereisdumerilii(Polychaeta:Nereidae).Aquat.Toxicol.57,243–255, http://dx.doi.org/10.1016/S0166-445X(01)00200-4.

Halazonetis,T.D.,Gorgoulis,V.G.,Bartek,J.,2008.Anoncogene-inducedDNA damagemodelforcancerdevelopment.Science319,1352–1355,http://dx.doi. org/10.1126/science.1140735.

Hoffmann,A.A.,Sgrò,C.M.,Weeks,A.R.,2004.Chromosomalinversion

polymorphismsandadaptation.TrendsEcol.Evol.19,482–488,http://dx.doi. org/10.1016/j.tree.2004.06.013.

InstitutoNacionaldeMetrologia(INMET).BancodeDadosMeteorológicospara EnsinoePesquisa.(Disponívelem:

http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep).(accessed 18.09.16).

Ieno,E.,Martin,J.P.,Bastida,R.,2000.EstiamtionofsizeclassesinLaeonereisacuta (Polychaeta:Nereididae)basedonjawlengthandbodywidthusableintrophic studies.Bull.Mar.Sci.67,39–43.

Ipucha,M.C.,Santos,C.G.,Lana,P.C.,Sbalqueiro,I.J.,2007.Cytogenetic characterizationofsevenSouthAmericanspeciesofnereididae(Annelida: Polychaeta):implicationsforthekaryotypicevolution.J.BasicAppl.Genet.18, 27–38.

Jha,A.N.,2004.Genotoxicologicalstudiesinaquaticorganisms:anoverview. Mutat.Res.552,1–17,http://dx.doi.org/10.1016/j.mrfmmm.2004.06.034.

Kawecki,T.J.,Ebert,D.,2004.Conceptualissuesinlocaladaptation.Ecol.Lett., 1225–1241,http://dx.doi.org/10.1111/j.1461-0248.2004.00684.x. Klerks,K.P.,Weis,J.S.,1987.Geneticadaptationtoheavymetalsinaquatic

organism:areview.Environ.Pollut.45,173–205,http://dx.doi.org/10.1016/ 0269-7491(87)90057-1.

Leão,J.C.,Geracitano,L.A.,Monserrat,J.M.,Amado,L.L.,Yunes,J.S.,2008. Microcystin-inducedoxidativestressinLaeonereisacuta(Polychaeta Nereididae).Mar.Environ.Res.66,92–94,http://dx.doi.org/10.1016/j. marenvres.2008.02.033.

Legendre,P.,Anderson,M.J.,1999.Distance-basedredundancyanalysis:testing multispeciesresponsesinmultifactorialecologicalexperiments.Ecol.Monogr. 69,1–24,http://dx.doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0. CO;2.

Livingstone,D.R.,2003.Oxidativestressinaquaticorganismsinrelationto pollutionandaquaculture.Rev.Med.Vet-Toulouse154,427–430.

MacDonald,D.D.,Ingersoll,C.G.,Berger,T.A.,2000.Developmentandevaluationof consensus-basedsedimentqualityguidelinesforfreshwaterecosystems.Arch. Environ.Contam.Toxicol.39,20–31,http://dx.doi.org/10.1007/

s002440010075.

Magalhães,W.F.,Barros,F.,2011.Structuralandfunctionalapproachestodescribe polychaeteassemblages:ecologicalimplicationsforestuarineecosystems. Mar.Freshwa.Res.62,918–926,http://dx.doi.org/10.1071/MF10277. Martin,J.P.,Bastida,R.,2006.Populationstructure,growthandproductionof

Laeonereisculveri(Nereididae:Polychaeta)intidalflatsofRiodelaPlata estuary,Argentina.J.Mar.Biol.Assoc.U.K.86,235–244,http://dx.doi.org/10. 1017/S0025315406013087.

McArdle,B.H.,Anderson,M.,2001.Fittingmultivariatemodelstocommunitydata: acommentondistance-basedredundancyanalysis.Ecology82,290–297, http://dx.doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2. Mendez,N.,Páez-Osuna,F.,1998.Tracemetalsintwopopulationsofthefireworm

EurythoecomplanatafromMazatlánBay:effectofbodysizeonconcentrations. Environ.Pollut.102,279–285,

http://dx.doi.org/10.1016/S0269-7491(98)00061-X.

Meneghini,R.,1997.Ironhomeostasis,oxidativestress,andDNAdamage.Free Radic.Biol.Med.23,783–792, http://dx.doi.org/10.1016/S0891-5849(97)00016-6.

Mersch,J.,Beauvais,M.N.,Nagel,P.,1996.Inductionofmicronucleiinhaemocytes andgillcellsofzebramusselsDreissenapolymorpha,exposedtoclastogens. Mutat.Res.371,47–55,http://dx.doi.org/10.1016/S0165-1218(96)90093-2. Monserrat,J.M.,Martínez,P.E.,Geracitano,L.A.,Amado,L.L.,Martins,C.M.G.,Pinho,

G.L.L.,Chaves,I.S.,Soares,I.,Ferreira-Cravo,M.,Ventura-Lima,J.,Bianchini,A., 2007.Pollutionbiomarkersinestuarineanimals:criticalreviewandnew perspectives.Comp.Biochem.Phys.C146,221–234,http://dx.doi.org/10.1016/ j.cbpc.2006.08.012.

Moraes,B.M.,Ferreira,J.L.R.,Ros,a.C.E.,Sandrini,J.Z.,Votto,A.P.,Trindade,G.S., Geracitano,L.A.,Abreu,P.C.,Monserrat,J.M.,2006.Antioxidantpropertiesof themucussecretedbyLaeonereisacuta(Polychaeta,Nereididae):Adefense againstenvironmentalpro-oxidants?Comp.Biochem.Phys.C142,293–300, http://dx.doi.org/10.1016/j.cbpc.2005.10.017.

Netto,S.A.,Lana,P.C.,1994.Effectsofsedimentdisturbanceonthestructureof benthicfaunainasubtropicaltidalcreekofsoutheasternBrazil.Mar.Ecol. Prog.Ser.106,239–247.

Nusetti,O.,Zapata-Vivenes,E.,Escalpés,M.M.,Rojas,A.,2005.Antioxidant EnzymesandtissueregenerationinEurythoecomplanata(Polychaeta: Amphinomidae)exposedtousedvehiclecrankcaseoil.Arch.Environ.Contam. Toxicol.48,509–514,http://dx.doi.org/10.1007/s00244-004-0041-0. Omena,E.P.,Amaral,A.C.Z.,2000.Populationdynamicsandsecondaryproduction

ofLaeonereisacuta(Treadwell,1923)(Nereididae:Polychaeta).Bull.Mar.Sci. 67,421–431.

Orensanz,J.M.,Gianuca,N.M.,1974.Contribuic¸ãoaoconhecimmentodosanelídeos poliquetasdoRioGrandedoSul,Brasil,1:Listasistemáticapreliminare descric¸ãodetrêsnovasespécies.Rev.Mus.Argent.Cienc.Nat.4,1–37. Pagliosa,P.R.,Barbosa,F.A.R.,2006.Assessingtheenvironment-benthicfauna

couplinginprotectedandurbanareasofsouthernBrazil.Bio.Conserv.129, 408–417,http://dx.doi.org/10.1016/j.biocon.2005.11.008.

Pagliosa,P.R.,Fonseca,A.,Barbosa,F.A.R.,2006a.Evidenceofsystemicchangesin tracemetalconcentrationsinsubtropicalestuarinesedimentsasaresultof urbanization.J.Coast.Res.SI39,1078–1083.

Pagliosa,P.R.,Fonseca,A.,Barbosa,F.A.R.,Braga,E.,2006b.Urbanizationimpacton subtropicalestuaries:acomparativestudyofwaterpropertiesinurbanareas andinprotectedareas.J.Coast.Res.SI39,731–735.

Pagliosa,P.R.,Oortamn,M.S.,Rovai,A.S.,Soriano-Sierra,E.J.,2016.Ismangrove plantinginsufficientforbenthicmacrofaunalrecoverywhenenvironmental stressispersistent?Ecol.Eng.95,290–301,http://dx.doi.org/10.1016/j. ecoleng.2016.06.036.

Pagliosa,P.R.,2005.Anotherdietofworms:theapplicabilityofpolychaetefeeding guildsasausefulconceptualframeworkandbiologicalvariable.Mar.Ecol.26, 246–254,http://dx.doi.org/10.1111/j.1439-0485.2005.00065.x.

Pamplin,P.A.Z.,Almeida,T.C.M.,Silva-Filho,J.P.,2007.NewrecordofLaeonereis acuta(Treadwell,1923)(Nereididae:Polychaeta)inNortheastcoastofBrazil. BiotaNeotrop.7,353–355,

http://dx.doi.org/10.1590/S1676-06032007000300035.

Pinheiro,J.C.,Bates,D.M.,1996.Unconstrainedparametrizationsfor

variance-covariancematrices.Stat.Comput.6,289–296,http://dx.doi.org/10. 1007/BF00140873.

(10)

RDevelopmentCoreTeam,2013.R:ALanguageandEnvironmentforStatistical Computing.RFoundationforStatisticalComputing,Vienna,Austriahttp:// www.R-project.org.

Rovai,S.A.,Barufi,J.B.,Pagliosa,P.R.,Scherner,F.,Torres,M.A.,Horta,P.A., Simonassi,J.C.,Quadros,D.P.C.,Borges,D.L.G.,Soriano-Sierra,E.J.,2013. Photosyntheticperformanceofrestoredandnaturalmangrovesunder differentenvironmentalconstraints.Environ.Pollut.181,233–241,http://dx. doi.org/10.1016/j.envpol.2013.06.023.

Sanchez-Galan,S.,Linde,A.R.,Garcia-Vasquez,E.,1999.BrowntroutandEuropean Minnowastargetspeciesforgenotoxicitytests:differentialsensitivityto heavymetals.Ecotoxicol.Environ.Saf.43,301–304,http://dx.doi.org/10.1006/ eesa.1999.1794.

Sandrini-Neto,L.,Camargo,M.G.m2012.GAD:anRpackageforANOVAdesigns fromgeneralprinciples.Rpackageversion1.1.1.

http:/CRAN.R-project.org/package=GAD.

Santos,C.S.G.,Pleijel,F.,Lana,P.C.,Rouse,G.W.,2006.Phylogeneticrelationships withinNereididae(Annelida:Phyllodocida).Invertebr.Syst.19,557–576, http://dx.doi.org/10.1071/IS05001.

Schiedek,D.,Broeg,K.,Barsiene,J.,Lehtonen,K.K.,Gercken,J.,Pfeifer,S., Vuontisjarvi,H.,Vuorinen,P.J.,Dedonyte,V.,Koehler,A.,Balk,L.,Schneider,R., 2006.Biomarkerresponsesasindicationofcontaminanteffectsinbluemussel (Mytilusedulis)andfemaleeelpout(Zoarcesviviparus)fromthesouthwestern BalticSea.Mar.Pollut.Bull.53,387–405,http://dx.doi.org/10.1016/j. marpolbul.2005.11.013.

Smolders,R.,Bervoets,L.,DeCoen,W.,Blust,R.,2004.Cellularenergyallocationin zebramusselsexposedalongapollutiongradient:linkingcellulareffectsto higherlevelsofbiologicalorganization.Environ.Pollut.129,99–112,http://dx. doi.org/10.1016/j.envpol.2003.09.027.

Souza,F.M.,Brauko,K.M.,Lana,P.C.,Muniz,P.,Camargo,M.G.,2013.Theeffectof urbansewageonbenthicmacrofauna:amultiplespatialscaleapproach.Mar. Pollut.Bull.67,234–240,http://dx.doi.org/10.1016/j.marpolbul.2012.10.021. Souza,F.M.,Brauko,K.M.,Gilbert,E.R.,Martins,C.C.,Lana,P.C.,Camargo,M.G.,2016.

Complexspatialandtemporalvariationofsubtropicalsewageimpact.Mar. Environ.Res.116,61–70,http://dx.doi.org/10.1016/j.marenvres.2016.02.008. Suguio,K.,1973.Introduc¸ãoàsedimentologia.EditoraEdgarBlucherLtda.São

Paulo-SP.317.

Sulmon,C.,Baaren,J.V.,Cabello-Hurtado,F.,Gouesbet,G.,Hennion,F.,Mony,C., Renault,D.,Bormans,M.,ElAmrani,A.,Wiegand,C.,Gérard,C.,2015.Abiotic stressorsandstressresponses:whatcommonalitiesappearbetweenspecies acrossbiologicalorganizationlevels?Environ.Pollut.202,66–77,http://dx.doi. org/10.1016/j.envpol.2015.03.013.

Underwood,A.J.,1997.ExperimentsinEcology:TheirLogicalDesignInterpretation UsingAnalysisofVariance.UniversityPress,NewYork,Cambridge,pp.504p. Ventura-Lima,J.,Ramos,P.B.,Fattorini,D.,Regoli,F.,Ferraz,L.,Carvalho,L.M.,

Monserrat,J.M.,2011.Accumulation,biotransformation,andbiochemical responsesafterexposuretoarsenateandarsenateintheestuarinepolychaete Laeonereisacuta(Nereididae).Environ.Sci.Pollut.Res.18,1270–1278,http:// dx.doi.org/10.1007/s11356-011-0478-4.

Referências

Documentos relacionados

(I3) The collectives and urban social movements with emergence and action in the pre-COVID-19, which helped to put the right to housing on the public and political agenda, are

4.3 Capacidade da Estampagem para produzir referências B e C “to order” Tendo por base a proposta à empresa, de esta apenas manter inventário de segurança para os componentes

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Thus, annual distribution maps were elaborated for each species and region (Western and Eastern) and 16 linear models were applied to all four studied species, the two

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 205 215 225 235 245 255

Overall, even thought the meat enterococci present several antibiotic resistances and produce biofilms, due to a low number of virulence factors and to the absence

Tecnologia, Sociedade e Ambiente, conhecida pela sigla CTSA, para que as crianças contactem desde cedo com esta realidade, cada vez mais latente, da influência

Gonçalo Eanes Gonçalo Eanes Gonçalo Eanes António Gonçalves Diogo Pires João Gonçalves João Eanes Gonçalo Fernandes Álvaro Gonçalves João Brás João Eanes