• Nenhum resultado encontrado

Development of noncytotoxic PLGA nanoparticles to improve the effect of a new inhibitor of p53-MDM2 interaction

N/A
N/A
Protected

Academic year: 2021

Share "Development of noncytotoxic PLGA nanoparticles to improve the effect of a new inhibitor of p53-MDM2 interaction"

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

International

Journal

of

Pharmaceutics

j o u r n al hom ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / i j p h a r m

Pharmaceutical

Nanotechnology

Development

of

noncytotoxic

PLGA

nanoparticles

to

improve

the

effect

of

a

new

inhibitor

of

p53–MDM2

interaction

Ana

M.

Paiva

a,b

,

Rita

A.

Pinto

c

,

Maribel

Teixeira

a,d,∗

,

Carlos

M.

Barbosa

a,e

,

Raquel

T.

Lima

a,c

,

M.

Helena

Vasconcelos

a,c,f

,

Emília

Sousa

a,b,∗∗

,

Madalena

Pinto

a,b

aCentrodeQuímicaMedicinalUniversidadedoPorto(CEQUIMED-UP),DepartamentodeCiênciasQuímicas,FaculdadedeFarmácia,Universidadedo

Porto,RuaJorgeViterboFerreiran◦228,4050-313Porto,Portugal

bLaboratóriodeQuímicaOrgânicaeFarmacêutica,DepartamentodeCiênciasQuímicas,FaculdadedeFarmácia,UniversidadedoPorto,RuaJorgeViterbo

Ferreiran◦228,4050-313Porto,Portugal

cCancerDrugResistanceGroup,IPATIMUPInstituteofMolecularPathologyandImmunologyoftheUniversityofPorto,RuaDr.RobertoFrias,S/N,

4200-465Porto,Portugal

dCentrodeInvestigac¸ãoemCiênciasdaSaúde(CICS),InstitutoSuperiordeCiênciasdaSaúdeNorte,CESPU,RuaCentraldeGandra1317,4585-116

GandraPRD,Portugal

eLaboratóriodeTecnologiaFarmacêutica,DepartamentodeCiênciasdoMedicamento,FaculdadedeFarmácia,UniversidadedoPorto,Portugal fLaboratóriodeMicrobiologia,DepartmentodeCiênciasBiológicas,FaculdadedeFarmácia,UniversidadedoPorto,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23May2013

Receivedinrevisedform5July2013 Accepted8July2013

Available online 12 July 2013 Keywords: Antitumor Poly(d,l-lactide-co-glycolide) Polymericnanoparticles Xanthones

a

b

s

t

r

a

c

t

Onepossibleapproachtoovercomesolubilitycomplicationsandenhancethebiologicalactivityofdrugs istheirincorporationintodrugdeliverysystems.Withinthisscope,severalnanosphereand nanocap-suleformulationsofanewinhibitorofp53–MDM2interaction(xanthone1)weredevelopedandtheir physicochemicalpropertiesanalyzed.Throughtheinvestigationoftheeffectofseveralempty nanopar-ticlesonthegrowthofMCF-7cells,itwaspossibletoobservethatfouroutoffiveformulationswere cytotoxicandthatsomecorrelationsbetweenthetoxicpotentialofthesepolymericnanoparticlesand theirproperties/compositioncouldbeextrapolated.Oneemptyformulationofnanocapsulesdeveloped byemulsification/solventevaporationandcontainingPLGA,PVAandMygliol®812wasfoundtobe

non-cytotoxictothiscellline.Thecorrespondingcompound1-loadednanocapsulesshowedanincorporation efficiencyof77%andrevealedtobemorepotentthanthefreedrugagainstcellgrowthinhibition,which mayberelatedtotheenhancementinitsintracellulardelivery.Inanintegrativestudy,theintracellular uptakeofnanocapsuleswasconfirmedusingfluorescent6-coumarinandwellascompound1release fromnanocapsules.Overall,itwaspossibletoenhancetheeffectofthehitinhibitorofp53–MDM2 interactionthroughthedevelopmentofsuitablenoncytotoxicpolymericnanoparticles.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thepharmacologicalrelevanceofxanthonederivativeshasled thescientificcommunitytoisolateorsynthesizexanthonic com-poundsin thesearchfornoveldrugcandidates(Azevedoetal., 2012;Pintoetal.,2005).Inthepastfewyears,alargenumberof naturally-occurringandsyntheticprenylatedxanthoneshasbeen

∗ Correspondingauthorat:CICS,InstitutoSuperiordeCiênciasdaSaúde–Norte, CESPU,RuaCentraldeGandra1317,4585-116GandraPRD,Portugal.

Tel.:+351220428689;fax:+351226093390.

∗∗ Correspondingauthorat:CEQUIMED-UP,LaboratóriodeQuímicaOrgânicae Farmacêutica,DepartamentodeCiênciasQuímicas,FaculdadedeFarmácia, Univer-sidadedoPorto,RuaJorgeViterboFerreiran◦228,4050-313Porto,Portugal. Tel.:+351220428689;fax:+351226093390.

E-mailaddresses:maribel.teixeira@iscsn.cespu.pt(M.Teixeira),esousa@ff.up.pt

(E.Sousa).

reported,particularlysomewithantitumoractivity(Azevedoetal., 2012;PintoandCastanheiro,2009).Pre-clinicalstudiesofnatural prenylatedxanthoneshavealreadysuggestedtheextremelylow oralbioavailabilityforthemostinvestigatedprenylxanthone, ␣-mangostin(Fig.1)(Chitchumroonchokchaietal.,2013;Lietal., 2011).Recently,adihydropyranoxanthone,synthetizedbysome of us, 3,4-dihydro-12-hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one(1,Fig.1),presentedsignificantantiproliferative andapoptoticinducingeffects(Paivaetal.,2012;Palmeiraetal., 2010)inhumantumorcelllines.Both␣-mangostin(Leãoetal., 2013a)andcompound 1(Leãoet al.,2013b)wereshown tobe promisinginhibitorsofp53–MDM2 interaction,withcompound

1showingthehighestinhibitoryactivityinayeasttarget-based assay,mimickingtheactivityofknownp53activators.Inaddition, compound1wasshowntoinhibitP-glycoproteininleukemiacells andpresentedanapparentlyhighpermeabilitycoefficientacross thehumancoloncancercellline(Caco-2)(Sousaetal.,2012).

0378-5173/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1. Representativeprenylatedxanthonesinhibitorsofp53–MDM2interaction:␣-mangostinandthetargetmoleculeofthisstudy, 3,4-dihydro-12-hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one(1).

Asforthemajorityofpromisingnewcompounds,thesuccess ofcompound1andotherxanthonederivativesmaybe compro-misedbytheirpoorsolubility.Ingeneral,apartfromthedifficulty associatedwiththeadministrationofwater-insolubledrug sub-stances,thispropertyisoftenlinkedwithpoorbioavailability.One possibleapproach toovercomepoor physiochemicalproperties andenhancethebioavailabilityofdrugsistoassociatethedrug withapharmaceuticalcarrier–a drugdeliverysystem(DDS)– whichmayenhancedrugpharmacokineticsandcellular penetra-tion(Chenetal.,2011).

Aliphaticpoly(esters)likepoly(lactide),poly(glycolide)and spe-cially poly(d,l-lactide-co-glycolide) (PLGA) have been the most extensivelyinvestigatedpolymersfordrugdelivery,duetotheir excellentbiocompatibilityandbiodegradability.Drugsentrapped inthis type of polyester polymer matrix arereleased ata sus-tainedrate,throughdiffusionofthedruginthepolymermatrix andbydegradationofthepolymermatrix(JongandBorm,2008). Nanoparticlesaresubmicronsizedcolloidalpolymericsystemsand accordingwiththemethodsusedfortheirpreparationnanospheres ornanocapsulescanbeobtained.Nanospheresarematrix-type sys-temsinwhichadrugisdispersedthroughouttheparticles,whereas nanocapsulesarevesicularsystemsinwhichadrugisconfinedto acavityconsistingofaninnerliquidcoresurroundedbya poly-mericmembrane (Reiset al.,2006).Thisworkis an integrated studythatincludesphysicochemicalcharacterizationand biologi-calanalysisofcompound1-loadedpolymericnanoparticleswhich demonstratesuptake,andeffectonthegrowthofahumanbreast adenocarcinomacellline (MCF-7).In thepresent work,several polymeric nanosystems, nanocapsules and nanospheres, incor-poratingcompound 1 were developed by different techniques: solventdisplacement(SD),emulsification/solventdiffusion(ESD), andemulsification/solventevaporation(ESE),andsome formula-tionfactorswere studiedinorder toobtainnanoparticleswith favorable technologicalcharacteristics. The cytotoxicityof both emptyandloadednanoparticleformulationswasaccessedinthe MCF-7(humanbreastadenocarcinoma)cellline,whichwas criti-calfortheselectionofthemostsuitableformulation.Furthermore, theintracellularuptakeofnanocapsulescontainingafluorescent probe(6-coumarin)wasalsoinvestigatedinthesamecellline.

2. Materialsandmethods

2.1. Materials

3,4-Dihydro-12-hydroxy-2,2-dimethyl-2H,6Hpyrano[3,2-b]xanthen-6-one (1) was obtained by a previously described method (Palmeira et al., 2010) and showed a purity of 98.5% by HPLC-DAD. PLGA 50:50 (MW: 50,000–75,000Da), Pluronic® F-68,glucose, polyvinyl alcohol (PVA),6-coumarin, Tween® 80 and Span® 80 were purchased from Sigma–Aldrich Química

(Sintra,Portugal)andMygliol®812waspurchasedfromAcofarma (Coimbra,Portugal).HPLCgradereagents methanol,acetonitrile andaceticacidwereobtainedfromCarloErbaReagents,(Valde Reuil,Italy)andultra-purifiedwaterwasproducedbyaMillipore Milli-Qsystem(Simplicity®UVUltrapureWaterSystem,Millipore Corporation,Billerica,USA). Alltheotherreagentsand solvents wereofanalyticalorHPLCgrade.

2.2. Apparatusandchromatographicconditions

The HPLC analysiswas performed in a Finnigan Surveyor – Autosampler Plus and LC Pump Plus, Thermo Electron Corpo-ration (Ohio, USA), equipped with a diode array detector TSP UV6000LP,andusingaC-18column(5␮m,250mm×4.6mmI.D.) fromMacherey-Nagel(Düren,Germany).Theinjectedvolumewas 20␮landtheeluentwasmonitoredat254nm.Xcalibur®2.0SUR1 software,ThermoElectronCorporation(Ohio,USA)managed chro-matographicdata.

2.3. Preparationofnanospheres

Nanospheres containing compound 1 were prepared by SD with some modifications to the previously described methods (Fessiet al.,1989;Ziliet al.,2005)(Table1,formulationsI–III). Briefly,anorganicsolutionof1,polymer,andcontainingornot alipophilicsurfactantwaspoured,undermagneticstirringinto 10mlofaqueoussolutionofahydrophilicsurfactant(Pluronic® F-68orTween®80).After5minofstirring,nanospheredispersions were concentrated to 5ml under reduced pressure. Separation ofnon-incorporatedcompound wasperformedfirstbyfiltration (membranewithaporosityof0.45␮m),andthenbycentrifugation at1830rpmfor30min(Sigma1–14,OsterodeamHarz,Germany) aftersolubilizationofacertainamountofglucoseforachievinga5% (w/v)concentration,inordertoavoidaggregationoftheparticles duringthecentrifugationstep.Thesupernatantwasdiscardedand thepelletcontainingthenanosphereswasredispersedinwaterto completetheinitialvolume(5ml).

Thedevelopmentofnanospherescontainingcompound1 pre-pared by ESD was based on a previously described procedure (Quintanar-Guerreroetal.,1996)withsomemodifications(Table1, formulationsIV–V).Briefly,theorganicphasecontainingthe poly-merandthesurfactantwaspouredinto10mloftheaqueousphase, while mixingwithan highspeed homogenizer(20,000rpm for 5min,IKA-T18basic,Ultra Turrax®,Germany) orby sonication (130W,90s,VibraCellmodel-75186,Sonics,USA),toformanoilin waternanoemulsion,followedbyevaporationunderreduced pres-sureuntilthefinalvolumeof5mlwasreached.Acertainamount ofglucoseforachievinga10%(w/v)concentrationwassolubilized andtheseparationofnon-incorporatedcompoundwasperformed firstbyfiltration(membranewithaporosityof0.45␮M)andthen

(3)

Table1

Experimentalconditionsforthepreparationofnanoparticles.a

Nanosphereformulations IandII III IVandV VI

Preparationmethod SD(Zilietal.,2005) SD(Zilietal.,2005) ESD(Quintanar-Guerreroetal., 1998)

ESE(PanyamandLabhasetwar, 2004)

Acetonicsolutionof1(1mg/ml)(0.75ml) Organicphase PLGA(50mg)

CH2Cl2orCH3OH(0.5ml) Acetone(q.s.10ml) PLGA(50mg) CH3OH(0.5ml) Span®80(16.65mg) Acetone(q.s.10ml) PLGA(70mg) Pluronic®F-68(23.34mg) EtOAc(3.5ml) PLGA(50mg) CH2Cl2(1ml)

Aqueousphase Pluronic®F-68aqueous

solution(0.25%,w/v)(10ml)

Tween®80aqueoussolution

(0.167%,w/v)(10ml)

Water(10ml) PVAaqueoussolution(2.5%, w/v)(6ml)

Stirringconditions Magneticstirring Highspeedhomogenization (20,000rpm,5min)or sonication(130W,90s)

Sonication(130W,90s)

Nanocapsuleformulations VII VIII IX X

Preparationmethod SD(Bernardietal.,2009) SD(Zilietal.,2005) ESD ESE(PanyamandLabhasetwar, 2004)

Compound1solutionin Organicphase Mygliol®812(3.5mg/ml)

(0.55ml) PLGA(50mg) Acetone(8.75ml) Mygliol®812(3.5mg/ml) (0.50ml) PLGA(50mg) Span®80(100mg) Acetone(8.75ml) Mygliol®812(3.5mg/ml) (0.45ml) PLGA(144mg) Pluronic®F-68(60.12mg) EtOAc(9ml) Mygliol®812(3.5mg/ml) (0.40ml) PLGA(50mg) CH3OH(0.4ml) CH2Cl2(1ml)

Aqueousphase Pluronic®F-68aqueous

solution(0.385%,w/v)(10ml)

Tween®80aqueoussolution

(1%,w/v)(10ml)

Water(20ml) PVAaqueoussolution(2.5%, w/v)(6ml)

Stirringconditions Magneticstirring Magneticstirring Sonication(130W,90s)

aForeachformulationI–X,correspondingemptyformulations(i–x)werealsoprepared.

bycentrifugationfor1hat4578rpm(HettichMikro200, Bucking-hamshire,England).Thesupernatantwasdiscardedandthepellet containingthenanosphereswasredispersedinwatertocomplete theinitialvolume(5ml).

AnadditionalformulationwasdevelopedbyESE(Panyamand Labhasetwar,2004andreferencestherein),asdescribedinTable1 (formulationVI).Inbrief,theorganicphasecontainingcompound

1andthepolymerwaspouredinto6mlofanaqueoussolutionof PVA,andmixedbysonication(130W,90s)toformanoilinwater nanoemulsion.Thisnanoemulsionwasstirredatroomtemperature for4htoevaporateorganicsolvent,untilthefinalvolumeof5ml wasreached.Nanoparticleswererecoveredbyultracentrifugation (1hat4578rpm,HettichMikro200,Buckinghamshire,England) andwashedwithMilliQwatertoremoveunentrappedcompound andPVA.

Emptynanospheres(formulationsi–vi)wereprepared accord-ingtothedescribedproceduresbutomittingcompound1inthe organicphase.

2.4. Preparationofnanocapsules

Nanocapsulescontainingcompound1werepreparedbytheSD previouslydescribedmethod(Bernardietal.,2009;Zilietal.,2005), asdescribedinTable1(formulationsVII–VIII).Concisely,an ace-tonicsolutionofPLGAcontainingornotthelipophilicsurfactant Span®80wasprepared.Compound1wasdissolvedinMygliol® 812(3.5mg/ml)and0.50or0.55mlofthissolutionwasaddedto thepreviouspreparedacetonicsolution.Thefinalorganicphase waspouredintoanaqueoussolutionofasurfactant(Pluronic® F-68orTween®80)undermoderatestirringfor5min.Nanocapsules dispersionfinalvolume(5ml)wasreachedbyevaporationunder reducedpressure.Thenon-encapsulatedcompound1was sepa-ratedby ultrafiltration(centrifugalfilterdevices CentriconK10, Amicon,Millipore)at4000rpmfor30min(BeckmanUL-80 ultra-centrifuge,Albertville,USA),andthevolumecompletedwithMilli Qwater.

Compound1-loadednanocapsuleswerealsopreparedbyESD by modification of a described procedure (Quintanar-Guerrero

etal.,1998)(Table1,formulationIX).Briefly,compound1was dis-solvedinMygliol®812(3.5mg/ml)and0.45mlofthisoilysolution wasaddedtoasolutionofPLGAandPluronic®F68inethylacetate. Thefinalorganicsolutionwaspouredinto20mlofMilliQwaterand submittedtosonication(130W,90s).Thenanocapsulesdispersion wasconcentratedunderreducedpressuretoreachthefinalvolume of5ml.Theamountofnon-encapsulatedcompound1was sepa-ratedbyultrafiltrationusingcentrifugalfilterdevices(Centricon K10,Amicon,Millipore)at4000rpmfor30min(BeckmanUL-80 ultracentrifuge,Albertville,USA).

Finally,adifferentformulationwasdevelopedbyESE,basedon adescribedprocedure(PanyamandLabhasetwar,2004)(Table1, formulation X).In brief,asolutionof PLGA indichloromethane waspreparedandsonicatedwithmethanolandasolutionof com-pound1inMygliol® 812(3.5mg/ml).Thisorganicsolutionwas poured into 6ml of an aqueoussolution of PVA and sonicated (130W,90s).Thefinalvolumeofnanocapsulesdispersion(5ml) wasobtainedbystirringfor4h,atroomtemperature.Theamount ofnon-encapsulatedcompound1andresidualPVAwasseparated byultrafiltrationusingcentrifugalfilterdevicesat4000rpmfor 30min(BeckmanUL-80ultracentrifuge,Albertville,USA).

Empty nanocapsules (vii–x) were prepared accordingto the sameprocedures,usingthesameamountofoil,butwithout com-pound1.

2.5. Physicochemicalcharacterization 2.5.1. Particlesizeandzetapotential

Particle size analysis of nanoparticles was performed by dynamic lightscattering(DLS).Zetapotentialwasevaluatedby laser Doppleranemometry(LDA). In both determinations, sam-pleswereanalyzedfollowingappropriatedilutionwithultrapure water, using a Brookhaven, BI-MAS90Plus (Brokhaven Instru-ments,NewYork,USA).For nanospheres,thedilutionusedwas 1:2(nanospheres:water),andfornanocapsules1:100and1:200 (nanocapsules:water).Valuespresentedarethemean±standard deviation(SD)ofatleastthreedifferentbatchesofeach nanopar-ticleformulation.

(4)

2.5.2. Quantificationofcompound1contentinnanoparticles Quantificationofthe nanoparticlesofcompound 1 was per-formedbyaHPLCvalidatedmethod(unpublishedwork).Sample solutions were prepared by dissolving an aliquot of the dihy-dropyranoxanthone1nanosphereornanocapsuledispersionsin acetonitrile(correspondingtoadilutionof1/50and1/500, respec-tively)andsubjectedtoHPLCanalysis.Consideringanentrapment ofcompound1intonanoparticlesof100%,theobtainedsample solutionshadamaximumtheoreticalconcentrationof3mg/mlin nanospheresandrangingfrom0.56to0.77mg/mlinnanocapsules, dependingontheprocedureused.Allanalyseswereperformedin triplicateandtheresultspresentedarethemean±SD. Incorpora-tionefficiency(IE)wascalculatedasfollows:

IE(%)=A B×100

whereAisthecompound1concentration(␮g/ml)inthe nanopar-ticledispersionsandBisthetheoreticalcompound1concentration (␮g/ml).

2.6. Scanningelectronmicroscopy(SEM)

Scanningelectronmicroscopy(SEM)wasperformedtoevaluate thesurfacemorphologyofnanoparticlesusingaSEMequipment (JEOLJSM6301F),atCEMUP(CentrodeMateriaisdaUniversidade doPorto).Nanoparticlessamplesweredriedfor24hbeforethe analysis.Asmallamountofthedriednanoparticleswasapplied directlyonametallicsurfacestandwithoutcoating.

2.7. EffectonthegrowthofMCF-7humantumorcellline

Cells(5.0×103cells/well) wereplated in 96-well plates and allowedtoadherefor 24h. Cellswere then treated withserial dilutionsofcompound1alone(from18.75␮Mto150.00␮M), com-pound1-incorporatedintonanocapsules(from0.62to50.00␮M) orempty nanocapsules (usingequal volumestothe onesused forthecompound1-incorporated intonanocapsules).Following 48hincubation,theeffectofthesetreatmentsincellgrowthwas analyzedwiththesulforhodamineB(SRB)assayaccordingtothe procedureadopted by theNational CancerInstitute (NCI, USA) (Queirozetal.,2010;Vazetal.,2010;VichaiandKirtikara,2006). Briefly,afterwashingwithPBS,cellswerefixedinsituwith10% trichloroaceticacid,stainedwithSRBandwashedwith1%acetic acid.Thebounddyewasthensolubilizedwith10mMTrisBaseand absorbancewasmeasuredat510nminamicroplatereader(Biotek InstrumentsInc.SynergyXS,Winooski,USA).ADMSOcontrol(the vehicleofcompound1)wasalsoincludedintheexperiments. 2.8. Internalizationstudies

MCF-7cells(3.5×105cells/well)wereseededonglass cover-slips(in24wellplates)andallowedtoadherefor24h.Cellswere thenexposedtonanocapsulesincorporating10␮Mof6-coumarin (fluorescentcompound)ortoemptynanocapsules(equalvolume tothe usedfor the nanocapsules incorporating coumarin). The internalizationofthenanocapsuleswasanalyzedatdifferent time-pointsupto48h.ThiswaspossiblebywashingthecellswithPBS, fixingwith4%paraformaldehyde(inPBS)andmountingthe cover-slipsin Vectashield® withDAPI(4-6-diamidino-2-phenylindole, Vector Laboratories). Cells were observed with a fluorescence microscope(LeicaDMIRE2000).

2.9. Invitroreleasestudies

Invitroreleasestudiesofcompound1,forthemostpromising nanocapsuleformulationdeveloped(formulationX)–thatshowed

thelowestcytotoxiceffectagainstMCF-7cells–,werecarriedout at37◦C,bythebulk equilibriumreversedialysisbag technique (LevyandBenita,1990).Avolumeofnanocapsuledispersion corre-spondingto10%ofthemaximumtheoreticalaqueoussolubilityof compound1(1.6␮g/ml),inphosphatebuffersaline0.1M,pH7.4 (PBS)at37◦C,wasplaceddirectlyinto200mlofPBS.Tothis solu-tion,eightdialysisbags(cellulosemembraneMwcut-off10,000Da, Sigma–Aldrich,Sintra,Portugal)containing1mlofPBS,were pre-viouslyimmersed,andsubmittedtomechanicalstirringat37◦C. Atgiventime intervals,adialysisbag waswithdrawnfromthe releasemediumandthecompound1contentwasdirectlyassayed byHPLC.Calibrationsolutionsovertherangeof0.5–3.0␮g/mlwere preparedbydilutingcompound1stocksolutioninacetonitrilewith PBS.Valuesreportedarethemean±SDobtainedforthreedifferent batchesofthereferredformulations.

2.10. Calculationsandstatistics

IBMSPSSStatistics-19®wasappliedforstatisticcalculations(t testandftest).

3. Results

3.1. Characterizationofcompound1-loadednanoparticles

Sixdifferentformulationsofnanosphereswereprepared(I–VI, Table 1) and their particle size, polidispersity index (PI), and zeta potential determined (Table 2). Compound 1-loaded and emptynanosphere dispersions presentedmacroscopic homoge-neousaspect,withabluishopalescentappearanceduetoTyndall effect.

Overall,theresultsshowedlowersizeswithSD(<150nm)when comparedwithESDandESE(<400nm)(Table2).Whencomparing themeanparticlesizevaluesbetweenloadedandempty formu-lations,onlyinformulationII(compound1-loadednanospheres prepared by SD, with methanol as co-solvent) no significantly differences (P>0.05) to empty nanospheres were observed. Regardingcompound1-loadednanospheres,theuseofmethanol ordichloromethane,asco-solvents,hadnoinfluenceinthemean particlesizeobtained(P>0.05).UsingSpan®80/Tween®80 (formu-lationIII)insteadofPluronic® F-68(formulationsIandII)ledto nanospheredispersionswithlowervaluesof meanparticlesize (∼96nm,P<0.05).NanospherespreparedusingSDandESD tech-nique(formulationsI–V)exhibitednegativesurfacechargewith zetapotentialvalueslower than−28mV.Thehighestvalues of meanparticlesizewerefoundforthenanospherespreparedwith theESEtechnique(formulationVI);zetapotentialvalueswerealso thelowest,whatcouldforeshadowlowstabilityforthis formula-tionssincemorepronouncedzetapotentialvalues(beingpositive ornegative)tendtostabilizeparticlesuspension.Inthis formula-tion,thepresenceofPVAenhancedafasterresuspensionafterthe washingstep.

Theincorporationefficiencyvaluesofcompound1intoPLGA nanospheres(formulationsI–VI)werealsoinvestigated(Table3). IntheSDmethod,theuseofmethanolordichloromethaneas co-solvents,didnotsignificantlyaffecttheincorporationefficiency (P>0.05)(formulationsIandII).Theoverallresultsrevealedthe ESEasthemostsuitablemethodforthepreparationofnanospheres containingcompound 1(formulationVI),presenting thehighest incorporationefficiencyvalues, although,theincorporation effi-ciencyachievedwaslowerthan40%.

Thefourdifferentnanocapsulesformulationsdeveloped (for-mulations VII–X) were also investigated for their particlesize, PI, and zeta potential (Table 2). The maximum amount of oil core (Mygliol® 812) that allows the preparation of stable

(5)

Table2

Physicochemicalpropertiesoftheobtainednanoparticles.

Method Formulation Diameter(nm) PI Zetapotential(mV)

Nanospheres SD I 171.48±8.57 0.20±0.06 −33.33±0.27 i 131.80±3.70 0.14±0.03 −32.07±0.75 II 149.22±13.49 0.08±0.02 −33.72±1.38 ii 109.53±1.45 0.13±0.01 −35.97±0.42 III 95.67±2.32 0.20±0.02 −42.72±0.83 iii 139.80±3.95 0.13±0.01 −33.63±2.53 ESD IV 194.48±25.67 0.14±0.02 −33.99±2.71 iv 361.68±33.16 0.37±0.02 −27.58±0.27 V 166.67±7.48 0.15±0.02 −41.41±1.87 v 158.23±0.83 0.10±0.01 −38.50±3.65 ESE VIvi 400.53238.53±±8.8312.91 0.0760.19±±0.020.01 −33.23−9.18±±3.331.95 Nanocapsules SD VII 219.3±3.3 0.15±0.04 −24.57±4.3 vii 213.3±4.3 0.16±0.05 −35.51±3.1 VIII 319.07±21.8 0.20±0.01 −39.34±1.0 viii 368.72±39.2 0.26±0.01 −35.22 ±3.4 ESD IXix 210.27241.47±±0.72.8 0.060.09±±0.0020.01 −40.50−38.07±±1.21.2 ESE X 283.93±12.18 0.093±0.006 −15.20±0.64 x 238.53±0.09 0.097±0.025 −14.37±0.49

nanocapsuledispersions was determined for every preparation

techniqueemployed.FornanocapsulespreparedbySD,

formula-tionscontaining0.40,0.50and0.55mlofMygliol®812showeda

smallpelletatthebottomoftheflask(attributedtonanospheres)

andacreamlayeratthesurfacecorrespondingtonanocapsules;

no free oilcould be detected in these formulations indicating

thattheoilwascompletelycoated bythepolymer. The

formu-lationsincluding0.60mlofMygliol® 812showedafreeoillayer

atthesurface of thedispersionsupon centrifugation indicating

poorstability. Therefore theamountof oilselectedtobeused,

which allowed the preparation of stable nanocapsule

formula-tionswas0.55ml.Then, fornanocapsulepreparation 0.55mlof

compound1solutioninMygliol®812wasused.Nanocapsules

for-mulationspresentedmacroscopichomogeneousaspects,withan

opalescentmilky-likeappearance.Forallformulationsmean

parti-clesizerangedfrom∼210to370nm.Themeanparticlesizeofthe

formulationsdevelopedwasnotaffectedbytheincorporationof

compound1(P>0.05).WhenusingPluronic® F-68assurfactant

(formulationVIIand IX)insteadofTween®80/Span®80

(formu-lationVIII),nanocapsulesdispersionsshowedlowerparticlesize

values(P<0.05).Zetapotentialvaluesshowedthat,forbothempty

andcompound 1-loadednanocapsules,negativesurfacecharges

were achieved, rangingfrom −14.37±0.49 to −40.50±1.2mV,

whichindicatesthatstableformulationswereproducedwiththis

method.

Incorporationefficiencyvaluesofcompound1inPLGA

nanocap-sules were also determined (Table 3). With the SD technique,

usingTween-80®/Span-80®(formulationVIII)insteadofPluronic F-68® (formulation VII) as surfactants, the final concentration andincorporationefficiencyvalues,raisedfrom196.18±24.16to 323.57±2.67␮g/ml,respectively (∼30% increased). Overall,the incorporation efficiency for nanocapsules was better than the one achieved for nanospheres (Table 3) with formulation VIII presenting an incorporation efficiency of compound 1 of 84%. Moreover,thedevelopednanocapsuledispersionsshowedhigher concentrationsthantherespectivetheoreticalaqueoussolutionof compound1(16␮g/ml,ACD/Labsprogram):20foldforformulation VIII,15foldforIXand13foldforX,respectively.

3.2. EffectonthegrowthofMCF-7humantumorcellline

Basedonthetechnologicalparameters,fiveofthedeveloped formulationswereselectedforfurtherevaluationinthehuman breastadenocarcinomacelllineMCF-7,regardingthecellgrowth inhibitory effect. The chosen formulations were: nanospheres developedbySDandESE(formulationsIIIandVI)andnanocapsules developedbySD,ESD,andESE(formulationsVIII,IX,and formula-tionX).Byanalysingtheeffectofthedifferentemptynanoparticles ontheMCF-7cellgrowth(withtheSRBassay),itwaspossibleto observethatonlytheemptyformulationofnanocapsules devel-opedbyESE(formulationx),didnotpresent majorcytotoxicity tothiscelllineattheconcentrationsanalyzed(Fig.2).Theother

Fig.2. Effectofemptyandcompound1-loadedformulationXinthecellgrowthof MCF-7cells.Cellsweretreatedfor48hwithincreasingconcentrationofcompound

1,compound1incorporatedintonanocapsules(compound1loadedformulationX) orwithequalvolumesofemptynanocapsules(emptyformulationx)andanalyzed withtheSRBassay.Resultsarerepresentedas%ofcellgrowth,consideringthe valuesforuntreatedcellsas100%.Resultsarethemean±standarderroroffive independentexperiments.

(6)

Table3

Incorporationefficiencyofcompound1innanoparticles.

Method Formulation Compound1theoretical concentration(␮g/ml) Compound1final concentration(␮g/ml) Incorporation efficiency(%) Nanospheres SD I 150 37.77±6.07 25.18±1.85 II 39.12±4.69 26.08±3.12 III 43.04±1.08 28.69±0.72 ESD IVV 28.2333.98±±0.783.66 18.8222.65±±0.392.44 ESE VI 58.17±7.13 38.78±4.75 Nanocapsules SD VIIVIII 385350 196.18323.57±±24.162.67 56.0584.04±±6.900.69 ESD IX 315 242.97±2.85 77.99±0.90 ESE X 280 209.56±32.35 77.85±11.55

investigatedemptyformulationspresentedcytotoxicity(datanot

shown),whichmaybeexplainedbytheamountofexcipientsused

intheirdevelopment(Table4).

Whencomparingthecellgrowthinhibitoryeffect(inMCF-7 cells)ofthefreecompound1withtheeffectofformulationX,the GI50values (concentrationthatinhibitscellgrowthby50%) sig-nificantlydecreasedfrom46.8±1.8␮Mto16.3±2.1␮M(P<0.05) (Fig.2).Moreover,noapparentcellulartoxicitywasobserved fol-lowing treatmentwiththeempty nanocapsules, at thevolume correspondingtothedeterminedGI50(Fig.2).

3.3. Internalizationstudies

Agreenfluorescentcompound(6-coumarin)wasincorporated into formulation x and following treatmentwith nanocapsules incorporating6-coumarin,cellswereobservedatdifferent time-points.Greenfluorescence(indicatingthepresenceofcoumarin) wasevidentinthecellcytosolimmediatelyafterthenanocapsules incorporating6-coumarinwereaddedtothecells(Fig.3).

Althoughtheinitialgreen fluorescencewasweak,it became strongeranddiffusedthroughoutthecellcytoplasmattheother time-pointsanalyzed.Theintracellularconcentrationwas partic-ularlystrong6hfollowingtreatmentandtheintensityreducedat 48hfollowingtreatment,indicatingthatthecoumarinwas proba-blymetabolizedoreliminatedbythecells.

3.4. Scanningelectronmicroscopy(SEM)

SEMwasusedtoinvestigatethemorphologyof formulation X (Fig. 4A). Nanocapsules displayed a spherical shape with a smoothsurfaceandnoaggregationwasobserved.Nodifference wasobservedinthemorphologicalpropertiesofnanocapsulesdue topresenceofthedrug.Infact,SEManalysisconfirmedthe nano-metricsizeofformulationXdeterminedbyDLS(Fig.4A).

3.5. Invitrorelease

Invitroreleasestudiesofcompound1-loadednanocapsules for-mulationwereperformedunder“sinkconditions”(LevyandBenita, 1990),toavoidtheinterferenceofcompound1solubilityinthese experiments(Fig.4B).AsobservedinFig.4B,animportantrelease ofcompound1fromnanocapsules(formulationX)duringthefirst 2h(>80%release)followedbyaslowreleaseuptotheendofthe assay(24h)wasobserved.Thekinetic processisprobably gov-ernedbytheoil–waterpartitioncoefficientasdescribedforother nanocapsuleformulations(Teixeiraetal.,2005a).

4. Discussion

Thisstudyaimedtodevelopsuitablepolymericnanoparticles incorporatingthexanthone1,aninhibitorofp53–MDM2 interac-tion.Thisapproachwaspreviouslydemonstratedtobeefficient inimprovingtheNOproductioninhibitoryeffectofsimple oxy-genatedxanthones(Teixeiraetal.,2005b).Toachieveasuitable formulation,severaltechniquesandexcipientswereusedinthe preparationofpolymericnanoparticlesandinvestigatedfortheir cytotoxicityinahumanbreastadenocarcinomacellline(MCF-7).

Sixdifferentformulationsofnanospheresandfourdifferent for-mulationsofnanocapsulesweredevelopedandtheirtechnological parametersanalyzed.Theoverallresultsindicatesthatthedifferent techniquesemployedwereappropriateinachievingstable poly-mericformulationsshowingzetapotentialvaluesnear−30mV, revealingtobestableinsuspension,asthesurfacechargeprevents aggregationoftheparticles(MohanrajandChen,2006).

It is alwaysa challengetoformulatenanoparticleswiththe smallestsizepossiblebutwithmaximumstability. Smaller par-ticles have larger surface area, which meansthat most of the compound associated would beat or nearthe particlesurface, leadingtoafastdrugrelease, alsohavinggreaterriskof aggre-gation during storage and transportation (Mohanraj and Chen, 2006);whereas,largerparticleshavelargecoreswhichallowmore Table4

Amountofexcipientsdeliveredtothecells.a

Formulations [Compound1nanoparticles]b(␮M) Dilution

factor PLGA (mg/ml) PVA (mg/ml) Tween®80/Span® 80(mg/ml) Pluronic® (mg/ml) Mygliol®812(ml/ml) III 134 N.A. 10.00 – 20.00 – – VI 291 1.94 5.15 15.46 – – – VIII 1108 7.40 1.35 – 10.31 – 13.51 IX 703 4.70 2.98 – – 0.99 19.15 X 697 4.60 2.17 6.52 – – 17.39

aForeachformulation,correspondingemptyformulationswerealsoinvestigated.

b [1]correspondstotheconcentrationofloadednanoparticlesandwasusedtodeterminetheamountofnanoparticlessuspensiontobetested,basedonthemaximum

concentrationofcompound1tested(150␮M).

(7)

Fig.3. Uptakeofnanocapsules(formulationX)incorporating6-coumarinintotheMCF-7cells,observedbyfluorescencemicroscopy.Cellswerefixedfollowingincubation withtheemptynanocapsules(at0h,20minor60min)orwiththenanocapsulesincorporatingcoumarin(at0h,20min,60min,6hor48h).Cellnucleiwerestainedwith DAPIandthecytoplasmicgreenfluorescenceresultedfromcoumarin.

compoundtobeencapsulatedandslowlydiffuseout.Ingeneral,the nanospheresobtainedfurnishedformulationswithsmaller parti-clesizebutlowerincorporationefficiency,whencomparingwith nanocapsules.Theseresultswerepredictable,sincethe dihydropy-ranoxanthone1islipophilicandcouldthereforebebetterdissolved intheoilcoreofthenanocapsules.

Theincorporationofcompound1intonanosystemsaimsmainly atovercomingproblemsrelatedtothecompoundwithlowwater solubility.Foralltheconditionsstudied,thefinalconcentrationof compound1-loadednanoparticleswashigherthanthecalculated aqueoussolubilityconcentration(16␮g/ml).Basedonthesedata, twoformulationsofnanospheres(IIIandVI)andthree formula-tionsofnanocapsules(VIII–X),allwithfavorablephysicochemical properties,wereselectedforfurtherinvestigations.

Inthepresentstudy,thecytotoxicityevaluationinMCF-7cell lineofbothemptyandloadedformulationslimitedthefutureuse offouroutoffivedevelopednanoparticles.Consideringtheeffect ofTween®80andSpan®80,althoughtheyhavebeendescribedas beingnontoxicandbeingallowedforintravenousadministration

(Roweetal.,2009),theamountsusedforthepreparationofabove describednanoparticleswerefoundtoinfluencethecytotoxicity of formulationsIIIand VIII(Table4)which couldberelated to theircellpermeabilizationeffects(Olivier,2005);similar conclu-sionscouldbedrawnforPluronic® (formulationIX,Table4).In contrast,thedispersingoilMygliol®wasalsonotresponsiblefor theobservedtoxicity,sincenanocapsulesXusedhigheramounts ofoil(whencomparedwithnanocapsulesVIII)withoutcytotoxicity atcompound1GI50value,independentlyoftheirzetapotentials (Table2).InwhatconcernsPLGA,fromtheobtainedresults,one mayhypothesizethatthetoxicityobservedisnotdirectlyrelated tothisexcipientinaccordancetopreviouslydescribed toxicologi-calstudies(Semeteetal.,2010).Indeed,whileforthenanocapsules VIII,theamountofPLGAwas1.35mg/ml,andthisformulationwas toxic,fornanocapsulesX,theamountusedwashigher(2.17mg/ml) andnocytotoxicitywasobservedatcompound1GI50values.PVA isalsoknowntohavelowtoxicity(DeMerlisandSchoneker,2003) butduetoseveralvariablesinformulationsVIandXno extrapola-tionscanbedrawn.Sincethetoxicpotentialofnanoparticleshas

Fig.4.(A)Scanningelectronmicrographsofcompound1-loadednanocapsules(formulationX)withconfirmationofnanocapsulessizes.(B)Invitroreleaseprofileoffree compound1fromnanocapsules(formulationX)followedbyitsdiffusionthroughthedialysisbag.Eachpointrepresentsthemean±SDvaluesobtainedfromthreedifferent batches.

(8)

beenreportedtobestronglydependentontheirsurface proper-ties(JongandBorm,2008)andparticularlyontheircharge(Mura etal.,2011),thelowestzetapotentialvaluesobtainedforemptyand loadedformulationsX(−14.37±0.49and−15.20±0.64mV)could hadsignificantinfluenceinthelowestinvitrotoxicityobserved. Consequently,theamountand typeofexcipientspresentinthe finalformulationofnanoparticlesmayplayacriticalroleinthe futuretherapeuticapplicationofthistechnology.Theevaluation ofthecytotoxicityofemptynanoparticlesistherebyanimportant issuewhendevelopingnewnanoparticleformulationsandthe cor-relationofthesurfacepropertiesofpolymericnanoparticleswith theircytotoxicitydeservesfurtherattention.

Fromtheoverallresultsoncellgrowtheffects,itcanbeinferred that, the cytotoxic effect of formulation X, nanoparticles with amountsof PLGAand PVA below 2.17and6.52mg/ml,maybe onlyduetotheeffectoftheincorporatedcompound(Fig.2).At thetimethisstudywasbeingcarriedout,anotherstudyonsolid dispersionsof␣-mangostin(Fig.1)inpolyvinylpyrrolidone(PVP) revealedtheenhancementof␣-mangostinsolubilityand intracel-lulardelivery,although,noenhancementof␣-mangostincytotoxic effect wasobserved withthis formulation (Aisha et al., 2012). Herein,this studyfurnishedaformulation ofthehitcompound withathree-foldimprovementintheGI50valuesinMCF-7cellline. Additionally,anefficientinternalizationof6-coumarin nanocap-suleswasachieved.Entrapmentofafluorescentprobewithinthe nanocapsulesenabledustoconfirmthattheywereinternalizedas intactnanocapsules,releasingthefluorescentcompoundonlyin thecellcytoplasm.

Drugreleasestudiesfromthenanoparticlesaregenerally per-formedtounderstand therateand mechanism of drug release ratherthanasaroutinequalitycontrolmethodasusedinthecase ofconventionaldosageforms(PanyamandLabhasetwar,2004). Invitrostudiesindicatedthatthepresenceofthepolymerdidnot affectthereleaseofcompound1,beingthepartitionbetweenthe oilycoreandtheexternalaqueousmediumthemainfactor gover-ningtheprocess,asalreadyreportedforotherdrugs(Mora-Huertas etal.,2010;Santos-Magalhãesetal.,2000;Teixeiraetal.,2005a).

5. Conclusions

Inthepresentintegrativework,severaltechniqueshavebeen employedforthedevelopmentofpolymericnanoparticle formula-tionsofapoorlywater-solubledihydropyranoxanthone,inhibitor ofp53–MDM2interaction(compound1).Thisallowedtoenhance compound1concentrationinaqueoussolutionsbya minimum oftwo-foldinnanospheresto13-foldinnanocapsules.Fromthe fiveselectedformulations,onlyonepreparedbyESEwithPVAas surfactantshowednosignificanttoxicityinthecelllinestudies. Thedevelopedformulationwithfavorabletechnological parame-tersledtothree-foldimprovementintheGI50valuesofcompound

1andcouldbeavaluablestrategyaspharmaceuticalcarriersof xanthones.

Acknowledgements

To FCT – Fundac¸ão para a Ciência e a Tecnologia -PEst-OE/SAU/UI4040/2011 and PTDC/SAU-FAR/110848/2009 under the project CEQUIMED, and REEQ/1062/CTM/2005 and REDE/1512/RME/2005 – CEMUP; FEDER through the COMPETE programundertheprojectsFCOMP-01-0124-FEDER-011057and FCOMP-01-0124-FEDER-015752;andtoU.Porto/SantanderTotta for financialsupport. ToSara Cravofor technical support.A.M. Paiva (PTDC/SAU-FCT/100930/2008; Liga Portuguesa Contra o Cancro/Pfizer)andR.T.Lima(SFRH/BPD/68787/2010)arethankful toFCTandLigaPortuguesaContraoCancro/Pfizerfortheirgrants.

IPATIMUPisanAssociateLaboratoryofthePortugueseMinistry of Science, Technology and Higher Education and is partially supportedbyFCT.

References

Aisha,A.F.A.,Ismail,Z.,Abu-salah,K.M.,Majid,A.M.S.A.,2012.Soliddispersionsof ␣-mangostinimproveitsaqueoussolubilitythroughself-assemblyof nanomi-celles.J.Pharm.Sci.101,815–825.

Azevedo,C.,Afonso,C.,Pinto,M.,2012.Routestoxanthones:anupdateonthe syntheticapproaches.Curr.Org.Chem.16,2818–2867.

Bernardi,A.,Zilberstein,A.,Jäger,E.,Campos,M.M.,Morrone,F.B.,Calixto,J.B., Pohlmann,A.R.,Guterres,S.S.,Battastini,A.M.O.,2009.Effectsof indomethacin-loadednanocapsulesinexperimentalmodelsofinflammationinrats.Br.J. Pharmacol.158,1104–1111.

Chen,H.,Khemtong,C.,Yang,X.,Chang,X.,Gao,J.,2011.Nanonizationstrategiesfor poorlywater-solubledrugs.DrugDiscov.Today16,354–360.

Chitchumroonchokchai,C.,Thomas-Ahner,J.M.,Li,J.,Riedl,K.M.,Nontakham,J., Suk-sumrarn,S.,Clinton,S.K.,Kinghorn,A.D.,Failla,M.L.,2013.Anti-tumorigenicity ofdietary␣-mangostininanHT-29coloncellxenograftmodelandthetissue distributionofxanthonesandtheirphaseIImetabolites.Mol.Nutr.FoodRes. 57,203–211.

DeMerlis,C.C.,Schoneker,D.R.,2003.Reviewoftheoraltoxicityofpolyvinylalcohol (PVA).FoodChem.Toxicol.41,319–326.

Fessi,H.,Puisieux,F.,Devissaguet,J.P.,Ammoury,N.,Benita,S.,1989.Nanocapsule formationbyinterfacialpolymerdepositionfollowingsolventdisplacement.Int. J.Pharm.55,R1–R4.

Jong,W.H.D.,Borm,P.J.,2008.Drugdeliveryandnanoparticles:applicationsand hazards.Int.J.Nanomed.3,133–149.

Leão,M.,Gomes,S.,Pedraza-Chaverri,J.,Machado,N.,Sousa,E.,Pinto,M.,Inga, A.,Pereira,C.,Saraiva,L.,2013a.␣-Mangostinandgambogicacidaspotential inhibitorsofp53–MDM2interactionrevealedbyayeastapproach.J.Nat.Prod.,

http://dx.doi.org/10.1021/np400049j.

Leão,M.,Pereira,C.,Bisio,A.,Ciribilli,Y.,Paiva,A.M.,Machado,N.,Palmeira,A., Fernandes,M.X.,Sousa,E.,Pinto,M.,Inga,A.,Saraiva,L.,2013b.Discoveryof anewsmall-moleculeinhibitorofp53–MDM2interactionusingayeast-based approach.Biochem.Pharmacol.85,1234–1245.

Levy,M.Y.,Benita,S.,1990.DrugreleasefromsubmicronizedO/Wemulsion:anew invitrokineticevaluationmodel.Int.J.Pharm.66,29–37.

Li,L.,Brunner,I.,Han,A.-R.,Hamburger,M.,Kinghorn,A.D.,Frye,R.,Butterweck, V.,2011.Pharmacokineticsof␣-mangostininratsafterintravenousandoral application.Mol.Nutr.FoodRes.55,S67–S74.

Mohanraj,V.J.,Chen,Y.,2006.Nanoparticles–areview.Trop.J.Pharm.Res.5, 561–573.

Mora-Huertas,C.E.,Fessi,H.,Elaissari,A.,2010.Polymer-basednanocapsulesfor drugdelivery.Int.J.Pharm.385,113–142.

Mura,S.,Hillaireau,H.,Nicolas,J.,LeDroumaguet,B.,Gueutin,C.,Zanna,S.,Tsapis, N.,Fattal,E.,2011.InfluenceofsurfacechargeonthepotentialtoxicityofPLGA nanoparticlestowardsCalu-3cells.Int.J.Nanomed.6,2591–2605.

Olivier,J.-C.,2005.Drugtransporttobrainwithtargetednanoparticles.NeuroRx2, 108–119.

Paiva,A.M.,Sousa,M.E.,Camões,A.,Nascimento,M.S.J.,Pinto,M.M.M.,2012. Preny-latedxanthones: antiproliferativeeffectsand enhancementofthe growth inhibitoryactionof4-hydroxytamoxifeninestrogenreceptor-positivebreast cancercellline.Med.Chem.Res.21,552–558.

Palmeira,A.,Paiva,A.,Sousa,E.,Seca,H.,Almeida,G.M.,Lima,R.T.,Fernandes,M.X., Pinto,M.,Vasconcelos,M.H.,2010.Insightsintotheinvitroantitumor mecha-nismofactionofanewpyranoxanthone.Chem.Biol.DrugDes.76,43–58.

Panyam,J.,Labhasetwar,V.,2004.Biodegradablenanoparticlesfordrugandgene deliverytocellsandtissue.Adv.DrugDeliv.Rev.55,329–347.

Pinto,M.,Castanheiro,R.,2009.NaturalprenylatedXanthones:chemistryand bio-logicalactivities.In:NarosaPublisihingHousePVT,Ltd(Ed.),NaturalProducts: Chemistry,BiochemistryandPharmacology.NarosaPublisihingHousePVT,Ltd, WestBengal,pp.521–675.

Pinto,M.M.M.,Sousa,M.E.,Nascimento,M.S.J.,2005.Xanthonederivatives:new insightsinbiologicalactivities.Curr.Med.Chem.12,2517–2538.

Queiroz,M.J.,Calhelha,R.C.,Vale-Silva,L.A.,Pinto,E.,Lima,R.T.,Vasconcelos,M.H., 2010.Efficientsynthesisof6-(hetero)arylthieno[3,2-b]pyridinesby Suzuki-Miyauracoupling.Evaluationofgrowthinhibitiononhumantumorcelllines, SARsandeffectsonthecellcycle.Eur.J.Med.Chem.45,5628–5634.

Quintanar-Guerrero,D.,Allémann,E.,Doelker,E.,Fessi,H.,1998.Preparationand characterizationofnanocapsulesfrompreformedpolymersbyanewprocess basedonemulsification-diffusiontechnique.Pharm.Res.15,1056–1062.

Quintanar-Guerrero,D.,Fessi, H.,Allémann, E., Doelker,E., 1996.Influence of stabilizingagentsandpreparativevariablesontheformationofpoly(-lactic acid)nanoparticlesbyanemulsification-diffusiontechnique.Int.J.Pharm.143, 133–141.

Reis,C.P.,Neufeld,R.J.,Ribeiro,A.J.,Veiga,F.,2006.NanoencapsulationI.Methods forpreparationofdrug-loadedpolymericnanoparticles.Nanomedicine:NBM2, 8–21.

Rowe,R.C.,Sheskey,P.J.,Quinn,M.E.,2009.HandbookofPharmaceuticalExcipients. PharmaceuticalPressandAmericanPharmacistsAssociation,Washington,USA.

(9)

Santos-Magalhães,N.S.,Pontes,A.,Pereira,V.M.W.,Caetano,M.N.P.,2000.Colloidal carriersforbenzathinepenicillinG:nanoemulsionsandnanocapsules.Int.J. Pharm.208,71–80.

Semete,B.,Booysen,L.,Lemmer,Y.,Kalombo,L.,Katata,L.,Verschoor,J.,Swai,H.S., 2010.InvivoevaluationofthebiodistributionandsafetyofPLGAnanoparticles asdrugdeliverysystems.Nanomedicine:NBM6,662–671.

Sousa,E.,Palmeira,A.,Cordeiro,A.,Sarmento,B.,Ferreira,D.,Lima,R.,Helena Vas-concelos,M.,Pinto,M.,2012.BioactivexanthoneswitheffectonP-glycoprotein andpredictionofintestinalabsorption.Med.Chem.Res.,1–9.

Teixeira,M.,Alonso,M.J.,Pinto,M.M.M.,Barbosa,C.M.,2005a.Developmentand characterizationofPLGAnanospheresandnanocapsulescontainingxanthone and3-methoxyxanthone.Eur.J.Pharm.Biopharm.59,491–500.

Teixeira,M.,Cerqueira,F.,Barbosa,C.M.,Nascimento,M.,Pinto,M.,2005b. Improve-mentoftheinhibitoryeffectofxanthonesonNOproductionbyencapsulation inPLGAnanocapsules.J.DrugTarget.13,129–135.

Vaz,J.A.,Heleno,S.A.,Martins,A.,Almeida,G.M.,Vasconcelos,M.H.,Ferreira,I.C., 2010.WildmushroomsClitocybealexandriandLepistainversa:invitro antiox-idantactivityandgrowthinhibitionofhumantumourcelllines.FoodChem. Toxicol.48,2881–2884.

Vichai,V.,Kirtikara,K.,2006.SulforhodamineBcolorimetricassayforcytotoxicity screening.Nat.Protoc.1,1112–1116.

Zili, Z., Sfar, S., Fessi, H., 2005. Preparation and characterization of poly-[epsilon]-caprolactonenanoparticlescontaininggriseofulvin.Int.J.Pharm.294, 261–267.

Imagem

Fig. 1. Representative prenylated xanthones inhibitors of p53–MDM2 interaction: ␣-mangostin and the target molecule of this study, 3,4-dihydro-12-hydroxy-2,2-dimethyl- 3,4-dihydro-12-hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (1).
Fig. 2. Effect of empty and compound 1-loaded formulation X in the cell growth of MCF-7 cells
Fig. 3. Uptake of nanocapsules (formulation X) incorporating 6-coumarin into the MCF-7 cells, observed by fluorescence microscopy

Referências

Documentos relacionados

Os valores de atividade antioxidante das folhas armazenadas nas três diferentes embalagens, apresentaram variação ao decorrer dos nove dias de armazenamento, onde no

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

The irregular pisoids from Perlova cave have rough outer surface, no nuclei, subtle and irregular lamination and no corrosional surfaces in their internal structure (Figure

The Rifian groundwaters are inhabited by a relatively rich stygobiontic fauna including a number of taxa related to the ancient Mesozoic history of the Rifian