• Nenhum resultado encontrado

Osteoclastic Activity in a Nano - And Micro-Structured Hydroxyapatite Surface Modulated by Fluoroquinolones

N/A
N/A
Protected

Academic year: 2021

Share "Osteoclastic Activity in a Nano - And Micro-Structured Hydroxyapatite Surface Modulated by Fluoroquinolones"

Copied!
96
0
0

Texto

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

Osteoblasts

Osteocytes

Inactive

Apoptosis

(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

o

o

(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)

Blood

Ficoll-PaqueTM PREMIUM

Plasma

PBMC

(58)

    

(59)
(60)

μ

(61)

A

B

(62)
(63)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D N A /n g

Ofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D N A /n g

Ciprofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D N A /n g

Levofloxacin (nHA)

* * * * * * * * * * * * 0.0M – control 0.3 x 10-7 M 0.3 x 10-9 M 0.3 x 10-5 M

(64)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D NA/n g

Ofloxacin (mHA)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D N A /n g

Ciprofloxacin

(mHA)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D NA/n g

Levofloxacin (mHA)

* * * * * * * * * * * 0.0M – control 0.3 x 10-7 M 0.3 x 10-9 M 0.3 x 10-5 M

(65)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Day 14 Day 21 TRA P A ct iv ity

Ofloxacin (nHA)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Day 14 Day 21 TRAP A ctiv ity

Ciprofloxacin (nHA)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Day 14 Day 21 TRA P A ct iv ity

Levofloxacin (nHA)

* * * * * * * * 0.0M – control 0.3 x 10-7 M 0.3 x 10-9 M 0.3 x 10-5 M

(66)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Ofloxacin (mHA)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Ciprofloxacin (mHA)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Levofloxacin (mHA)

* * * * * * * * * 0.0M – control 0.3 x 10-7 M 0.3 x 10-9 M 0.3 x 10-5 M

(67)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D NA/n g

Control (nHA)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D N A /n g

Ofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D NA/n g

Ciprofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 Day 14 Day 21 D N A /n g

Levofloxacin (nHA)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(68)

I

(69)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D N A /n g

Control (mHA)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D N A /n g

Ofloxacin (mHA)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D N A /n g

Ciprofloxacin (mHA)

0.0 10.0 20.0 30.0 40.0 Day 14 Day 21 D N A /n g

Levofloxacin (mHA)

* * * * * * * * * * * * * * * * * * * * * * * * * *

(70)
(71)

0.0 2.0 4.0 6.0 8.0 Day 14 Day 21 TRA P A ct iv ity

Control (nHA)

0.0 2.0 4.0 6.0 8.0 Day 14 Day 21 TRAP A ctiv ity

Ofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 Day 14 Day 21 TRA P A ct iv ity

Ciprofloxacin (nHA)

0.0 2.0 4.0 6.0 8.0 Day 14 Day 21 TRAP A ctiv ity

Levofloxacin (nHA)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(72)

(73)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Control (mHA)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Ofloxacin (mHA)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Ciprofloxacin (mHA)

0.0 2.0 4.0 6.0 8.0 10.0 Day 14 Day 21 TRAP A ctiv ity

Levofloxacin (mHA)

* * * * * * * * * * * * * * * * * * * * * * * * *

(74)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 nHA mHA

Ext

ra

cell

u

la

r

Ca

2+

M

* * * *

(75)

Gene FQs 1- GAPDH A – Control 2- TRAP B- Ofloxacin 3- CATK C- Ciprofloxacin D- Levofloxacin 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Negative Control

Ofloxacin Ciprofloxacin Levofloxacin

R e lativ e in te n si ties

RT-PCR (mHA)

TRAP CATK

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

* * * *

(76)

A

B

C

D

50 μm

100 μm

(77)
(78)

Control

Ciprofloxacin Levofloxacin

Control

Ciprofloxacin Levofloxacin

V

N

R

C

T

R

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)

[1] W. J. Boyle, W. S. Simonet e D. L. Lacey, “Osteoclast differentiation and activation,”

Nature, vol. 423, pp. 337-342, 2003.

[2] G. Tortora and B. Derrickson, “Principles of Anatomy and Physiology,” 12th ed., Willey, 2009, pp. 175-190.

[3] H. K. Datta, W. F. Ng, J. A. Walker, S. P. Tuck e S. S. Varanasi, “The cell biology of bone metabolism,” J Clin Pathol, vol. 61, pp. 577-587, 2008.

[4] U. e. a. Kneser, “Tissue engineering of bone: the reconstructive surgeon's point of view,”

Journal of Cellular and Molecular Medicine, vol. 10, pp. 7-19, 2006.

[5] J. R. Porter, T. T. Ruckh e K. C. Popat, “Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies,” Biotechnol. Prog., vol. 25, pp. 1539-1560, 2009.

[6] A. J. Salgado, O. P. Coutinho e R. L. Reis, “Bone Tissue Engineering: State of the Art and Future Trends,” Macromolecular Bioscience, vol. 4 , pp. 743-765, 2004.

[7] D. W. Sommerfeldt e C. T. Rubin, “Biology of bone and how it orchestrates the form and function of the skeleton,” European Spine Journal, vol. 10, pp. S86-S95, 2001.

[8] T. R. Arnett, “Bone Structure and Bone remodelling,” [Online]. Available:

http://www.homepages.ucl.ac.uk/~ucgatma/Anat3048/PAPERS%20etc/Bone%20Struct ure%20and%20Bone%20Remodelling.pdf. [Acedido em June 2012].

[9] P. A. Hill, “Bone Remodelling,” British Journal of Orthodontics, vol. 25, pp. 101-107, 1998.

[10] M. J. Glimcher, “Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds,” Philosophical Transactions of

the Royal Society of London, vol. 304, pp. 479-508, 1984.

[11] S. C. Manolagas, “Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis,” Endocrine Reviews, vol. 21, pp. 115-137, 2000.

[12] P. Ducy, C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley e G. Karsenty, “Increased bone formation in osteocalcin-deficient mice,” Nature, vol. 382, pp. 448-452, 1996.

[13] A. M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron e E. Canalis, “Osteopenia and decreased bone formation in osteonectin-deficient mice,” The Journal of Clinical

(89)

Investigation, vol. 105, pp. 915-923, 2000.

[14] Q. International, “Visual Dictionary Online,” 2012. [Online]. Available:

http://visual.merriam-webster.com/human-being/anatomy/skeleton/types-bones.php. [Acedido em June 2012].

[15] S. C. Cowin and D. H. Hegedus, “Bone remodeling I: a theory of adaptive elasticity,”

Journal of Elasticity, vol. 6 (3), pp. 313-326, 1976.

[16] S. I. University, “Bone,” [Online]. Available:

http://www.siumed.edu/~dking2/ssb/NM035b2.htm. [Acedido em June 2012]. [17] A. Spence, Basic Medical Anatomy, Benjamin/Cummings, 1990.

[18] R. Baron, “Anatomy and Ultrastructure of Bone- Histogenesis, Growth and

Remodelling,” em Diseases of Bone and Mineral Metabolism, eHealthLinks, 2008. [19] N. E. Lane e W. Yao, “Developments in the scientific understanding of osteoporosis,”

Arthritis Research & Therapy, vol. 11, p. 228, 2009.

[20] J. Caetano-Lopes, H. Canhão e J. E. Fonseca, “Osteoblasts and Bone Formation,” Acta

Reum Port, vol. 32, pp. 103-110, 2007.

[21] M. K. El Tamer e R. L. Reis, “Progenitor and stem cells for bone and cartilage

regeneration,” Journal of Tissue Engineering and Regennerative Medicine, vol. 3, pp. 327-337, 2009.

[22] S. L. Dallas e L. F. Bonewald, “Dynamics of the Transition from Osteoblast to Osteocyte,”

Ann N Y Acad Sci, vol. 1192, pp. 437-443, 2010.

[23] F. C. Kelleher, J. E. Cain, J. M. Healy, D. N. Watkins e D. M. Thomas, “Prevailing importance of the hedgehog signaling pathway and the potential for treatment

advancement in sarcoma,” Pharmacology & Therapeutics, vol. 136, pp. 153-168, 2012. [24] T. J. Chambers, “Regulation of the differentiation and function of osteoclasts,” Journal

of Pathology, vol. 192, pp. 4-13, 2000.

[25] S. L. Teitelbaum, “Osteoclasts, macrophages, and the molecular mechanisms of bone resorption,” Journal of Leukocyte Biology, vol. 61, pp. 381-388, 1997.

[26] J. Costa-Rodrigues , C. A. Teixeira, P. Sampaio e M. H. Fernandes, “Characterisation of the Osteoclastogenic Potential of Human Osteoblastic and Fibroblastic Conditioned Media,” Journal of Cellular Biochemistry, vol. 109, pp. 205-216, 2010.

[27] A. L. Bell, “Histology LAB V - Nervous Tissue,” 1999. [Online]. Available:

(90)

[28] G. D. Roodman, “Cell biology of the osteoclast,” Experimental Hematology, vol. 27, pp. 1229-1241, 1999.

[29] B. F. Boyce e L. Xing, “Functions of RANKL/RANK/OPG in bone modeling and remodeling,” Archives of Biochemistry and Biophysics, vol. 473, pp. 139-146, 2008. [30] H. K. Väänänen e T. Laitala-Leinonen, “Osteoclast lineage and function,” Archives of

Biochemistry and Biophysics, vol. 473, pp. 132-138, 2008.

[31] P. T. Lakkakorpi e H. K. Vaananen, “Cytoskeletal Changes in Osteoclasts During the Resorption Cycle,” Microscopy Research and Technique, vol. 33, pp. 171-181, 1996. [32] T. Miyamoto e T. Suda, “Differentiation and function of osteoclasts,” Keio J Med, vol. 52,

pp. 1-17, 2003.

[33] T. G. H. G. Database, “GeneCards,” [Online]. Available: http://www.genecards.org/cgi-bin/carddisp.pl?gene=CTSK. [Acedido em May 2013].

[34] P. Leung, M. Pickarski, Y. Zhuo, P. J. Masarachia e L. T. Duong, “The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking,” Bone, vol. 49, pp. 623-635, 2011.

[35] K. Fuller, K. M. Lawrence, J. L. Ross, U. B. Grabowska, M. Shiroo, B. Samuelsson e T. J. Chambers, “Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts,” Bone, vol. 42, pp. 200-211, 2008.

[36] Q. Zhao, J. Shao, W. Chen e Y.-P. Li, “Osteoclast differentiation and gene regulation,”

Frontiers in Bioscience, vol. 12, pp. 2519-2529, 2007.

[37] H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S.-I. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, M. Tomonori, K. Higashio, N. Udagawa, N. Takahashi e T. Suda, “Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to

TRANCE/RANKL,” Proceedings of the National Academy of Sciences, vol. 95, pp. 3597-3602, 1998.

[38] Y. Hakeda, Y. Kobayashi, K. Yamaguchi, H. Yasuda, E. Tsuda, K. Higashio, T. Miyata e M. Kumegawa, “Osteoclastogenesis Inhibitory Factor (OCIF) Directly Inhibits

Bone-Resorbing Activity of Isolated Mature Osteoclasts,” Biochemical and Biophysical

Research Communications, vol. 251, pp. 196-801, 1998.

[39] H. J. Chae, J. O. Byun, S. W. Chae, H. M. Kim, H. I. Choi, H. O. Pae, Chung H. T. e H. R. Kim, “p38 MAPK and Nf.kB on IL-6 Release in Human Gingival Fibroblasts,”

Immunopharmacology and Immunotoxicology, vol. 27, pp. 631-646, 2005.

[40] H. Hotokezaka, E. Sakai, K. Kanaoka, K. Saito, K.-i. Matsuo, H. Kitaura, N. Yoshida e K. Kanayama, “U0126 and PD98059, Specific Inhibitors of MEK, Accelerate Differentiation

(91)

of RAW264.7 Cells into Osteoclast-like Cells,” The Journal of Biological Chemistry, vol. 277, pp. 47366-47372, 2002.

[41] H. J. Kim, Y. Lee, E.-J. Chang, H.-M. Kim, S.-P. Hong, Z. H. Lee, J. Ryu e H.-H. Kim, “Suppression of Osteoclastogenesis byN,N-Dimethyl-D-erythro-sphingosine: A

Sphingosine Kinase Inhibition-Independent Action,” Molecular Pharmocology, vol. 72, pp. 418-428, 2007.

[42] P. Schwenger, D. Alpert, E. Y. Skolnik e J. Vilcek, “Activation of p38 Mitogen-Activated Protein Kinase by Sodium Salicylate Leads to Inhibition of Tumor Necrosis

Factor-Induced IkBa Phosphorylation and Degradation,” Molecular and Cellular Biology, vol. 18, pp. 78-84, 1998.

[43] K. Strait, Y. Li, D. L. Dillehay e M. N. Weitzmann, “Suppression of NF-κB activation blocks osteoclastic bone resorption during estrogen deficiency,” International Journal of

Molecule Medicine, vol. 21, pp. 521-525, 2008.

[44] V. Iotsova, J. Caamaño, J. Loy, Y. Yang, A. Lewin e R. Bravo, “Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2,” Nature Medicine, vol. 3, pp. 1285-1289, 1997. [45] C. R. Weston e R. J. Davis, “The JNK signal transduction pathway,” Current Opinion in

Genetics & Development, vol. 12, pp. 14-21, 2002.

[46] E.-J. Chang, J. Ha, H. Huang, H. J. Kim, J. H. Woo, Y. Lee, Z. H. Lee, J. H. Kim e H.-H. Kim, “The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation,” Journal of Cell Science, vol. 121, pp. 2555-2564, 2008. [47] L. Zhenpeng, K. Kong e W. Qi, “Osteoclast and its roles in calcium metabolism and bone

development and remodeling,” Biochemical and Biophysical Research Communications, vol. 343, pp. 345-350, 2006.

[48] M. E. Holtrop, L. G. Raisz e H. A. Simmons, “The Effects of Parathyroid Hormone, Colchicine and Calcitonin on the Ultrastructure and the Activity of Osteoclasts in Organ Culture,” The Journal of Cell Biology, vol. 60, pp. 346-355, 1972.

[49] R. Baron e W. C. Horne, “Regulation of Osteoclast Activity,” em Bone Resorption, USA, Springer Science, 2005, pp. 34-57.

[50] S. W. Lee, H. b. Kwak, W. J. Chung, H. Cheong, H. H. Kim e Z. H. Lee, “Participation of protein kinase C β in osteoclast differentiation and function,” Bone, vol. 32, pp. 217-227, 2003.

[51] T. M.-H. Companies, “Access Medicine,” [Online]. Available:

http://akramania.byethost11.com/Harrison/Book/Part%2015.%20Endocrinology%20an d%20Metabolism/Section%202.%20Disorders%20of%20Bone%20and%20Mineral%20M etabolism/346.htm. [Acedido em June 2012].

(92)

[52] B. D. Ratner, A. S. Hoffman, F. J. Schoen e J. E. Lemons, Edits., “Biomaterials Science - An Introduction to Materials in Medicine,” Elsevier Academic Press, 2004, pp. 1-50.

[53] C. van Blitterswijk, “Tissue Engineering,” Elsevier Inc., 2008, pp. 1-50.

[54] J. M. Anderson, “Immune Response to Tissue Engineered Devices,” em Tissue

Engineering and Artificial Organs, Taylor & Francis Group, 2006, pp. 36-1–36-11.

[55] B. D. Ratner e S. J. Bryant, “Biomaterials: Where We Have Been and Where We Are Going,” Annual Review of Biomedical Engineering, vol. 6, pp. 41-75, 2004.

[56] R. Murugan e S. Ramakrishna, “Development of nanocomposites for bone grafting,”

Composites Science and Technology, vol. 65, pp. 2348-2406, 2005.

[57] M. R. Mucalo e A. J. Worth, “Biomedicals from Bone,” Chemistry in New Zealand , vol. 21, pp. 13-18, 2008.

[58] K. Kaveh, R. Ibrahim, M. Z. A. Bakar e T. A. Ibrahim, “Bone Grafting and Graft

Substitutes,” Jounal of Animal and Veterinary Advances, vol. 9, pp. 1055-1067, 2012. [59] J. Costa-Rodrigues, A. Fernandes, M. A. Lopes e M. H. Fernandes, “Hydroxyapatite

surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells,” Acta Biomaterialia, vol. 8, pp. 1137-1145, 2012.

[60] B. Stevens, Y. Yang, A. Mohandas, B. Stucker e K. T. Nguyen, “A Review of Materials, Fabrication Methodos, and Strategies Used to Enhance Bone Regeneration in Engineered Bone Tissues,” Journal of Biomedical Materials Research Part B: Applied

Biomaterials, vol. 85B, pp. 573-582, 2008.

[61] W. S. Khan, F. Rayan, B. S. Dhinsa e D. Marsh, “An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We?,” Stem Cells International, vol. 2012, pp. 1-7, 2012.

[62] T. Albrektsson e C. Johansson, “Osteoinduction, osteoconduction and osseointegration,”

European Spine Journal, vol. 10, pp. S96-S101, 2001.

[63] M. Svehla, P. Morberg, W. Bruce, B. Zicat e W. R. Walsh, “Hydroxyapatite Coating Thickness on Implant Shear Strength,” The Journal of Arthroplast, vol. 17, pp. 304-311, 2002.

[64] L. Zhang e T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration,” Nano Today, vol. 4, pp. 66-80, 2009.

[65] G. Wei e P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite Structure and properties of nano-hydroxyapatite/polymer composite,” Biomaterials, vol. 25, pp. 4748-4757, 2004.

(93)

[66] D. Le Nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace, P. Pilet e P. Layrolle, “Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles,” Bone, vol. 36, pp. 1086-1093, 2005.

[67] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel e R. Bizios, “Enhanced osteoclast-like cell functions on nanophase ceramics,” Biomaterials, vol. 22, pp. 1327-1333, 2001. [68] M. P. Ferraz, F. J. Monteiro e C. M. Manuel, “Hydroxyapatite nanoparticles: A review of

preparation methodologies,” Journal of Applied Biomaterials &Biomechanics, vol. 2, pp. 74-80, 2004.

[69] A. Maxwell, “The molecular basis of quinolone action,” Journa lof Antimicrobial

Chemotherapy, vol. 30, pp. 409-416, 1992.

[70] C. M. Oliphant e G. M. Green, “Quinolones: A Comprehensive Review,” Clinical

Pharmacology, vol. 65, pp. 455-464, 2002.

[71] P. C. Sharma, A. Jain e S. Jain, “Fluoroquinolone Antibacterials: a review on chemistry, microbology and therapeutic prospects,” Acta Poloniae Pharmaceutica - Drug Research, vol. 66, pp. 587-604, 2009.

[72] H. Anan, A. Matsumoto, T. Hamachi, Y. Yoshimine, Y. Morita e K. Maeda, “Effects of a Combination of an Antibacterial Agent (Ofloxacin) and a Collagenase Inhibitor (FN-439) on the Healing of Rat Periapical Lesions,” The American Association of Endodonfists, vol. 22, pp. 668-673, 1996.

[73] D. A. Ostrov, A. T. Magis, T. J. Wronski, E. K. L. Chan, E. J. Toro, R. E. Donatelli, K. Sajek, I. N. Haroun, M. I. Nagib, A. Piedrahita, A. Harris e L. S. Holliday, “Identification of

Enoxacin as an Inhibitor of Osteoclast Formation and Bone Resorption by Structure-Based Virtual Screening,” Journal Medicinal Chemistry, vol. 52, pp. 5144-5151, 2009. [74] P. D. Holtom, S. A. Pavkovic, P. D. Bravos, M. J. Patzakis, L. E. Shepherd e B. Frenkel,

“Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and

levofloxacin on osteoblastic cells in vitro,” Journal of Orthopaedic Research, vol. 18, pp. 721-727, 2000.

[75] C. Immanuel, A. K. Hemanthkumar, P. Gurumurthy e P. Venkatesan, “Dose related pharmacokinetics of ofloxacin in healthy volunteers,” The International Journal of

Tuberculosis and Lung Disease, vol. 6, pp. 1017-1022, 2002.

[76] S. Swoboda, K. Oberdorfer, F. Klee, T. Hoppe-Tichy, H. von Baum e H. K. Geiss, “Tissue and serum concentrations of levofloxacin 500 mg administered intravenously or orally for antibiotic prophylaxis in biliary surgery,” Journal of Antimicrobial Chemotherapy, vol. 51, pp. 459-462, 2003.

(94)

subjects using HPLC,” Pak. J. Pharm. Sci., vol. 3, pp. 299-306, 2008.

[78] J. Sendzik, H. Lode e R. Stahlmann, “Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data,” International Journal of Antimicrobial Agents, vol. 33, pp. 194-200, 2009.

[79] P. M. Huddleston, J. M. Steckelberg, A. D. Hanssen, M. S. Rouse, M. E. Bolander e R. Patel, “Ciprofloxacin Inhibition of Experimental Fracture-Healing,” The Journal of Bone

and Joint Surgery,, vol. 82, pp. 161-173, 2000.

[80] I. Tuncay, H. Ozbek, M. Köşem e O. Unal, “A comparison of effects of fluoroquinolones on fracture healing (an experimental study in rats),” Ulus Travma Acil Cerrahi Derg., vol. 11, pp. 17-22, 2005.

[81] J. E. Burkhardt, J. N. Walterspiel e U. B. Schaad, “Quinolone Arthropathy in Animals Versus Children,” Clinical Infectious Diseases, vol. 25, p. 1196 – 1204, 1997.

[82] J. J. Bertino e D. Fish, “The Safety Profile of the Fluoroquinolones,” Clinical Therapeutics, vol. 22, pp. 798-817, 2000.

[83] C. R. Rathbone, J. D. Cross, K. V. Brown, C. K. Murray e J. C. Wenke, “Effect of various concentrations of antibiotics on osteogenic cell viability and activity,” Journal of

Orthopaedic Research, vol. 29, pp. 1070-1074, 2011.

[84] N. Duewelhenke, O. Krut e P. Eysel, “Influence on Mitochondria and Cytotoxicity of Different Antibiotics Administered in High Concentrations on Primary Human

Osteoblasts and Cell Lines,” Antimicrobial Agents and Chemotherapy, vol. 51, pp. 54-63, 2007.

[85] T. Miclau, M. E. Edin, G. E. Lester, R. W. Lindsey e L. E. Dahners, “Effect of ciprofloxacin on the proliferation of osteoblast-like MG-63 human osteosarcoma cells in vitro,”

Journal of Orthopaedic Research, vol. 16, pp. 509-512, 1998.

[86] A. Meissner, K. Borner e P. Koeppe, “Concentrations of ofloxacin in human bone and in cartilage,” Journal Antimicrobial Chemotherapy, vol. 26, pp. 69-74, 1990.

[87] L. Malincarne, M. Ghebregzabher, M. V. Moretti, A. M. Egidi, B. Canovari, G. Tavolieri, D. Francisci, G. Cerulli e F. Baldelli, “Penetration of moxifloxacin into bone in patients undergoing total knee arthroplasty,” Journal of Antimicrobial Chemotherapy, vol. 57, pp. 950-954, 2005.

[88] J. Costa-Rodrigues, E. G. Martins e M. H. Fernandes, “Induced osteoclastogenesis by fluoroquinolones in unstimulated and stimulated human osteoclast precursor cells,”

Bone, vol. 51, pp. 17-27, 2012.

(95)

osteoclast-like cells,” Journal of Toxicology Sciences, vol. 24, pp. 383-391, 1999. [90] N. Huebsch e D. J. Mooney, “Inspiration and Application in the evolution of

biomaterials,” Nature, vol. 462, pp. 426-432, 2009. [91] L. Cadersky-Envitek, “HiSep™,” [Online]. Available:

http://www.himedia.cz/produkty/lymfo. [Acedido em May 2012].

[92] G. BV, “SLT Spectra II,” [Online]. Available: http://www.geminibv.nl/labware/slt-spectra-ii-1/. [Acedido em May 2012].

[93] A. K. Nayak, B. Laha e K. K. Sen, “Development of hydroxyapatite-ciprofloxacin bone-implants using »Quality by design«,” Acta Pharm., vol. 61, pp. 25-36, 2011.

[94] T. H. H. Thi, F. Chai, S. Leprête, N. Blanchemain, B. Martel, F. Siepmann, H. F.

Hildebrand, J. Siepmann e M. P. Flament, “Bone implants modified with cyclodextrin: Study of drug release in bulk fluid and into agarose gel,” International Journal of

Pharmaceutics, vol. 400, pp. 74-85, 2010.

[95] S. C. F. do Carmo, “Comportamento osteoclástico na superfície de hidroxiapatite micro- e nanoestruturada,” Faculdade de Engenharia da Universidade do Porto, 2012.

[96] E. Martínez, E. Engel, J. A. Planell e J. Samitier, “Effects of artificial micro- and nano-structured surfaces on cell behaviour,” Annals of Anatomy, vol. 191, pp. 126-135, 2009. [97] D. C. Miller, A. Thapa, K. M. Haberstroh e T. J. Webster, “Endothelial and vascular

smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features,” Biomaterials, vol. 25, pp. 53-61, 2004.

[98] R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman e P. F. Nealy, “E¤ects of synthetic micro- and nano-structured surfaces on cell behavior,” Biomaterials, vol. 20, pp. 573-588, 1999.

[99] M. Dan, J. Golomb, A. Gorea, Z. Braf e S. A. Berger, “Concentration of Ciprofloxacin in Human Prostatic Tissue after Oral Administration,” Antimicrobial Agents and

Chemotherapy, vol. 30, pp. 88-89, 1986.

[100] D. Fabre, F. Bressolle, R. Gomeni, C. Arich, F. Lemesle, H. Beziau e M. Galtier, “Steady-State Pharmacokinetics of Ciprofloxacin in Plasma from Patients with Nosocomial Pneumonia: Penetration of the Bronchial Mucosa,” Antimicrobial Agents and

Chemotherapy, vol. 35, pp. 2521-2525, 1991.

[101] M. H. Gotfried, L. H. Danziger e K. A. Rodvold, “Steady-State Plasma and Intrapulmonary Concentrations of Levofloxacin and Ciprofloxacin in Healthy Adult Subjects,” Chest, vol. 191, pp. 1114-1122, 2001.

(96)

[102] H. Baum, S. Böttcher, R. Abel, H. J. Gerner e H. G. Sonntag, “Tissue and serum concentrations of levofloxacin in orthopaedic patients,” International Journal of

Antimicrobial Agents, vol. 18, pp. 335-340, 2001.

[103] A. Y. P. Mateus, C. C. Barrias, C. Ribeiro, M. P. Ferraz e F. J. Monteiro, “Comparative study of nanohydroxyapatite microspheres for medical applications,” Journal Biomedical

Materials Research Part A, vol. 86, pp. 483-493, 2008.

[104] H.-P. Gerber e N. Ferrara, “Angiogenesis and Bone Growth,” Trends in Cardiovascular

Referências

Documentos relacionados

Na maioria das vezes, os acidentes com pedestres e/ou ciclistas em rodovias se caracterizam como atropelamentos, uma vez que estas vias não trazem segurança para

The main objective of this work is to present a method developed in a GIS to identify the most appropriate places to implement renewable energy generation projects (wind and

As estruturas de bandas para o sistema HgTe/CdTe puro sem dopagem podem ser vistas na figura 5.9, onde as linhas tracejadas representam as bandas para os estados de bulk, os

-Fomos logo de manhã para Valhelhas (foram todos os clientes que se encontravam na CERCIG, muitos deles não estavam pois estiveram de férias durante o mês de Agosto, foram

Analisa os efeitos do trabalho de escrita – conceito elaborado por Riolfi 2003 – que ocorrem quando aquele que redige um texto se permite um processo de mão dupla: a por um

O antagonismo entre mito e ciência – ou, como penso ser mais conveniente dizer, entre arte e ciência – não podia então colocar-se na forma de uma oposição entre dois

b) a região T3 destacou-se como a mais favorãvel para produção de sementes das três cultivares estudadas (com exceção da cultivar Bossier na safra 1982/83), sendo a região