• Nenhum resultado encontrado

Variability of glucosinolates and phenolics in local kale populations from Turkey, Italy and Portugal

N/A
N/A
Protected

Academic year: 2021

Share "Variability of glucosinolates and phenolics in local kale populations from Turkey, Italy and Portugal"

Copied!
22
0
0

Texto

(1)9th International Food data Conference, Norwich, UK, September 14-16, 2011. Variability of glucosinolates and phenolics in local kale populations from Turkey, Italy and Portugal Federico Ferioli, Manuela Manco, Elisa Giambanelli, Luigi Filippo D’Antuono Department of Agroenvironmental Science and Technology, Food Science University Campus, University of Bologna, Italy. Tânia G. Albuquerque, Ana Sanches-Silva Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. (INSA), Lisboa, Portugal. Bike Koçaoglu, Osman Hayran TC Yeditepe University, Istanbul, Turkey.

(2) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. KALES “Leafy cabbages”. Kales, collards  Non-heading forms of Brassica oleracea L.  Plants not forming any head: nor vegetative, like cabbage or reproductive, like cauliflower or broccoli.  Taxonomy: still under review  They are considered primitive types of B. oleracea, the closest to wild types.  The leaves are used, at different developmental stages.  In Europe, substantially neglected by breeding: no modern varieties do exist.. Local types, Turkey. From: Gladis and Hammer, 1994, modified. var. polycephala var. palmifolia. conv.costata sabellica x capitata. var. sabellica var. selenisia. var. gemmifera. conv. gemmifera. var. viridis. var. costata. var. sabauda. conv. acephala var. capitata. var. medullosa var. gongylodes. conv. capitata var. alboglabra var. italica var. botrytis. conv. fruticosa. var. ramosa. Old and young crops, Portugal. subsp.capitata. conv. botrytis. Brassica oleracea. Commercial crop, Italy.

(3) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Local kale populations are still cultivated in several European areas  Also popular in southern United States, India, East Africa  A cool season vegetable, among the few able to grow during winter Local types, in winter, Italy. Local types, under snow, Portugal  Also used as a famine or war time crop (Dig for Victory campaign ) Sean Poulter World War Two vegetable comes back as 'superfood' Mail on line, 3 October 2007.

(4) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Kales represent basic ingredients of local traditional dishes. rumbledethumps. boerenkhol stamppot. grøn lankgål. kailkenny. gruenkhol und pinkel. colcannon. kara lahana chorbasi. caldo verde. prebugiun. ribollita toscana. kara lahana dolma.

(5) 9th International Food data Conference, Norwich, UK, September 14-16, 2011.

(6) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Putative health-promoting compounds of kales Glucosinolates  Kales represent the more relevant potential dietary source of the glucobrassicin / indole-3- carbinol system glucobrassicin (% total glucosinolates) of kale populations north Spain 1 Turkey 2 Italy 3 19.3-36.9 78.9-84.1 47.7-90.7  Indole-3-carbinol is being investigated as a protective agent against cancer development and other immune and hormone-related diseases 4 1. Velasco P., Cartea M.E., Gonzales C., Vilar M., Ordas A., 2007. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agric. Food Chem., 55, 955-962 2. Sarıkamış G., Balkaya A., Yanmaz R., 2008. Glucosinolates in kale genotypes from the Black sea region of Turkey. Biotechn. & Biotechn. Equip., 22, 942-946 3. Baldacci G., D’Antuono L.F., Elementi S., Neri R., 2007. Componenti nutrizionali del cavolo nero di Toscana (Brassica oleracea L., ssp. acephala DC., var. sabellica L.). Graduation thesis, Food Science and Technology, University of Bologna 4. Higdon J., Drake V.J., Williams D.E., 2008. Indole-3-carbinol. Linus Pauling Institute. Oregon State University. http://lpi.oregonstate.edu/infocenter/phytochemicals/i3c/.

(7) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Putative health-promoting compounds of kales Phenolics  Phenolic components presently represent the main focus as dietary antioxidant agents  Kales have been characterised for their phenolic content and profile 1-5  They proved to be comparatively rich sources of these components, and associated antioxidant capacity, with respect to other vegetables 4-5. Carotenoids.  Kales have been recognised as the richest sources of chlorophyll-associated carotenoids (β β-carotene 5-6 and lutein) among leafy vegetables. 1. Cartea M.E., Francisco M., Soengas P., Velasco P., 2011. Phenolic compounds in Brassica vegetables. Molecules, 16, 251-280. 2. Lin L.Z., Harnly J.M., 2009. Identification of the phenolic components of collard greens, kale, and chinese broccoli. J. Agric. Food Chem., 57, 7401-7408. 3. Olsen H., Aaby K., Borge G.I.A., 2009. Characterisation and quantification of flavonoids and hydroxyconnamic acids in curly kale (Brassica oleracea L. convar. acephala var. sabellica) by HPLC-DAD-ESI-MS. 4. Ayaz F.A., Hayırlıoglu-Ayaz S., Aplay-Karaoglu S., Grúz J., Vanentová K., Ulrichová J., Strnad M., 2008. Phenolic acid contents of kale Brassica oleracea L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food chemistry, 107, 1925. 5. Nilsson J., Olsson K., Engqvist G., Ekvall J., Olsson M., Nyman M., Akesson B., 2006. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular weight carbohydrates in Brassica vegetables. J. Sci. Food Agric., 86, 528-538. 6. Lefsrud M. Kopsell D., Wenzel A., Sheehan J., 2007. Changes in kale (Brassica oleracea L. var. acaphala) carotenoids and chlorophyll pigment concentrations during leaf ontogeny. Sci. Hortic., 112, 136-141..

(8) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Kales in BaSeFood Kales have been targeted as one of the investigation topics of BaSeFood (Sustainable exploitation of bioactive components from the Black Sea Area traditional foods), because of the following characters:  they are local crops, widely used as food plants, highly appreciated in the native areas  they are potential sources of health promoting substances and functional foods A targeted research has been started in three BaSeFood participant countries: Turkey, Italy and Portugal, aimed at:  comparing local populations and uses, in a cross country, cross-cultural perspective  comparing phytochemical content of some populations  determining bioactive retention in some traditional food preparation schemes. The comparison of glucosinolate and phenolic content of local populations from native areas, or grown in a common environment, is the subject of this contribution.

(9) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Materials and methods Local populations  25 samples taken from local crops or markets, winter 2010 • Turkey: 7 (kara lahana - black cabbage) • Portugal: 9 (couve galega - Galician kale) • Italy: 9 (cavolo nero - black cabbage)  mature leaves random sampled, in triplicate  refrigerated and transported to the lab  frozen, freeze dried and kept at –20 °C until extra ction.

(10) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Materials and methods Experimental trial  15 seeds samples obtained from local sources (local seeds companies, farmers) • Turkey: 6 • Portugal: 2 • Italy: 7  seedlings produced in nursery, sown August 8, 2010  transplant in the field, Martorano 5 experimental farm, September 2, 2010  3 replication, randomised block  mature leaves harvested December 9, 2010.  frozen, freeze dried and kept at –20 °C until extra ction.

(11) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Materials and methods Analytical determination of glucosinolates (GLS) and phenols  inactivation of endogenous mirosinase in freeze-dried material at 70°C mixtures  simultaneous extraction of phenolics and glucosinolates by methanol/water  purification of GLS from phenols by solid phase extraction (stationary phase: DEAE Sephadex anion exchanger)  desulphation of GLS on SPE cartridge by sulphatase (from Helix pomatia)  elution of desulpho-GLS by water  quantification of GLS and phenols (on crude extract) by high performance liquid chromatography (HPLC) by external standard method  identification of compounds by a coupled system HPLC-mass spectrometry HO. O. OH OH. S N. HO. OH. HO. Sinigrin. HO. HO HO. Kaempferol-3-O-(2-synapoylsophoroside)-7-O-glucoside. O OH. O. O. N N H. HO OH. OH OH. O. O O HO. O. S. O OH. HO HO. HO HO. HO. O. HO. HO O. Glucobrassicin. O OH. O. OH. Quercetin-3-O-(2-caffeoylsophoroside-7-O-glucoside). OH. HO HO. O O. OH O. OH. O. HO. HO HO. O HO HO. O O O. OH. OCH3. O. OH OH. OCH3.

(12) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Total glucosinolates Tota l glucosinola te s Analysis of variance. 12000. Loca l sa m ple s Fie ld e x pe rim e nt. 10000. mg kg. -1. d.m.. B. A. C. 8000 6000 4000. A. Origin. **. Source. **. Origin × Source. **. Samples. **. ** p < 0.01; * p < 0.05; NS, not significant. A. A B. B. 2000. Significance. B. 0 Ita ly. Portuga l. Turke y. Bars = overall variability range.

(13) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. HPLC trace of desulpho-GLS extracted from a Turkish kale sample Identified GLS (wavelength: 229 nm). 1 1. 1: glucoiberin. 2+3. 2 + 3: glucoraphanin + epi-progoitrin 4 + 5: glucolepidin + sinigrin 1 3. 6: 2-hydroxyethyl GLS 7: glucoalyssin 8: gluconapin 9: 4-hydroxybrassicin 10: glucotropaeolin (internal standard) 11: glucobrassicin. 1 0 6 7 1. 4+5. 12: glucobrassicanapin 13: 4-methoxyglucobrassicin 1 2. 8 9. 14: neoglucobrassicin 1 4.

(14) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Total phenolics Tota l phe nolics. Loca l sa m ple s Fie ld e x pe rim e nt. B. A. mg kg. C. 300000 A. -1. d.m.. 400000. A A. 200000 A. Analysis of variance. Significance. Origin. **. Source. NS. Origin × Source. **. Samples. **. ** p < 0.01; * p < 0.05; NS, not significant. B. A. 100000. 0 Ita ly. Portuga l. Turke y. Bars = overall variability range.

(15) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. HPLC trace of phenolics extracted from an Italian kale sample.

(16) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Discriminant analysis of relative content of glucosinolate and phenolic compounds Correlations between relative component content and discriminant factors (DF). Distribution of the experimental cases (origin x source) in the space of the five discriminant factors (DF) Local samples Field experiment. 10. DF 2. Local samples Field experiment. Italy Portugal Turkey. 6. DF 3. Italy Portugal Turkey. -16. 8 DF 1. -16. 8 DF 1. -6 Local samples Field experiment. 6. -6 DF 4. Local samples Field experiment. Italy Portugal Turkey. 6. DF 5. Italy Portugal Turkey. -16. 8. -16. 8 DF 1. DF 1. -6. -6. 1, Glucoiberin 2. Glucoraphanin 3. Sinigrin 4. Gluconapin 5. 4-Hydroxy-glucobrassicin 6. Glucobrassicin 7. 4-Methoxy-glucobrassicin 8. Neoglucobrassicin 1. 3-Caffeoylquinic acid 2. 3-p-Coumaroylquinic acid 3. 4-p-Coumaroylquinic acid 4. 3-Feruoylquinic acid 5. Quer-3-diglu-7-glu 6. Quer-3-caf-diglu-7-glu + kaemp-diglu 7. Kaemp-3-diglu-7-glu 8. Sin-glu 9. Kaemp-3-hydrfer-diglu-7-diglu 10. Quer-3-sin-diglu-7-glu 11. Quer-3-fer-diglu-7-glu + quer-3-diglu-7-sin-diglu 12. Kaemp-3-caf-diglu-7-glu + quer-3-diglu-7-fer-diglu 13. Kaemp-3-sin-diglu-7-glu + kaemp-3-sin-diglu-7-diglu 14. Kaemp-3-fer-diglu-7-glu 15. Kaemp-3-fer-diglu-7-diglu 16. Kaemp-3-fer-triglu-7-diglu 17. Keamp-3-cum-diglu-7-glu 18. Quer-3-sin-triglu-7-sin-diglu 19. Quer-3-disin-triglu-7-glu 20. Kaemp-3-disin-triglu-7-diglu 21. Kaemp-3-fer,sin-triglu-7-diglu 22. Disin-diglu 23. Sin-fer-diglu 24. Trisin-diglu 25. Disin-fer-diglu. DF1 -0.512 0.122 -0.910 0.035 -0.048 0.894 0.234 -0.456 0.298 0.236 0.202 -0.158 0.041 0.113 -0.764 0.414 0.264 0.090 -0.179 -0.011 0.248 -0.032 0.409 -0.336 0.005 -0.168 -0.306 0.517 0.129 0.296 0.373 0.122 0.040. DF2 -0.148 -0.136 -0.152 0.279 0.173 0.052 0.367 -0.363 -0.187 -0.302 -0.303 -0.211 -0.407 -0.366 0.214 -0.230 -0.112 -0.473 0.104 -0.080 0.157 0.490 -0.228 0.435 -0.194 -0.114 -0.030 -0.001 0.002 -0.375 -0.352 -0.246 0.124. DF3 -0.071 0.242 0.045 -0.421 -0.181 0.054 0.400 -0.201 0.244 -0.104 -0.195 -0.141 -0.062 -0.049 0.168 0.480 -0.012 -0.184 -0.560 -0.225 0.125 0.542 -0.122 0.196 -0.020 -0.206 -0.335 -0.645 0.127 -0.441 0.055 -0.497 -0.188. DF4 0.282 -0.052 0.005 -0.050 -0.147 -0.044 -0.223 -0.063 -0.123 -0.050 0.026 0.050 0.098 -0.004 0.062 -0.115 -0.035 0.295 0.317 0.083 0.155 -0.243 -0.110 0.081 0.193 -0.104 0.010 -0.118 -0.194 -0.023 -0.470 0.214 -0.233. DF5 0.179 -0.309 -0.006 0.145 0.173 -0.032 -0.220 -0.218 0.139 -0.041 -0.020 -0.025 0.012 -0.035 0.007 0.126 0.234 -0.119 -0.152 -0.118 -0.158 -0.016 0.077 0.128 0.078 0.382 -0.174 0.133 -0.116 0.039 0.138 0.027 -0.064. Variability explained. 0.660. 0.186. 0.090. 0.045. 0.019.

(17) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Relative content of relevant glucosinolates Sinigrin. Glucoiberin Fraction ( mg mg -1 total GLS ). Local samples Field experiment 0.4. 0.2. Local samples Field experiment. 0.8. B. A. A. C. A. A. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. A. B. A. 0.0 Italy. Portugal. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. Turkey. 1.0. A. B. B. B C. A A. 0.4 B. 0.2 A. A. Italy. A. 0.6. B. A. 0.0. A. A. 0.8. 0.6. Local samples Field experiment. Glucobrassicin Fraction ( mg mg -1 total GLS ). Fraction ( mg mg -1 total GLS ). 0.6. A. Portugal. Turkey. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. A. 0.4 B. 0.2 0.0 Italy. Portugal. Turkey. Bars = overall variability range. A.

(18) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Relative content of relevant glucosinolates Neoglucobrassicin. 4-Methoxyglucobrassicin. B. B. Fraction ( mg mg -1 total GLS ). Local samples Field experiment. A. 0.2. A. A B. A. A. A. ANOVA. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. Turkey. 0.5 0.4. C. Local samples Field experiment. B. A. C. 0.1 A A. Italy. Local samples Field experiment. B. 0.2. A. B. A. ANOVA Origin Source Origin × Source Samples. Portugal. Turkey. Significance ** ** ** **. ** p < 0.01; * p < 0.05; NS, not significant. A. 0.3 0.2 0.1. A A B. 0.0 Italy. A. A. Portugal. A. 0.0. Gluconapin total GLS ). Portugal. -1. Italy. Significance. Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. 0.0. Fraction ( mg mg. Fraction ( mg mg -1 total GLS ). 0.4. B. Turkey. A. Bars = overall variability range.

(19) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Loca l sa m ple s Fie ld e x pe rim e nt. C. A. B. a b. 0.2 A A. A. A. 0.0 P ortuga l. Ita ly. total phenolics ) -1. Ka e m p-3-sin-diglu-7-glu + ka e m p-3-sin-diglu-7-diglu Loca l sa m ple s Fie ld e x pe rim e nt. a. A. A. 0.09. AB. B. A B. B. A. A. 0.00 Ita ly. P ortuga l. A. 0.0 P ortuga l. Turke y. Ka e m p-3-fe r-diglu-7-diglu. 0.06. 0.03. A. A A. ANOVA Significance Origin ** Source NS Origin × Source NS Samples ** ** p < 0.01; * p < 0.05; NS, not significant. Loca l sa m ple s Fie ld e x pe rim e nt. A. A. 0.2. 3-ca ffe oylquinic a cid 0.12. b. 0.4. Ita ly. ANOVA Significance Origin ** Source ** Origin × Source * Samples ** ** p < 0.01; * p < 0.05; NS, not significant. Fraction ( mg mg. 0.6. Turke y. Turke y. ANOVA Significance Origin * Source ** Origin × Source * Samples ** ** p < 0.01; * p < 0.05; NS, not significant. A. Fraction ( mg mg -1 total phenolics ). Fraction ( mg mg -1 total phenolics ). Ka e m p-3-diglu-7-glu 0.4. Fraction ( mg mg -1 total phenolics ). Relative content of relevant phenolics – correlated to DF1. 0.2. Loca l sa m ple s Fie ld e x pe rim e nt. A. B. B. 0.1 A. A A. A A. 0.0 Ita ly. P ortuga l. Turke y. ANOVA Significance Origin ** Source NS Origin × Source NS Samples ** ** p < 0.01; * p < 0.05; NS, not significant. A.

(20) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results Relative content of relevant phenolics – correlated to DF2. A. B. B. 0.04. A. A A. A. A. A. 0.00 Portugal. Italy. ANOVA Origin Source Origin × Source Samples. Turkey. A. A. Fraction ( mg mg. A. A. A. A. A. A. 0.02. 0.00 Italy. Portugal. total phenolics ) -1. 0.04. B. B. Turkey. ANOVA Significance Origin ** Source NS Origin × Source NS Samples ** ** p < 0.01; * p < 0.05; NS, not significant. Local samples Field experiment. A. B. AB. 0.06. A. Turkey. A. 0.09. Local samples Field experiment. A. C. B. A A. 0.06. A. A. A B. 0.03. 0.00 Italy. Portugal. A. Turkey. ANOVA Significance Origin ** Source NS Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. A A A. 0.00 Italy. Significance ** NS NS **. 0.12. A. 0.03. Portugal. Turkey. ANOVA Significance Origin ** Source NS Origin × Source NS Samples * ** p < 0.01; * p < 0.05; NS, not significant. Quer-3-sin-diglu-7-glu. Local samples Field experiment. A. A. Portugal. ** p < 0.01; * p < 0.05; NS, not significant. Fraction ( mg mg. total phenolics ) -1. 0.06. A. 0.00. Quer-3-caf-diglu-7-glu+kaemp-diglu 0.08. A. ANOVA Origin Source Origin × Source Samples. ** p < 0.01; * p < 0.05; NS, not significant. 0.09. -1. 0.02. Italy. Significance ** NS NS **. Fraction ( mg mg. 0.01. Fraction ( mg mg. Fraction ( mg mg. -1. -1. Local samples Field experiment. total phenolics ). B. B. 0.02. 0.06. Fraction ( mg mg -1 total phenolics ). A. Quer-3-diglu-7-glu. 4-p-coumaroyl quinic acid. Local samples Field experiment. total phenolics ). total phenolics ). 3-p-coumaroyl quinic acid 0.03. Local samples Field experiment. Kaemp-3-fer-triglu-7-diglu 0.05. B. A. A. A A. 0.03. A. A. A. A. 0.00 Italy. Portugal. Turkey. ANOVA Significance Origin ** Source NS Origin × Source NS Samples ** ** p < 0.01; * p < 0.05; NS, not significant.

(21) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Results. B. B. 0.00 Portugal. Italy. Turkey. ANOVA Significance Origin NS Source ** Origin × Source NS Samples ** ** p < 0.01; * p < 0.05; NS, not significant Local samples Field experiment. A. A. Fraction ( mg mg. 0.05. A. A A. A B. A. B. 0.00 Italy. Portugal. Turkey. ANOVA Significance Origin NS Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant. ab. A. 0.05. A. A A. B. B. 0.00 Portugal. Italy. Kaemp-3-disin-triglu-7-diglu. A. C. B. A. A B. 0.04. B A. A. 0.00 Italy. A A. 0.1. A. A. B. A. B. 0.0 Italy. Local samples Field experiment. 0.08. B. C. Turkey. ANOVA Significance Origin * Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05;NS, not significant. -1. -1. total phenolics ). Quer-3-disin-triglu-7-glu 0.10. b. Fraction ( mg mg -1 total phenolics ). Fraction ( mg mg. B. a. Portuga l. Turkey. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05; NS, not significant Trisin-diglu total phenolics ). A. 0.03. Local samples Field experiment. 0.2. 0.03. Local samples Field experiment. A. B. B. 0.02. -1. A. Local samples Field e xperiment. Kaemp-3-fer-diglu-7-glu. Quer-3-fer-diglu-7-glu + quer-3-diglu-7-sin-diglu. Portugal. Fraction ( mg mg. -1. A. 0.10. -1. A. Fraction ( mg mg. A. Fraction ( mg mg. total phenolics ). A. total phenolics ). Local samples Field experiment. Sin-glu 0.05. total phenolics ). Relative content of relevant phenolics – correlated to DF3. 0.01. B. A. A. A. A. 0.00 Italy. Turkey. ANOVA Significance Origin ** Source ** Origin × Source ** Samples ** ** p < 0.01; * p < 0.05;NS, not significant. A. ANOVA Origin. Source Origin × Source. Portugal. Turkey. Significance **. ** **. Samples ** ** p < 0.01; * p < 0.05; NS, not significant.

(22) 9th International Food data Conference, Norwich, UK, September 14-16, 2011. Conclusions  First time exploration of populations from different countries in a common environment  Glucosinolate content in the range of other experiences  High variability due to environmental factors  Portuguese populations show a more different profile (sinigrin)  Scarce clear references available for phenolics  Very high content in the populations examined  Some phenolics are more effective to discriminate growing conditions  Kales confirmed to be very interesting food crops and potential easy to grow raw materials for food extracts or preparations..

(23)

Referências

Documentos relacionados

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Artifi- cialmente pode variar, quando há introdução de mate- rial transportado (de desaterros ou não), ou de entulho. A introdução destes resíduos interrompe o fluxo normal da

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

The irregular pisoids from Perlova cave have rough outer surface, no nuclei, subtle and irregular lamination and no corrosional surfaces in their internal structure (Figure

The limestone caves in South Korea include a variety of speleothems such as soda straw, stalactite, stalagmite, column, curtain (and bacon sheet), cave coral,

Numerous coastal species of microcerberids in brackish water favored also the marine origin, whereas the secondary occurrence in the littoral (WÄGELE, 1983) is