• Nenhum resultado encontrado

Optimization of mobile phase composition for preparative separation of profens enantiomers by chiral liquid chromatography

N/A
N/A
Protected

Academic year: 2021

Share "Optimization of mobile phase composition for preparative separation of profens enantiomers by chiral liquid chromatography"

Copied!
20
0
0

Texto

(1)

P

r

200B

10

th

International

Chemical and Biological Engineering

Conference

>

(2)

B

OOK OF

A

BSTRACTS OF THE

10

TH

I

NTERNATIONAL

C

HEMICAL AND

B

IOLOGICAL

E

NGINEERING

C

ONFERENCE

(3)
(4)

iii

B

OOK OF

A

BSTRACTS OF THE

10

TH

I

NTERNATIONAL

C

HEMICAL AND

B

IOLOGICAL

E

NGINEERING

C

ONFERENCE

-

CHEMPOR

2008

4-6

S

EPTEMBER

2008,

B

RAGA

,

P

ORTUGAL

O

RGANIZED BY

U

NIVERSIDADE DO

M

INHO

O

RDEM DOS

E

NGENHEIROS

I

NSTITUTE FOR

B

IOTECHNOLOGY AND

B

IOENGINEERING

S

UPPORT

S

OCIEDADE

P

ORTUGUESA DE

Q

UÍMICA

S

OCIEDADE

P

ORTUGUESA DE

B

IOTECNOLOGIA

E

DITED BY

E

UGÉNIO

C.

F

ERREIRA

M

ANUEL

M

OTA

U

NIVERSIDADE DO

M

INHO

,

D

EPARTAMENT OF

B

IOLOGICAL

E

NGINEERING

(5)

iv

This volume contains abstracts presented at the 10

th

International Chemical and Biological

Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, between September 4th and

6th, 2008.

Title: Book of Abstracts of the 10th International Chemical and Biological Engineering

Conference - CHEMPOR 2008

Edited by Eugénio C. Ferreira and Manuel Mota

First edition August 2008

ISBN: 978-972-97810-4-9

Depósito legal: #####/2008

Tiragem: 500 exemplares

Cover design: Helena Martins www. helenamartinsdesign.com

Publisher:

Universidade do Minho, Departamento de Engenharia Biológica

Campus de Gualtar, 4700 Braga, Portugal

Printed by:

Candeias Artes Gráficas, Lda.

Rua Conselheiro Lobato, 179, 4700-338 Braga

© Universidade do Minho

(6)

v

Foreword

This book contains the extended abstracts presented at the 10th International Chemical and Biological

Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4

th

to the 6

th

of

September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), Póvoa de

Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001).

The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB -

Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de

Química” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”.

Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen,

A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares

and Pinheiro in the Honor Committee of this 10

th

edition, under the high Patronage of his Excellency the

President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. The opening ceremony will confer Prof.

Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought

along more than 30 years to the development of the Chemical Engineering science, to the launch of

CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the

importance of effective energy management in processing operations, particularly in the effectiveness of

heat recovery and the associated reduction in greenhouse gas emission from combustion processes.

The CHEMPOR series traditionally brings together both young and established researchers and end users

to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is

broadening out by including the Biological Engineering research. One of the major core areas of the

conference program is life quality, due to the importance that Chemical and Biological Engineering plays in

this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development

through Green Chemistry” are two of the leading themes with papers addressing such important issues.

This is complemented with additional leading themes including “Advancing the Chemical and Biological

Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product

Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and

Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this

book.

A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote,

105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster

presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have

been reviewed and we are grateful to the members of scientific and organizing committees for their

evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received.

It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish

to thank the authors who have contributed to yield a high scientific standard to the program. We are

thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to

all those who, through their dedicated efforts, have assisted us in this task.

On behalf of the Scientific and Organizing Committees we wish you that together with an interesting

reading, the scientific program and the social moments organized will be memorable for all.

Braga, September 2008

Eugénio C. Ferreira

Manuel Mota

(7)

vi

Committee Members

Honor Committee:

Under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. Members:

Ministro da Ciência, Tecnologia e Ensino Superior, Prof. Doutor José Mariano Gago

Secretário de Estado Adjunto, da Indústria e da Inovação, Prof. Doutor António Castro Guerra Bastonário da Ordem dos Engenheiros, Engº Fernando Santo

Reitor da Universidade do Minho, Prof. Doutor António Guimarães Rodrigues Presidente da Câmara Municipal de Braga, Engº Francisco Mesquita Machado Governador Civil do Distrito de Braga, Dr. Fernando Moniz

Presidente da Fundação para a Ciência e a Tecnologia, Prof. Doutor João Sentieiro Presidente da Sociedade Portuguesa de Química, Prof. Doutor José Luís Figueiredo Presidente da Sociedade Portuguesa de Biotecnologia, Prof. Doutor F. Xavier Malcata Presidente da Escola de Engenharia da Universidade do Minho, Prof. Doutor António Cunha Prof. Doutor T. Reg. Bott (Univ. Birmingham)

Prof. Doutor João de Deus Pinheiro (Univ. Minho) Prof. Doutor Luís J. Soares (Univ. Minho)

Scientific Committee:

President: Manuel Mota (Univ. Minho) Members:

C. Bernardo (Univ. Minho) J.C. Bordado (IST-UTL) M. Carrondo (UNL) C. Costa (Univ. Porto) J. Coutinho (Univ. Aveiro) J. P. G. Crespo (UNL)

J. J. C. Cruz Pinto (Univ. Aveiro) E. C. Ferreira (Univ. Minho) S. Feyo de Azevedo (Univ. Porto) M. M. Figueiredo (Univ. Coimbra) M. H. Gil (Univ. Coimbra) J. Lafuente (Univ. Aut. Barcelona) J. Lema (Univ. Santiago de Compostela) F. Lemos (IST-UTL)

L. Q. Lobo (Univ. Coimbra)

F.X. Malcata (Univ. Católica) L. Melo (Univ. Porto) A. Q. Novais (INETI) M. Nunes da Ponte (UNL) R. Oliveira (Univ. Minho) C. Pedro Nunes (IST-UTL) F. Ramôa Ribeiro (IST-UTL) A. E. Rodrigues (Univ. Porto) R. Salcedo (Univ. Porto) J. Sampaio Cabral (IST-UTL) P. Saraiva (Univ. Coimbra) R. Simões (UBI)

L. Sousa Lobo (UNL) J. A. Teixeira (Univ. Minho)

Organizing Committee:

President: Eugénio C. Ferreira (Univ. Minho & Ordem dos Engenheiros) Members:

M. Alves (Univ. Minho) J. Azeredo (Univ. Minho) I. Belo (Univ. Minho)

J. C. Bordado (Ordem dos Engenheiros) J. M. Costa Reis (Soc. Portuguesa Química) L. Domingues (Univ. Minho)

C. Gaudêncio (Ordem dos Engenheiros)

M. Henriques (Univ. Minho)

A. S. Pinheiro (Ordem dos Engenheiros) I. Rocha (Univ. Minho)

L. Rodrigues (Univ. Minho) T. Tavares (Univ. Minho) A. Venâncio (Univ. Minho) A. Vicente (Univ. Minho)

(8)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ† ‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

˜‹‹

Contents

PLENARY

LECTURES

Meetingthechallenge 1



T.REG.BOTT Greenchemistryandthebiorefinery 2



JAMESCLARK Addingvaluetochemicalproducts 3



E.L.CUSSLER Innovationatinterfaces 4



CHARLESCOONEY Aprocesssystemsengineeringapproachformanagingthecomplexity 5



RAFIQULGANI Developmentofcrystallizationprocessesforseparatingmulticomponentmixtures 6



KAMINGNG Educatingchemicalengineersforcomingchallenges 7



S.FEYODEAZEVEDO

O

RAL PRESENTATIONS

:

A

DVANCING THE

C

HEMICAL AND

B

IOLOGICAL

E

NGINEERING

F

UNDAMENTALS

GasͲliquidmasstransferingasͲliquidͲliquiddispersionsinastirredtank:effectofspreadingcoefficient 9



HENRIQUEJ.O.PINHO,RUISANTANA,SEBASTIÃOS.ALVES

OxygentransfercharacterizationinthreeͲphasereactorsusingsiliconeoilasvector 11



GUILLERMOQUIJANO,FRÉDÉRICTHALASSO

Fluidizationbehaviourofdifferentshapedlargeparticulatefoodmaterials:effectofmoistureandshape 13



WIJITHASENADEERA

Modelingofanovelphotoreactorformultiphaseapplications 15



JOANAT.CARNEIRO,ROBBERGER,JACOBA.MOULIJN,GUIDOMUL

Evaluation of parameters and process conditions of the ethylbenzene dehydrogenation in a fixed bed reactor

wrappedwithpermselectivemembrane 17



PAULOJARDELP.ARAÚJO,TERESAM.K.RAVAGNANI

Solubilityofmultifunctionalassociatingmolecules:measurementsandthermodynamicmodeling 19



A.J.QUEIMADA,F.L.MOTA,S.P.PINHO,E.A.MACEDO

Diffusioncoefficientsandconductivitiesof1ͲbutylͲ3ͲmethylimidazoliumͲbasedionicliquids 21



CHUNͲLIWONG,MENGͲHUILI

Inhibitoreffectofselectedanionicsurfactantsonthedissolutionofcalciumsulfateinaqueousbrines 23



CRISTIANALOUREIRO,FÁTIMAFARELO,LURDESSERRANO,MANUELPEREIRA

CrosslinkedanaloguesofionicͲliquids–aversatilemediumandcatalystsfororganicreactions 25



ANDRZEJW.TROCHIMCZUK,SYLWIARONKA

Particleagglomerationincyclones 26



JÚLIOPAIVA,ROMUALDOSALCEDO,PAULOARAÚJO

ExtendingKozenyͲCarmanpermeabilitymodeltohighlyporousmedia 28



MANUELMOTA,ALEXANDERYELSHIN

Optimaloperatingconditionsfortheseparationoflactobionicacid,sorbitol,fructoseandlactoseusinga5Ͳsection

pseudoͲSMB 30



ISRAELPEDRUZZI,PEDROSÁGOMES,EDUARDOA.B.DASILVA,ALÍRIOE.RODRIGUES

Observationofinertialparticlemotioninlaminarflowinastirredvessel 32



NAOTOOHMURA,NAMINISHIOKA,ALATENGTUYA,MOHAMEDN.NOUIͲMEHIDI,JIEWU,NORIHISAKUMAGAI,TEIJITAKIGAWA Assessmentofthetartaricstabilityofwinesdeionisedbyelectrodialysis 34



PATRÍCIAA.M.H.SOARES,VÍTORGERALDES,CRISTINAFERNANDES,PAULOCAMEIRADOSSANTOS,MARIANORBERTADEPINHO CharacterizationofamicroporoustitanosilicateAMͲ3membrane–puregaspermeation 36



PATRÍCIAF.LITO,SARAB.BARROS,JOÃOROCHA,ZHILIN,CARLOSM.SILVA

PureSolventSolubilityofSomePharmaceuticalMolecules 38



FÁTIMAL.MOTA,ANTÓNIOJ.QUEIMADA,SIMÃOP.PINHO,EUGÉNIAA.MACEDO

BasicitypromotionandmechanismaspectofliquidselectiveoxidationofalcoholsonAu/ActivedͲCarboncatalyst 40



JUNJIANGZHU,JOSÉL.FIGUEIREDO,JOAQUIML.FARIA

ComputerͲaidedphaseequilibriapredictionfororganicsystems:UNIFACͲCI.Analysis,revisionandextension 42



HUGOE.GONZÁLEZ,JENSABILDSKOV,RAFIQULGANI

(9)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

˜‹‹‹

Molecular weight distribution in freeͲradical polymerisation – model development, experimental validation and

processoptimisation 43



BRUNOAMARO,CHARLESD.IMMANUEL,E.N.PISTIKOPOULOS,ANDREASDAIß,FLORIANBECKER,KLAUSͲDIETERHUNGENBERG,P.A. SARAIVA

PVCPasteRheology:PolymerPropertiesandViscoelasticBehaviour 45



A.TOMÁS,A.,M.G.RASTEIRO,L.FERREIRA,S.FIGUEIREDO

OptimizationoffluidizedbedPVCdrying 47



MELANIEBECU,LAURENTBERKOVIC,FREDERICDEBASTE

SEC/MALLS Measurement of the Branched Structure of Methyl Methacrylate + Ethylene Glycol Dimethacrylate CopolymersSynthesizedbyAtomTransferRadicalPolymerization 49



IVONEM.R.TRIGO,MIGUELA.D.GONÇALVES,ROLANDOC.S.DIAS,MÁRIORUIP.F.N.COSTA

ThermaldegradationkineticsofpolyethyleneindynamicconditionsusingsimultaneousDSC/TGanalysis 51



ANABELACOELHO,LUÍSCOSTA,MARIADASMERCÊSMARQUES,ISABELFONSECA,MARIAAMÉLIALEMOS,FRANCISCOLEMOS

DecylacetatesynthesisbyenzymecatalysisinscCO2 53



S.F.REBOCHO,A.S.RIBEIRO,O.FERREIRA,M.V.OLIVEIRA,P.VIDINHA,S.BARREIROS,E.A.MACEDO,J.M.LOUREIRO

Improvingpropylenestreamspurityusingcatalyticmembranereactors 55



MIGUELTEIXEIRA,MIGUELMADEIRA,JOSÉSOUSA,ADÉLIOMENDES

ImprovementbyalkalinetreatmentofHZSMͲ5zeoliteperformanceinDMEsteamreforming 57



JORGEVICENTE,JAVIEREREÑA,ALAITZATUTXA,ANAG.GAYUBO,JAVIERBILBAO

ApplicationofagroupcontributionCPAEoStothemodelingofbiodieselproduction 59



MARIANAB.OLIVEIRA,FÁTIMAR.VARANDA,MARIAJORGEMELO,ISABELM.MARRUCHO,ANTÓNIOJOSÉQUEIMADA,JOÃOA.P. COUTINHO

Sequential batch reactor and plug flow reactor network comparison under dynamic conditions for wastewater

treatment 61



ADRIÁNFERRARI,EVARISTOC.BISCAIAJR.,PRIAMOA.MELO

O

RAL PRESENTATIONS

:

M

ULTI

-S

CALE AND

/

OR

M

ULTI

-D

ISCIPLINARY

A

PPROACH TO

P

ROCESS

-P

RODUCT

I

NNOVATION

DesignandEngineeringofStructuredMolecularMatter 64



A.A.BROEKHUIS

SystematicmodellingframeworkinproductͲprocessdesignanddevelopment 66



RICARDOMORALESͲRODRÍGUEZ,RAFIQULGANI

Combiningpredictionsatmultiplescalesforprocessmodelling 68



MARCOS.REIS

Integrationoftraditionalandsupercriticalfluidtechniquestodesigndrugdeliverysystems 70



MARIANASOUSACOSTA,A.R.SAMPAIODESOUSA,ANARITAC.DUARTE,M.MARGARIDACARDOSO,CATARINAM.M.DUARTE ThermoresponsiveHydrogelsforDrugDeliverySystems 71



J.F.ALMEIDA,P.FERREIRA,ARMANDOALCOBIA,A.LOPES,M.H.GIL

CFDsimulationofanoxidationditch 73



ANNAKARPINSKA,JOANAP.PEREIRA,MADALENAM.DIAS,RICARDOJ.SANTOS

CFDmodellingoftrickleͲbedreactorinthecatalyticwetairoxidationofsyringicacid 75



RODRIGOJ.G.LOPES,ROSAQUINTAͲFERREIRA

CharacterizationofwaterspeciesrevealedinthedryingoperationofsquidbyusingwaterprotonNMRanalysis 77



YASUYUKIKONISHI,MASAYOSHIKOBAYASHIANDKOUͲICHIMIURA

MixedconvectiveheattransferaugmentationinabackwardͲfacingsteputilizingnanofluids 78



S.DHINAKARAN

ElectricSwingAdsorptionProcessforGasPurification 79



CARLOSA.GRANDE,RUIP.L.RIBEIRO,ALÍRIOE.RODRIGUES

Cholesterolremovalbynanofiltrationinorganicsolution 81



C.ALLEGRE,E.CARRETIER,P.MOULIN

Beeraromarecoverybypervaporation 83



MARGARIDACATARINO,LUÍSM.MADEIRA,ANTÓNIOFERREIRA,ADÉLIOMENDES

Determinationofthewallshearstressbynumericalsimulation:membraneprocessapplications 85



FANNYSPRINGER,REMYGHIDOSSI,EMILIECARRETIER,DAMIENVEYRET,DIDIERDHALERANDPHILIPPEMOULIN

ActivemixingstrategiesforConfinedImpingingJets 87



M.ASHARSULTAN,ERTUGRULERKOÇ,RICARDOJ.SANTOS,MADALENAM.DIAS,JOSÉCARLOSB.LOPES

Ultrasound–assistedextractionofactiveprinciplesfromArctiumlappaL.(Burdock)roots,SteviarebaudianaBert. leavesandCynarascolymusL.(Artichoke)leaves 89



ANIALUPULUI,V.LAVRIC

(10)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

‹š

MonitoringmultiͲcomponentliquidreactionsystemscontaininghighlydispersibleheterogeneouscatalystsusingin

situdiodearrayspectrophotometryandbandͲfittingtechniques 90



LUÍSCOSTA,VÂNIABRISSOS,FRANCISCOLEMOS,FERNANDORAMÔARIBEIRO,JOAQUIMM.S.CABRAL

HighͲthroughputpharmaceuticalprocessmonitoring:integratingthehardwareandsoftwarecomponents 92



M.C.SARRAGUÇA,L.P.BRÁS,J.A.LOPES

PharmaceuticalEngineering 93



JOÃOMOURABORDADO,JOSÉGUIMARÃESMORAIS,ROGÉRIOSÁGASPAR,JOSÉCARDOSOMENEZES

O

RAL PRESENTATIONS

:

S

USTAINABLE

P

ROCESS

-P

RODUCT

D

EVELOPMENT THROUGH

G

REEN

C

HEMISTRY

ProductionofoligoͲgalacturonicacidsbypectinhydrolysisusingsubͲandsupercriticalwater 94



STEFANTOEPFL,ULFSTRIJOWSKIANDVOLKERHEINZ

SynthesisoftriproprioninfromcrudeglycerolthebyͲproductofbiodieselproduction 95



ZSANETTHERSECZKI,GYULAMARTON

Thefuturesustainabilityofbiodiesel 97



RENATOH.CARVALHO,LUÍSR.VILELADEMATOS

Constructionandbioproductionofa“green”syntheticproteinͲbasedpolymerexhibitingasmartbehaviour 99



RAULMACHADO,JORGEPADRÃO,ALEXANDRANOBRE,FRANCISCOJAVIERARIAS,JOSÉA.TEIXEIRA,ANTÓNIOCUNHA,JOSÉCARLOS RODRÍGUEZͲCABELLO,MARGARIDACASAL

LigninͲbasedpolyurethanematerials 101



CAROLINACATETO,FILOMENABARREIRO,ALÍRIOE.RODRIGUES,NACEURBELGACEM

CatalyticwetairoxidationplusbiologicaltreatmenttodealwithahighͲstrengthoͲcresolwastewater 103



M.E.SUÁREZͲOJEDA,J.LAFUENTE,J.FONTANDJ.CARRERA

TwoͲaqueousphaseextractionfortheremovaloforganicpollutantsandmetalions 105



L.J.NOGUEIRADUARTE,J.P.CANSELIER

BiosorptionofCrVIsupportedonmordenitezeolite

107



FIGUEIREDO,H.,SILVA,B.,QUINTELAS,C.,NEVES,I.C.,TAVARES,T.

Phosphorusremovalfromanindustrialwastewaterbystruvitecrystallizationintoanairliftreactor 109



A.SÁNCHEZSÁNCHEZ,SONIABARROS,RAMÓNMÉNDEZ,J.M.GARRIDO

EcoDesignthroughamultiͲcriteriaenvironmentaldecisiontoolbasedonfuzzylogic 111



MARTAHERVA,AMAYAFRANCO,EUGENIOF.CARRASCO,ENRIQUEROCA

Designofsustainableprocesses:Systematicgenerationandevaluationofalternatives 113



ANACARVALHO,RAFIQULGANI,HENRIQUEMATOS

ModelingofOrangeIIadvancedbiodecolourisationinupflowstirredpackedͲbedreactor 115



GERGOMEZOHEGYI,CHRISTOPHEBENGOA,FRANKSTUBER,JOSEPFONT,AGUSTÍFORTUNY,AZAELFABREGAT

PhotocatalyticPaintProductionfortheAbatementofNitrogenOxides 117



C.ÁGUIA,FRANCESCX.LLABRÉSIXAMENA,ESTHERDOMINGUEZ,HERMENEGILDOGARCÍA,L.M.MADEIRA,A.MENDES

StarchfilterͲcakeenzymaticdegradation 119



ETELKAMEDA,RAFAELF.DEMESQUITA,MARTAA.P.LANGONE,JOÃOC.DEQUEIROZNETO,MARIAALICEZARURCOELHO

RobustmultiͲobjectivecascadecontrollerforananaerobicdigester 121



CARLOSGARCIA,FRANCISCOMOLINA,EUGENIOCARRASCO,ENRIQUEROCA,JUANM.LEMA

Fenton’streatmentofaqueousphenoleffluentsinpresenceofanionicsurfactants 123



XAVIERBERNAT,AGUSTÍFORTUNY,CHRISTOPHEBENGOA,FRANKSTÜBER,AZAELFABREGAT,JOSEPFONT

Electrochemicalozoneproductionforinsituatrazinedegradationinaquifer 125



YSRAELM.VERA,ROBERTOJ.CARVALHO,MAURICIOL.TOREM

Catalyticozonationappliedtothetreatmentofcolouredeffluents 127



PATRÍCIAC.C.FARIA,JOSÉJ.M.ÓRFÃO,MANUELF.R.PEREIRA

Ionexchangemembranebioreactormodellingforremovalofanionicmicropollutantsfromdrinkingwatersupplies

 129



A.R.RICARDO,R.OLIVEIRA,S.VELIZAROV,M.A.M.REIS,J.G.CRESPO

PerformancecomparisonofbiologicalandFentonprocessesfortreatmentofurbanlandfillleachates 131



CÁTIAM.AUGUSTO,MARGARIDAJ.QUINA,LICÍNIOM.GANDOͲFERREIRA

DesignandConstructionofaLabͲScaleSimulatedMovingBedUnit.TheFlexSMBͲLSRE–fromTheorytoPractice133



PEDROSÁGOMES,MICHALZABKA,MIRJANAMINCEVAANDALÍRIOE.RODRIGUES

InhibitoryeffectofphenoliccompoundsontheactivityofAngiotensinIconvertingenzyme 135



JOANAAFONSO,CLÁUDIAP.PASSOS,CARLOSM.SILVA,MANUELA.COIMBRA,PATRÍCIOSOARESͲDAͲSILVA

AnovelviewofthemanufactureofpolyurethaneͲpolyureaaqueousdispersions 137



ISABELFERNANDES,FILOMENABARREIRO,MÁRIORUICOSTA

(11)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

š

O

RAL PRESENTATIONS

:

S

YSTEMATIC

M

ETHODS AND TOOLS FOR

M

ANAGING THE

C

OMPLEXITY

Constructingchemicalreactionnetworksthroughdecoupling,regressionandrationalisation 139



SAMANTHAC.BURNHAMANDMARKJ.WILLIS

AmultiͲobjectiveoptimizationforthedesignandperiodicschedulingofmultipurposefacilities 141



TÂNIARUTEPINTOANAPAULABARBÓSAͲPÓVOAANDAUGUSTOQ.NOVAIS

Theinfluenceofproducts’portfoliodemandontheoptimalsupplychainplanning 143



ANAC.S.AMARO,ANAP.BARBOSAͲPÓVOA

Nonlineardynamicmodelingofarealpilotscalecontinuousdistillationcolumnforfaulttolerantcontrolpurposes

 145



NUNOM.R.BATALHA,PEDROM.C.OLIVEIRA,JOÃOM.A.SILVA,CARLAI.C.PINHEIRO

Applicationsofmodelbaseddesignofpolymerproducts 147



DULCEC.M.SILVA,RUIM.BASTOS,NUNOM.C.OLIVEIRA

GlobaldynamicoptimizationofchemicalandbioͲprocessesusingtheScatterSearchmetaheuristic 149



JOSEA.EGEA,MARÍAͲSONIAG.GARCÍA,EVABALSAͲCANTO,JULIOR.BANGA

IntegratingrealͲtimeoptimizationandcontrolforoptimaloperation:ApplicationtothebioͲethanolprocess 151



SILVIAOCHOA,JENSͲUWEREPKE,GÜNTERWOZNY

OnͲLineadaptivemetabolicfluxanalysis:ApplicationtoPHBproductionbymixedmicrobialcultures 153



JOÃODIAS,FILIPAPARDELHA,MÁRIOEUSÉBIO,MARIAA.M.REIS,RUIOLIVEIRA

Modellingofmembranebioreactorsforwastewatertreatmentincorporating2DͲfluorescencemonitoringdata 155



CLAUDIAF.GALINHA,CARLAPORTUGAL,GILDACARVALHO,GIUSEPPEGUGLIELMI,DANIELECHIARANI,GIANNIANDREOTTOLA,RUI OLIVEIRA,MARIAA.M.REIS,JOÃOG.CRESPO

Modeling,Identificationand,ControlofComplexSystems 157



SRINIVASKARRAANDM.NAZMULKARIM

Performanceindicatorsforreactivedistillationdesign 160



RUIM.FILIPE,HENRIQUEA.MATOS,AUGUSTOQ.NOVAIS

TheImportanceofModelsandPracticalIntegrationinProcessDevelopment.CasesfromtheSimulatedMovingBed

technology 162



PEDROSÁGOMES,MIRJANAMINCEVAANDALÍRIOE.RODRIGUES

AchemometrictooltomonitorhighͲrateanaerobicgranularsludgereactorsduringloadandtoxicdisturbances 164



JOSÉCARLOSCOSTA,M.MADALENAALVES,EUGÉNIOC.FERREIRA

InͲlinemonitoringofparticlesizeduringvinylacetateandbutylacrylateemulsioncopolymerizationinacontinuous pulsedsieveplatereactorusingNIRspectroscopy 166



CHICOMA,D.;SAYER,C.;GIUDICI,R.

Controlofbromelainrecoveryprocessthroughconventionalandfuzzycontrollers 168



MANUELAS.LEITE,FLÁVIOV.SILVA,TATIANAL.FUJIKI,ANAM.F.FILETI

Optimalcleaningscheduleforheatexchangersinaheatexchangernetworkbasedoncontinuoustimeapproach170



KANYALUKAOͲEKKASIT,SLITANUSONG,SOORATHEPKHEAWHOM

Optimaldesignofwaterusingnetworks 172



JOÃOTELES,PEDROM.CASTRO,HENRIQUEA.MATOS

AShortcutDesignMethodforHybridSeparationProcesses 174



M.SORIN,E.AYOTTEͲSAUVÉANDF.RHEAULT

O

RAL PRESENTATIONS

:

I

NTEGRATION OF

L

IFE

S

CIENCES

&

E

NGINEERING

Methodsandtoolsforglobalsensitivityanalysisofdynamicmodelsofbiologicalsystems 176

MARÍARODRÍGUEZͲFERNÁNDEZ,JULIOR.BANGA

StochasticModellingoftheBaculovirus/InsectCellsSystem:PredictionofRecombinantProteinExpression 178



ANTÓNIOROLDÃO,MANUELJ.T.CARRONDO,PAULAM.ALVESANDR.OLIVEIRA

ScalingͲupcontrolofyeastfedͲbatchcultures 180



L.DEWASME,X.HULHOVEN,A.VANDEWOUWER

AdaptiveextremumͲseekingcontrolofyeastfedͲbatchcultures 182



L.DEWASME,A.VANDEWOUWER,M.PERRIER

Improvement of baculovirus vectors production based on the metabolic characterization and modelling of SfͲ9

cultures 184



NUNOCARINHAS;VICENTEBERNAL;ADRIANAY.YOKOMIZO;TIAGOVICENTE;MANUELJ.T.CARRONDO;RUIOLIVEIRA;PAULAM. ALVES

LactosefermentationbyrecombinantSaccharomycescerevisiaestrains 186



PEDROM.R.GUIMARÃES,JOSÉA.TEIXEIRA,LUCÍLIADOMINGUES

StudiesonfedͲbatchoperationmodeonbiosynthesisofshortchainethylesterscatalyzedbycutinase 188



DRAGANAP.C.DEBARROS,SUSANAM.S.A.BERNARDINO,PEDROFERNANDES,JOAQUIMM.S.CABRAL,LUÍSP.FONSECA

(12)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

š‹

Newenzymaticalprocessforglycerolutilization 190



ANDREABALASSY,ARONNEMETH,BELASEVELLA

BiosorptionofhexavalentchromiumbyArthrobacterviscosus 192



BRUNASILVA,HUGOFIGUEIREDO,CRISTINAQUINTELAS,ISABELC.NEVES,TERESATAVARES

MicroͲscaleandbioreactorsystemsfortheexpansionofmouseembryonicstem(mES)cells 194



ANAM.FERNANDES,TIAGOG.FERNANDES,MARIAMARGARIDADIOGO,CLÁUDIALOBATODASILVA,DOMINGOSHENRIQUE,JONATHAN S.DORDICK,JOAQUIMM.S.CABRAL

PurificationofhumanantibodiesusingaffinityaqueousͲtwophasesystems 196



PAULAA.J.ROSA,ANAM.AZEVEDO,I.FILIPAFERREIRA,M.RAQUELAIRESͲBARROS

NanoandmicroͲbiocatalystsmanufactureandtheirimpactonthesynthesisofɴͲlactamicantibiotics 197



SUSANAM.S.A.BERNARDINO,JUANF.M.GALLEGOS,FILIPAMADURO,PEDROFERNANDES,JOAQUIMM.S.CABRAL,LUÍSP.FONSECA BiopolymersproductionbymicrobialfermentationonglycerolͲrichproduct 199



FILOMENAFREITAS,VITORD.ALVES,JOANAPAIS,NUNOCOSTA,MÓNICACARVALHEIRA,RUIOLIVEIRA,M.A.M.REIS

AntibodyconjugatedPLGAnanoparticlescontainingantiͲcancerdrugsforsiteͲspecificdrugdelivery 201



INÊSPEÇA,MARIANASOUSACOSTA,A.C.A.ROQUE,A.BICHO,M.MARGARIDACARDOSO

Bacterial Community Structure in a Biotrickling Filter Treating H2S by Terminal Restriction Fragment Length

Polymorphism(TͲRFLP) 203



JUANP.MAESTRE,ROGERROVIRA,XAVIERGAMISANS,KERRYA.KINNEY,MARYJ.KIRISITS,JAVIERLAFUENTE,DAVIDGABRIEL Biohydrogen production with an EGSB reactor using chloroform and 2Ͳbromoethanesulfonate as inhibitors of

hydrogenconsumingbacteria 205



ÂNGELAA.ABREU,ANTHONY,S.DANKO,M.MADALENAALVES

Biofilmtechnology:fromsupportdesigntoreactoroperation 207



MARIAF.MATOS,CLÁUDIAF.ALVES,ANTÓNIOG.BRITO,REGINAB.NOGUEIRA

LignocellulosicMaterialsasaFeedstockforPolymerSynthesis 209



MATJAŽKUNAVER,EDITAJASIUKAITYTE,VESNATIŠLER,SERGEJMEDVED

Bioethanolproductionfromsugarsbyyeasthavingsugaruptakeabilitybyexpressionofsugartransporter 210



TAKANORITANINO,CHIAKIOGINO,NORIHISAKUMAGAI,NAOTOOHMURA

Treatmentofwoodhydrolysatesforbioethanolproductionbyfermentation 212



CÁTIAV.T.MENDES,JORGEM.S.ROCHA,CRISTINAM.S.G.BAPTISTA,M.GRAÇAV.S.CARVALHO

Integrationofbioprocessesinpolyestersmicrobialsynthesis 214



ANABELAS.ANTUNES,JORGEM.S.ROCHA

OneͲstepcellulosicethanolproduction 216



M.NAZMULKARIMANDSEUNGHYUNRYU

OptGene–aframeworkforinsilicometabolicengineering 218



ISABELROCHA,PAULOMAIA,MIGUELROCHA,EUGÉNIOC.FERREIRA

ThePotentialandtheChallengesinIntegratingThermodynamicsintoSystemsBiology 220



URSVONSTOCKARANDVOJISLAVVOJINOVIC

Macroscopiccontrolofintracellularregulation:applicationtomammaliancellcultures 222



ANAP.TEIXEIRA,PAULAALVES,MJTCARRONDOANDRUIOLIVEIRA

TowardsPATbioprocessmonitoringandcontrol:nearinfraredandsoftwaresensor 224



ZITAI.T.A.SOONS,MATHIEUSTREEFLAND,ANTONJ.B.VANBOXTEL

NearͲinfraredreflectancespectroscopyasaprocessanalyticaltechnologytoolinpharmaceuticalindustry 226



SÍLVIAS.ROSA;PEDROA.BARATA;JOSÉM.MARTINS,JOSÉCARDOSOMENEZES

O

RAL PRESENTATIONS

:

E

DUCATING CHEMICAL AND

B

IOLOGICAL

E

NGINEERS FOR

C

OMING

C

HALLENGES

Enhancingengineeringeducationintheareaofchemicalprocessesthroughavirtualplatform(LABVIRTUAL) 227



M.G.RASTEIRO,L.M.GANDOͲFERREIRA,J.C.TEIXEIRA,F.P.BERNARDO,M.G.CARVALHO,A.G.FERREIRA,R.M.QUINTAͲFERREIRA, F.P.GARCIA,C.G.BAPTISTA,N.C.OLIVEIRA,M.J.QUINA,L.O.SANTOS,P.A.SARAIVA,A.M.MENDES,F.M.MAGALHÃES,J.GRANJO, R.BASTOS,M.ASCENSO,R.BORGES,A.S.ALMEIDA,A.MACEDO

AddͲinsforShortcutDesignandSizingofDistillationColumns 229



FERNANDOG.MARTINS,M.I.M.S.CRUZ,DOMINGOSBARBOSA

ContinuousandBatchDistillationinanOldershawTrayColumn 231



CARLOSM.SILVA,RAQUELV.VAZ,TIAGOM.F.CANHOTO,PATRÍCIAF.LITO,ANAS.SANTIAGO

Introductionofdesigntoolsintheexperimentalorganicprocesses 232



ERIKAC.A.N.CHRISMAN;VIVIANEDES.LIMA;ANACLÁUDIAALMEIDA

VirtualLaboratoriesin(Bio)ChemicalEngineeringEducation 234



LUCÍLIADOMINGUES,ISABELROCHA,FERNANDODOURADO,M.MADALENAALVESANDEUGÉNIOC.FERREIRA

P

OSTER PRESENTATIONS

:

A

DVANCING THE

C

HEMICAL AND

B

IOLOGICAL

E

NGINEERING

F

UNDAMENTALS

Theresearchoftheheterogeneouscatalyticcombustionofthecombustiblegases 239



TATJANADOVBYSHEVA,ANNEYASKO

(13)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

š‹‹

RegenerationofsulfurpoisonednickelbasedcatalystsforsteamreformingcatalystsinRazipetrochemicalcomplex

 241



S.MEYSAMHASHEMNEJAD,MATINPARVARI

TotaloxidationofethylacetateoverTiO2supportednoblemetalscatalysts 243



V.P.SANTOS,M.F.R.PEREIRA,J.J.M.ÓRFÃO,J.L.FIGUEIREDO

Incidence of the preparation method of the support on the behavior in the nͲbutane dehydrogenation of Pt/MgAl2O4,PtSn/MgAl2O4yPtPb/MgAl2O4catalysts 245



SONIABOCANEGRA,ALBERTOCASTRO,OSVALDOSCELZA,SERGIODEMIGUEL

Hydrogenproductionfrommethanereforming:thermodynamicassessment 247



TATIANAV.FRANCO,CÍCERON.ÁVILAͲNETO,LUCIENNEL.ROMANIELO,CARLAE.HORI,ADILSONJ.ASSIS

Hydrogenproductionfrommethaneautothermalreforming:mathematicalmodelingandparametricoptimization

 249



SANDRAC.DANTAS,FABIANODEA.SILVA,CARLAE.HORI,ADILSONJ.DEASSIS

FluidͲdynamicsoffluidizedbedsoperatingwithflatparticles 251



RENATADEAQUINOB.LIMAANDMARIAC.FERREIRA

HeterogeneousmodelformasstransferofdissolvedligninduringkraftpulpingofEucalyptusglobulus 253



JOÃOP.F.SIMÃO,CRISTINAM.S.G.BAPTISTA,M.GRAÇACARVALHO

LongitudinalmixinginapeforatedͲplatesextractioncolumn 255



BRANDÃO,M.M.ANDGÓIS,L.M.N.

ThreeͲdimensionalsimulationofbubblyflow:influenceofbreakupandcoalescencemodels 256



MARCELAK.SILVA,RENATODIONÍSIO,MARCOSA.D’ÁVILA,MILTONMORI

Comparisonofhydrodynamicparametersbetweenaninternalandanexternalairliftcolumn 258



M.TERESAM.SENAESTEVES,ISABELM.B.PEREIRA,MARIAN.COELHOPINHEIRO,ALEXANDRAM.F.R.PINTO

MasstransfercoefficientinthreeairliftreactorswithinternalloopusingNewtonianfluid 260



LUCASM.POLICARPO,MARCELO.CERRI,ANTONIOJ.G.CRUZ,CARLOSO.HOKKA,ALBERTOC.BADINO

Predictionofmeanbubblesizeinthreescalesofinternalloopairliftreactor 262



MARCELO.CERRI,JULIANAC.BALDACIN,ANTONIOJ.G.CRUZ,CARLOSO.HOKKA,ALBERTOC.BADINO

EulerͲEulersimulationofgasͲliquidandgasͲliquidͲsolidairliftreactors:casestudy 264



M.SIMCIK,J.HAVLICA,M.C.RUZICKA,J.DRAHOŠ,J.A.TEIXEIRA,T.BRÁNYIK

Interfacialinstabilityofbubbleduringchemosorption 266



S.P.KARLOV,D.A.KAZENIN,A.V.VYAZMIN

Effectofkindsofgasongasholdupinbubblecolumns 268



FUKUJIYAMASHITAANDMEGUMINAKAJIMA

SimulationofdynamicperformanceofozonationtreatmentofsurfactantsinasemiͲbatchbubblecolumnreactorby

CFX 270



FUKUJIYAMASHITA,TOMOYUKISUZUKI,HARUKI,KOBAYASHI

ParticleinteractionwithcoherentstructuresinaconfinedtwoͲphasejet 272



J.C.S.C.BASTOS,R.K.DECKER,M.MORI,U.FRITSCHING

Numericalinvestigationofunsteadyflowandheattransferfromaporoussquarecylinder 274



S.DHINAKARAN,ANTÓNIOVICENTEANDJOSETEIXEIRA

Heattransferinthefreeboardofabubblingfluidizedbed 275



P.NETO,A.M.RIBEIRO,C.PINHO

Dispersioninpackedbeds 277



ULRICHM.SCHEVEN,ROBHARRIS,MIKEL.JOHNS

Operatingthesegregatedflowsofparticulatematerialsasaprincipleoftechnologicalprocessorganization 278



DOLGINUNV.N.,IVANOVO.O.,KLIMOVA.M.ANDUKOLOVALͲDR.A.

Hinderedmotioninhighlyporousmedia:stericandfractalapproaches 280



MANUELMOTA,ALEXANDERYELSHIN

Anotherbasicsegregationmechanisminaeratedgravityflowsofparticulatesolids 282



DOLGINUNV.N.,KUDYA.N.,KLIMOVA.M.ANDIVANOVO.O.

MaxwellͲStefanbasedmodelforionexchangeinmicroporousmaterials 284



PATRÍCIAF.LITO,CARLOSM.SILVA

Competitiveadsorptionofheavymetalsbytwodifferenttypesofsoils 285



BRUNAFONSECA,ALINES.TEIXEIRA,TERESATAVARES

Asequencingmethodappliedtothesolutionofalinearmodelofanadsorptioncolumn 286



R.L.WU,M.F.CUEL,C.O.HOKKA,M.BARBOZA,W.H.KWONG

IndustrialAirSeparationusingPressureSwingAdsorption:AFluidizationStudy 288



D.A.FERREIRA,P.TAVEIRA,A.MENDES

(14)

‘‘ ‘ˆ „•–”ƒ…–• ‘ˆ –Š‡ ͳͲ–Š –‡”ƒ–‹‘ƒŽ Š‡‹…ƒŽ ƒ†

‹‘Ž‘‰‹…ƒŽ‰‹‡‡”‹‰‘ˆ‡”‡…‡Ȃ ʹͲͲͺ

TableofContents

š‹‹‹

StudyoftheadsorptionprocessofmethanolandwateroveraSAPOͲ18catalystbymeansofpulsetechniques 290



IRENESIERRA,ANDRÉST.AGUAYO,JAVIEREREÑA,ANAG.GAYUBO,JAVIERBILBAO

Optimization of mobile phase composition for preparative separation of profens enantiomers by chiral liquid

chromatography 292



ANTÓNIOE.RIBEIRO,NUNOS.GRAÇA,LUÍSS.PAIS,ALÍRIOE.RODRIGUES

Uncertaintyassessmentonchromatographicseparationoflapachol 294



AMAROG.BARRETOJR.,EVARISTOC.BISCAIAJR.

Gasfiltrationathighpressure 296



ANAB.N.BRITO,SANDRAG.R.AZEVEDO,EDISONRICCOJR,JOSÉR.COURY,MÔNICAL.AGUIAR

Pervaporationseparationcharacteristicsforthequaternarymixturewater+ethanol+ethyllactate+lacticacid 298



P.DELGADO,M.T.SANZ,S.BELTRÁN,M.GARCÍA

Kineticsofcarbondioxideabsorptionwithchemicalreactioninpiperidineaqueoussolutions 300



ALICIAG.ABUÍN,DIEGOGÓMEZͲDÍAZ,JOSÉM.NAVAZA,ISABELVIDAL

AbsorptionofcarbondioxidebyMDEAaqueoussolutionsinabubblecolumnreactor 302



ESTRELLAÁLVAREZ,DIEGOGÓMEZͲDÍAZ,M.DOLORESLARUBIA,JOSÉM.NAVAZA,LOURDESC.QUINTÁNSͲRIVEIRO

SimulationofmembraneseparationsusingamodifiedMaxwellͲStefanmodel 303



PAULOBRITO,LICÍNIOM.GANDOͲFERREIRA,ANTÓNIOPORTUGAL

InfluenceofpyrolysisparametersontheperformanceofCMSM 305



MARTAC.CAMPO,TYMENVISSER,KITTYNYMEIJER,MATTHIASWESSLING,FERNÃOD.MAGALHÃES,ADÉLIOM.MENDES

LowͲtemperaturewaterͲgasshiftreactioninaPdͲAg“fingerͲlike”configurationmembranereactor 307



DIOGOMENDES,SILVANOTOSTI,FABIOBORGOGNONI,ADÉLIOM.MENDES,LUISM.MADEIRA

Influence of pressure on the yield of supercritical CO2 extraction of linseed (Linum usitatissimum l.) oil and

investigationofitsantioxidantpotential 309



E.L.GALVÃO,J.A.C.BARROS,A.V.B.MOREIRA,H.N.M.OLIVEIRA,E.M.B.D.SOUSA

SupercriticalfluidextractionofgrapeseedoilusinganenzymaticpreͲtreatment 311



C.P.PASSOS,R.M.SILVA,F.A.DASILVA,M.A.COIMBRA,C.M.SILVA

MeasurementandCorrelationofSolubilityofQuinizarinand1Ͳ(Methylamine)anthraquinoneinSupercriticalCarbon

Dioxide 313



JOSÉP.COELHOANDANDREIAF.MENDONÇA

Supercriticalantisolventprocessappliedtothepharmaceuticalindustry 315



A.TENORIO,M.D.GORDILLO,C.M.PEREYRAANDE.J.MARTÍNEZDELAOSSA

Solventeffectsonionicassociationof2,6Ͳlutidiniumchloridesaltat60.00ºC:AQSPRstudy 317



M.REIS,L.MOREIRA,R.E.LEITÃO,F.MARTINS

Modellingofthesolventextractionequilibriumofcadmium(II)inneutralchloridemediumusingCyanex923 319



A.A.LEOPOLD,A.FORTUNY,M.T.COLL,N.S.RATHOREANDA.M.SASTRE

Modelstocorrelatethesurfacetensionofsolventmixtures 321



ALICIAG.ABUÍN,DIEGOGÓMEZͲDÍAZ,JOSÉM.NAVAZA,ISABELVIDAL

Thermodynamicanalysisofsurfacetensioninwater/pyrrolidonesystem 322



ALICIAG.ABUÍN,ANTONIOBLANCO,DIEGOGÓMEZͲDÍAZ,JOSÉM.NAVAZA,ISABELVIDAL

VolumetricpropertiesfortheternarymixtureMethanolͲFormamideͲAcetonitrile 323



NELSONNUNES,FILOMENAMARTINS,LÍDIAPINHEIRO,RUBENE.LEITÃO

Aneffectivemethodforcalculationofhomogeneousazeotropesinreactiveandnonreactivemixtures 325



ADRIANBONILLAͲPETRICIOLET,GUSTAVOA.IGLESIASͲSILVA,JOSEENRIQUEJAIMEͲLEAL

A Portable Library for Equilibrium and Thermodynamics Properties Calculations based on Object Oriented

Paradigms 327



JOANAC.VIEIRA,MIGUELA.MESQUITA,FRANCISCOA.DASILVA

ThermophysicalpropertiesofaqueoussolutionsofCNTsinthetemperaturerange(298.15Ͳ343.15)K 329



FILIPAA.M.M.GONÇALVES,ABELG.M.FERREIRA,ISABELM.A.FONSECAJ.PONMOZHI,MÓNICAS.A.O.CORREIA,SUBRAMANI KANAGARAJ

ModellingSolubilityofAminoAcidsinAqueousSolutions 330



CARLOSM.SILVA,SIMÃOA.ALVES,FRANCISCOA.DASILVA

LiquidͲLiquidEquilibria,SurfaceandInterfacialTensionforWater+NͲButylAcetate+1ͲPropanolat323.15K 331



H.F.COSTA,I.JOHNSON,F.M.GONÇALVES,ABELG.M.FERREIRA,ISABELM.A.FONSECA

Thermodinamicanalysisofleathertannedwithdifferenttanningagents 333



MÓNICAROSAS,VALENTINADOMINGUES,TERESAOLIVAͲTELES,PAULOSILVA,ANTÓNIOCRISPIM

EffectofIsooctaneonVaporͲLiquidEquilibriaofWaterandTEGSolution 334



KHOSRAVANIPOURMOSTAFAZADEH,M.R.RAHIMPOUR,A.SHARIATI

(15)

Optimization of Mobile Phase Composition

for Preparative Separation of Profens Enantiomers by

Chiral Liquid Chromatography

António E. Ribeiro

1

, Nuno S. Graça

1

, Luís S. Pais

1∗∗∗∗

, Alírio E. Rodrigues

2

Laboratory of Separation and Reaction Engineering

1

School of Technology and Management, Bragança Polytechnic Institute,

Campus de Santa Apolónia, Apartado 1134, 5301-857 Bragança, Portugal

2

Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,

4200-465 Porto, Portugal

Keywords: Mobile phase composition, Preparative liquid chromatography, Chiral separation,

Non-Steroidal Anti-Inflammatory Drugs, Profens.

Topic: Advancing the chemical engineering fundamentals.

Abstract

In this paper it will be presented and discussed the experimental and simulation results

obtained for the preparative separation of ketoprofen and flurbiprofen enantiomers by chiral

liquid chromatography. Experimental results include solubility studies, elution and frontal

chromatographic experiments and the measurement of competitive adsorption isotherms,

using different mobile phase compositions. Modeling and simulation tools are used to predict

the behavior and the performance of fixed bed and simulated moving bed processes. These

prediction tools are used to select the proper mobile phase composition for the enantiomers

separation in a preparative and production-scale point of view.

1 Introduction

Ketoprofen (R,S)-2-(3-benzoylphenylpropionic acid) and Flurbiprofen

(R,S)-2-(2-fluoro-4-biphenylpropionic acid) are both examples of profens, the actual most relevant subclass of

the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). These drugs are frequently prescribed

worldwide in relieve of pain and in the treatment of several forms of inflammation and in the

treatment of main articular diseases such as rheumatoid arthritis, osteoarthritis, ankylosing

spondylitis (Burian and Geisslinger, 2005). The recent literature presents several studies

concluding for different pharmacological proprieties for R and S profen enantiomers.

Following these findings, chiral resolution of profen enantiomers can contribute to the

development of new drugs with distinct therapeutic applications and/or safer pharmacological

actions (Panico et al., 2006).

The optimization of preparative chiral liquid chromatography and Simulated Moving Bed

(SMB) processes is a complex task that requires a careful selection of mobile phase

composition. In this selection, high resolution (or high selectivity) is not the only aspect, since

other parameters, such as high solubility and low retention times, are crucial aspects that

must also be considered (Ribeiro et al., 2008).

In this work, experimental results obtained for the ketoprofen and flurbiprofen enantiomers

will be shown, including solubility and adsorption measurements, and pulse and

breakthrough experiments. Additionally, simulation results, based on the experimental

adsorption isotherms measured, will be presented to compare the performance of fixed-bed

and SMB processes.

Corresponding author. Tel + 351-273-303087. E-mail: pais@ipb.pt

Proceedings of the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008 Braga, Portugal, September 4-6, 2008

(16)

2 Experimental tools, modeling and simulation

The experimental tools, modeling and simulation procedures for the optimization of mobile

phase composition are described in a recent published work (Ribeiro et al., 2008). This

includes experimental methods for solubility and adsorption isotherms measurements, and

simulation tools to predict the operation of fixed-bed and simulated moving bed processes.

3 Results and Discussion

3.1 Solubility of profen racemic mixtures

Firstly, the solubility of ketoprofen and flurbiprofen enantiomers was measured in three pure

solvents, all with a composition of 0.01%TFA: 100%n-hexane, 100%ethanol and

100%methanol. These solubility measurements were performed in duplicate and at a

temperature of 23ºC (room temperature). Obtained results (not shown) indicate that profens

solubility increases when the solvent is changed from 100%n-hexane to 100% ethanol and

from this to 100% methanol. On a second stage, the dependency of solubility with the

alcoholic composition in an ethanol/n-hexane mixture was investigated. Results were

consistent with the previous ones. Ketoprofen and flurbiprofen enantiomers have high

solubility values in solvents with a high polar composition. On the other hand, a mobile phase

with an increased polar content is referred as an advantage in preparative chromatography

due, not only because it allows higher racemate solubility, but also because presents lower

retention times (Lynam and Stringham, 2006).

3.2 Elution chromatography

Several experiments of elution chromatography (pulses) were performed on different solvent

mixtures of ethanol/n-hexane and methanol/n-hexane, in order to characterize the system

selectivity at preparative conditions. A preparative column (Chiralpak AD, Daicel, Japan),

with a particle size of 20

µ

m, was used on these experiments. Six level concentrations were

prepared in the range between 0.05 and 4.0 g/L, and injected using two different loops: 100

µL and 1 mL. Obtained results are presented in Figure 1, for ketoprofen, and in Figure 2, for

flurbiprofen.

For ketoprofen enantiomers, results show that the 20%ethanol/80%n-hexane mobile phase

presents considerable higher retention times than the pure mobile phases (ethanol and

methanol). The hydrocarbon mobile phase also leads to important chromatographic tails,

which is an indication of strong non-linear behavior and not welcome for preparative

separations. Comparing the results obtained for the two pure alcohol mobile phases it can be

clearly concluded that, despite higher ketoprofen solubility, pure methanol does not allows

acceptable selectivity values and, consequently, ketoprofen enantioseparation.

For the flurbiprofen enantiomers, high selectivity values can be obtained for mobile phase

compositions lower than 10%ethanol/90%h-hexane (results not shown). However, this

mobile phase composition exhibits retention times substantially higher and very low solubility

values, which means a clear disadvantage for high productivities. For an

ethanol/n-hexane-based mobile phase, a 10/90 composition represents a reasonable compromise between

selectivity, retention time and solubility. For methanol/n-hexane-based mobile phase, due to

the immiscibility range between 6% and 60% methanol, its use is not possible. Taking into

account the very low solubility values, experiments with less than 6% of methanol in

n-hexane were also not carried out, since they are not attractive under preparative point of

view. On the other side, and despite high solubility, the use of a mobile phase with higher

methanol content (more than 60%) does not allow selectivity values as the ones obtained

with ethanol/n-hexane mixtures.

(17)

Figure 1. Experimental elution profiles of ketoprofen enantiomers in different mobile phase compositions: 20%ethanol/80%n-hexane, 100%ethanol and 100%methanol. Racemic ketoprofen concentrations in six different levels: 0.05, 0.2, 0.5, 1.0, 2.0 and 4.0 g/L; preparative column (particle diameter of 20 µm); UV detection at 260 nm; flow rate of 1 mL/min; temperature of 23ºC; injection volumes of 100 µL and 1 mL.

Figure 2. Experimental elution profiles of flurbiprofen enantiomers in different mobile phase compositions: 10%ethanol/90%n-hexane, 100%ethanol and 100%methanol. Racemic flurbiprofen concentrations in six different levels: 0.05, 0.2, 0.5, 1.0, 2.0 and 4.0 g/L; preparative column (particle diameter of 20 µm); UV detection at 260 nm; flow rate of 1 mL/min; temperature of 23ºC; injection volumes of 100 µL and 1 mL.

3.3 Multicomponent adsorption isotherm experiments and modeling

Figure 3 (for ketoprofen) and Figure 4 (for flurbiprofen enantiomers) present the experimental

results obtained for the adsorption isotherms measurements in different mobile phase

compositions, showing a good agreement with model predictions. In these figures, the

prediction of the selectivity factor and its concentration dependency is also represented.

Ketoprofen results clearly show three different situations: for 100%methanol, selectivity is low

and constant, which means that the separation of ketoprofen enantiomers hardly can be

achieved using pure methanol as mobile phase. Despite its high selectivity for low

concentrations, the common 20%ethanol/80%n-hexane mobile phase presents a strong

decrease in selectivity with the increase of enantiomers concentrations. The better situation

(18)

is obtained for 100%ethanol, where selectivity maintains high values even for high

enantiomer concentrations.

Results obtained for flurbiprofen enantiomers confirm a decrease in selectivity with the

increase of the alcoholic content. High selectivity values can be observed for high

hydrocarbon content. However, this mobile phase composition exhibits retention times

substantially higher and very low solubility values. As stated before, for the separation of the

flurbiprofen enantiomers, a 10%ethanol/90%n-hexane mobile phase composition is a

reasonable compromise between selectivity, retention time and solubility.

Figure 3. Comparison between model and experimental results for the equilibrium adsorption isotherms of ketoprofen enantiomers using the bi-Langmuir model (BLG6) in 20%ethanol/80%n-hexane and 100%ethanol and using the Langmuir model (LG3) in 100%methanol. Open and closed circles for the experimental concentration of the less and the more retained enantiomer, respectively; solid lines for the adsorption isotherm model. Temperature: 23ºC. The second line presents the prediction of the selectivity factor as a function of both enantiomers concentration.

Figure 4. Comparison between model and experimental results for the equilibrium adsorption isotherms of flurbiprofen enantiomers using the modified linear+Langmuir model (LLG5) in 10%ethanol/90%n-hexane, 100%ethanol and 100%methanol. Open and closed circles for the experimental concentration of the less and the more retained enantiomer, respectively; solid lines for the adsorption isotherm model. Temperature: 23ºC. The second line presents the prediction of the selectivity factor as a function of both enantiomers concentration.

(19)

3.4 Frontal chromatography experiments and simulation

Breakthroughs experiments were carried out with the purpose of testing the selected

adsorption isotherm models. In the present work it is shown experiments using a racemic

feed solution of 40 g/L and the selected mobile phase composition: 100%ethanol for the

ketoprofen and 10%ethanol/90%n-hexane for flurbiprofen enantiomers. It can be clearly

observed from Figure 5 that both the selected models describe very well the experimental

data behaviour in the whole concentration range.

Figure 5. Saturation (adsorption) and regeneration (desorption) curves for a racemic feed concentration of 40 g/L. Comparison between experimental (points) and simulation (lines) results. Closed and open circles for the less and the more retained enantiomer, respectively. Temperature: 23ºC. Flow rate: 0.5 mL/min. Ketoprofen: 100%ethanol and bi-Langmuir model (BLG6); Flurbiprofen: 10%ethanol/90%n-hexane and modified linear+Langmuir model (LLG5). Model parameters: ε=0.4, Pe=3500, St=kτ=1000 (see Ribeiro et al., 2008).

3.5 Performance of SMB operation

The performance of the ketoprofen enantiomers separation by SMB technology is compared

in Figure 6 for different mobile phase compositions using the Equilibrium Theory model. The

separation region (see plot

γ

3

2

) for 20%ethanol/80%n-hexane has operating conditions

considerable different from the ones obtained for the pure alcohol mobile phases (pure

ethanol and pure methanol) due to the higher retention times. Comparing the separation

regions for the three mobile phases, it can be concluded that, for the 20/80 composition, the

separation region becomes quickly smaller with the increase of feed concentration. This is a

sign of stronger non-linear behavior of the adsorption process and a reason for lower

productivities.

The comparison of the SMB performance for the two pure alcohol mobile phases is clear:

both have similar operating conditions due to similar retention times, but pure ethanol

presents considerable better performances due to higher selectivity. Figure 6 also presents

the productivity and the solvent consumption obtained for the different mobile phase

compositions, as a function of feed concentration. These simulation results also clearly show

that pure ethanol is the better choice for the separation of ketoprofen enantiomers through

SMB operation: at high feed concentrations, the productivity using pure ethanol is three times

the ones obtained with the other two solvents, and solvent consumption is only 75% and

25% of the one needed with pure methanol and 20%ethanol/80%n-hexane, respectively.

Figure 6. SMB separation regions and prediction of the performance of SMB operation for ketoprofen enantiomers: productivity and solvent consumption as a function of feed concentration for the different mobile phase compositions.

(20)

For flurbiprofen enantiomers (see Figure 7) it can be observed high retention time values in

mobile phases with high hydrocarbon contents (the separation regions are progressively

located at higher values of

γ

2

and

γ

3

with an increase of the n-hexane content). On the other

side, these results are very different from the ones obtained for the separation of the

ketoprofen enantiomers. The dimension of the separation regions progressively decrease

with the decrease of the n-hexane content (increase of the ethanol content). Therefore, the

best performance (bigger separation region) is obtained with a 10%ethanol/90%n-hexane

composition through all feed concentration range. The performance parameters predictions

also support the previous conclusions. Under preparative conditions, maximum productivity

is achieved with the 10/90 composition, while solvent consumption does not significantly

differ for all mobile phase compositions.

Figure 7. SMB separation regions and prediction of the performance of SMB operation for flurbiprofen enantiomers: productivity and solvent consumption as a function of feed concentration for the different mobile phase compositions.

4 Conclusions

For the separation of ketoprofen enantiomers, best situation is achieved using pure ethanol

as mobile phase. For flurbiprofen enantiomers, the experimental results obtained lead to

different conclusions: a 10%ethanol/90%n-hexane composition is the better choice since it

represents a good compromise between selectivity, retention time and solubility. The present

work shows that the choice of the proper mobile phase composition is a topic of utmost

importance for the optimization of preparative liquid chromatographic separations. This

choice will affect the throughput of the separation process since solubility, retention time, and

selectivity are all parameters very sensitive to changes in mobile phase composition.

Acknowledgements

Financial support by the Portuguese R&D foundation FCT (Fundação para a Ciência e a

Tecnologia) and the European Community through FEDER (project POCI/EQU/59738/2004)

is gratefully acknowledged. The authors wish to thank Simão P. Pinho (Bragança Polytechnic

Institute) for the support on the solubility measurements.

References

Burian, M., Geisslinger, G. (2005). COX-dependent mechanisms involved in the

antinociceptive action of NSAIDs at central and peripherical sites. Pharmacol. Ther.

107, 139-154.

Lynam, K., Stringham, R. (2006) Chiral Separations on Polysaccharide Stationary Phases

Using Polar Organic Mobile Phases. Chirality 18, 1-9.

Panico, A., Cardile, V., Gentile, B., Garuti, F., Avondo, S., Rosisvalle, S. (2006). “In vitro”

differences among (R) and (S) enantiomers of Profens in their activities related to

articular pathophysiology. Inflammation 29, 119-128.

Ribeiro, A., Graça, N., Pais, L., Rodrigues, A. (2008). Preparative separation of ketoprofen

enantiomers: Choice of mobile phase composition and measurement of competitive

adsorption isotherms. Sep. Pur. Technol. 61, 375-383.

Referências

Documentos relacionados

Quantitative analysis of vitamin in a feed using normal phase high performance liquid chromatography.. Separation of the natural retinoids by high-pressure

In order to optimise the separation of these preservatives, the effects of mobile phase composition on the separation were evaluated, as well as the applied voltage and

Furthermore, with the simple splitting of the batch process into two columns the process is signifi- cantly improved when compared to single-column chromatography with recycle,

The unique pattern of spots exhibited by Hypostomus dardanelos allows a prompt identification of this species. The most typical pattern among Hypostomus and other species of

No prefácio do livro sobre devolução, Souza 2016, Weber exalta a caraterística da estudiosa e militante do tema em abordar pontos difíceis que perpassam a adoção, elencando

Em suma, a feira “Da Roça para Mesa” apresenta inúmeros potenciais para fortalecer a proposta agroecológica e seus valores no município, como a popularização

•. .no sentido de ter procurado queimar, com relação ao Brasil e à sua civilização luso-cristã, muito do que se vinha adorando: e de redescobrir para valorizar muito do que se

The screening of mobile phase composition for the preparative separation of nadolol stereoisomers was carried out using different solvents mixtures and compositions on a