• Nenhum resultado encontrado

Antimicrobial potential of pyroligneous extracts – a systematic review and technological prospecting

N/A
N/A
Protected

Academic year: 2021

Share "Antimicrobial potential of pyroligneous extracts – a systematic review and technological prospecting"

Copied!
12
0
0

Texto

(1)

brazilian journal of microbiology49S(2018)128–139

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Antimicrobial

potential

of

pyroligneous

extracts

a

systematic

review

and

technological

prospecting

Juliana

Leitzke

Santos

de

Souza

a

,

Victoria

Burmann

da

Silva

Guimarães

b

,

Angela

Diniz

Campos

c

,

Rafael

Guerra

Lund

a,b,∗

aUniversidadeFederaldePelotas,ProgramadePós-Graduac¸ãoemBioquímicaeBioprospecc¸ão,Pelotas,RS,Brazil

bUniversidadeFederaldePelotas,FaculdadedeOdontologiadePelotas,LaboratóriodeMicrobiologiaOral,ProgramadePós-Graduac¸ão emOdontologia,Pelotas,RS,Brazil

cEmpresaBrasileiradePesquisaAgropecuária,EmbrapaClimaTemperado(CPACT),LaboratóriodeFisiologiaVegetal,,MonteBonito, RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28February2018 Accepted1July2018

Availableonline14August2018 AssociateEditor:AdalbertoPessoa

Keywords: Foodpreservation Antimicrobial Infections Preservative Pharmaceutical

a

b

s

t

r

a

c

t

Pyroligneousextractisappliedindiverseareasasanantioxidant,anantimicrobial,and ananti-inflammatoryagent.Thediscoveryofnewcost-effectiveantimicrobialagentsof naturaloriginremainsachallengeforthescientificcommunity.Thisstudyaimedto con-ductasystematicreviewandatechnologicalforecastingoftheexistentevidenceregarding theuseofpyroligneousextractasapotentialantimicrobialagent.Studieswereidentified throughaninvestigationofvariouselectronicdatabases:PubMed,SciFinder,WebofScience, Scopus,Scielo,Googlescholar,andProQuest.PatentsweresearchedthroughINPI,Google patents,Espacenet,Patentsonline,USPTO,andWIPO.Theliteratureonantimicrobial activ-ityofpyroligneousextractarelimitedgiventheshortdurationofstudiesandvariabilityin studydesign,useofpyroligneouspreparations,andreportsonresults.However,evidence suggeststhepotentialofpyroligneousextractasanaturalantimicrobialagent.Themost studiedactivitywastheroleofPEasafoodpreservative.However,pyroligneousextracts arealsoeffectiveagainstpathogenicbacteriaintheoralmicrofloraandtreatmentof candi-dalinfections.Furtherresearchisneededusingstandardizedpreparationsofpyroligneous extractstodeterminetheirlong-termeffectivenessandabilityasantimicrobialagents.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Pyroligneousextract(PE),alsocalledpyroligneousacid,liquid smoke,orwoodvinegar,isacrudecondensateproducedfrom the distillationofsmokegeneratedin woodcarbonization.

Correspondingauthorat:PostgraduatePrograminDentistry,SchoolofDentistry,FederalUniversityofPelotas(UFPel)RuaGonc¸alves Chaves,457/504,96015-000Pelotas,RS,Brazil.

E-mail:rafael.lund@gmail.com(R.G.Lund).

This extract is a complex mixture of compounds derived fromthechemicalbreakdownofwoodcomponentsthrough thecondensationofvaporsandgasesgeneratedduringthe pyrolysisofalimitedamountofoxygen.1PEisacomplexand

highly oxygenated aqueous liquid fraction; it results from

https://doi.org/10.1016/j.bjm.2018.07.001

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

brazilian journal of microbiology49S(2018)128–139

129

thethermochemicalbreakdownorpyrolysisofplantbiomass components,suchascellulose,hemicellulose,andlignin.2,3

PEfindsapplicationindiverseareas,actingasan antiox-idant, antimicrobial, and anti-inflammatory agent. PE also actsasasourceofvaluablechemicalsandimpartsasmoky flavor and antimicrobial protection in food.3 PE has been

reportedtopossessextremeantifungalactivityagainst sev-eral plant pathogenic fungi4 and a termiticidal activity.5

Several researchershavereported the antibacterial activity of PE against several pathogenic bacteria, including plant pathogens.6Recently,themedicinaluseofPEhasbeenstudied

intensivelyinthefieldoforientalmedicalscience,wheresome naturalresourceshavebeenusedforinvestigatingbiological activities.7However,theantimicrobialpotentialofPEagainst

humanandanimalpathogenicmicroorganismshasnotbeen elucidated.Therefore,thepresentworkiscarriedoutto eval-uate the antimicrobial potential of PE againsthuman and animalpathogenicmicroorganismsandorganizeitspresent status.PE,aby-productofcharcoal-makingandoften consid-eredaswaste,wasselectedbecauseofitsavailabilityinRio GrandedoSul,Brazil.

Systematicreviewsare consideredthegoldstandard for evidence and used to evaluate the benefits and harms of healthcareinterventions.8Suchreviewsaremuchmorelikely

toyieldvalidconclusions.9Thelevelsofevidenceofthe

stud-iesarerankedaccordingtothedegreeofconfidence,whichis relatedtothemethodologicalquality.Thus,systematicreview

oftheliteratureoccupiesthetopofthepyramid,followedby randomizedclinicaltrials,cohortstudies,case-control,case series,casereports,andlastly,expertopinionandresearchin animalsorinvitro.10Thisstudyaimedtosearchthevarious

electronicdatabasesforarticlesandonlinesystemsofpatents andincludedassaysofPEantimicrobialpotentialforhumans andanimals.

Material

and

methods

Eligibility criteria: The inclusion criteria comprised articles andpatentsthatinvestigatedtheantimicrobialactivityofPE againstpathogenicmicroorganismsofhumansandanimals. Informationsourcesandsearch

Thissystematicreviewwasconductedaccordingtothe guide-lines ofthe CochraneHandbookforSystematic Reviewsof Interventions,11followingthefour-phaseflowdiagramofthe

PreferredReportingItemsforSystematicReviewsand Meta-Analyses(PRISMA)Statement.12 Thisreportisbasedonthe

PRISMAStatement.Thefollowingdatabaseswerescreened: MedLine (PubMed),SciFinder, Web ofScience, Scopus, Sci-elo,Google scholar, and ProQuest.For patents, thesources searched comprised the following: INPI, Google patents, Espacenet,Patentsonline,USPTO,andWIPO.

Table1–Searchstrategy.

Searchstrategy

Pubmed

#1(“woodvinegar”OR“pyroligneousacid”OR“pyroligneousextract”OR“pyroligneous”OR“liquidsmoke”)

AND

#2(“Anti-InfectiveAgents”[MESH]“Antimicrobialactivity”OR“Antibacterialactivity”OR“Antifungalactivity”OR“Anti-InfectiveAgents”

OR“Agents,Anti-Infective”OR“AntiInfectiveAgents”OR“AntiinfectiveAgents”OR“Agents,Antiinfective”OR“Microbicides”OR

“AntimicrobialAgents”OR“Agents,Antimicrobial”OR“Anti-MicrobialAgents”OR“Agents,Anti-Microbial”OR“AntiMicrobialAgents”)

Webofscience

#1Topic:(“woodvinegar”)ORTopic:(“pyroligneousacid”)ORTopic:(“pyroligneousextract”)ORTopic:(“pyroligneous”)ORTopic:(“liquid

smoke”) AND

#2Topic:(“antimicrobialactivity”)ORTopic:(“Anti-InfectiveAgents”)

Scopus

#1(“woodvinegar”)OR(“pyroligneousacid”)OR(“pyroligneousextract”)OR(“pyroligneous”)

AND

#2(“antimicrobialactivity”)OR(“Anti-InfectiveAgents”)

SciFinder

#1(“antimicrobialactivityofWoodVinegar”)OR#2(“antimicrobialactivityofpyroligneousacid”)OR#3(“antimicrobialactivityof

pyroligneousextract”)

Scielo

#1(“woodvinegar”)OR(“pyroligneousacid”)OR(“pyroligneousextract”)OR(“pyroligneous”)OR(“liquidsmoke”)

AND

#2(“antimicrobialactivity”)OR(“Anti-InfectiveAgents”)

GoogleScholarandProQuest

#1(woodvinegar)OR(pyroligneousacid)OR(pyroligneousextract)OR(pyroligneous)OR(liquidsmoke)

AND

#2(antimicrobialactivity)

Patentsdatabases:INPI,Googlepatents,Espacenet,Patentsonline,USPTOandWIPO.

#1(woodvinegar)OR(pyroligneousacid)OR(pyroligneousextract)OR(pyroligneous)OR(liquidsmoke)

AND

(3)

130

brazilian journal of microbiology49S(2018)128–139

Records identified throught databases of articles and patents searching: PubMED (16), Scopus (8), Web of science (9), Scifinder (27),

Google scholar (34), Proquest (3).

INPI (0), Google patents (0), Espacenet (7), Patents on line (44), USPTO (11) and WIPO (7).

93 articles indentificated

93 articles screened after duplicates removed

29 studies assessed for elegiblility

29 studies included in qualitative syntesis

14 studies included in qualitative syntesis

Indentification

Screening

Eligibility

Included

60 articles excluded after reading title and astract.

12 articles excluded after reading full text: 1 insecticide against insects 1 protozoan parasite

1 agent accelerating the growth of plants 4 agent for fungi of wood

3 weed control agent 2 font of phenol

2 fulltext articles excluded for no extractable data.

1 review study.

69 patents indentificated

37 patents screened after duplicates removed

37 patents assessed for elegiblility

11 studies included in qualitative syntesis

25 patents excluded after reading title and astract.

25 patents excluded after reading full text: promoter for natural environment for soil, fishes, and plants.

Fig.1–Flowchart.

ThesearchstrategyisdescribedinTable1,andthefocused questionisasfollows:Whatistheantimicrobialpotentialof PEagainsthumanandanimalpathogenicmicroorganisms?

Studyselectionanddatacollection

Studycharacteristics,demographicinformation,enrollment criteria, microorganisms tested, antimicrobial assay types, duration, results, control and groups, and sample size (Tables2and3)wereextractedindependentlyfortwo review-ers (J.L.S.S. and V.B.S.G.). Missing information was sought from authors and/or inventors. The full text papers and patents were assessed independently and in duplicate by the reviewers. Any disagreement onthe eligibilityof stud-iesincludedwasresolvedthroughdiscussionandconsensus, andincaseofdisagreement,athirdreviewer(R.G.L.)decided whetherthearticleshouldbeincluded.Alltitlesandabstracts of articles and patents initially found were analyzed and selectedinaccordance tothe eligibilitycriteria.No restric-tions were considered regarding the language and year of publication. The reference lists of studies included were hand-searchedforadditionalarticles.Fullcopiesofall poten-tiallyrelevantstudies wereidentified. Studiesthat metthe inclusion criteriaor forwhich insufficientdatawere avail-able in the title and abstract to make a decision were selectedforfullanalysis. Authorsofthe studies were con-tactedincaseofmissingdata(e.g.,dataprovidedingraphs); these studies were only included if the authors provided themissinginformation.Dataextractionwasconductedby consensusbetweenthetworesearcherswhoconductedthe collection.

Assessmentofriskofbias

Theriskofbiasforalltheincludedstudieswasassessedbased on The Cochrane Collaboration’s tool,11 and the

method-ologicalqualitywasadaptedfromanothersystematicreview ofantimicrobialmonomersusedindentalmaterials.13 The

parametersused forthe evaluationofmethodology assays

werediscussedbytheresearchersinvolved,andjudgmentwas carriedoutbygroupdiscussion.Assessmentofriskofbiaswas conductedusingReviewManager5.3software.

Results

Resultsofsearches

Afterdatabasescreening[Pubmed(16),Scopus(8),SciFinder (27), WebofScience(9), Scielo(0), Googlescholar(34), and ProQuest(3)]andremovalofduplicates,89studieswere iden-tified.Aftertitleandabstractscreening,29studiesremained, andthisnumberwasreducedto14aftercarefulexamination ofthefulltexts.Thelastelectronicsearchwasconductedon December4th,2017.Fig.1showsaflowchartsummarizingthe selectionprocessofarticlesandpatents.

Ofthe89articlesinitiallyrecoveredfromalldatabases,75 articleswereexcludedbecausetheywerenotrelatedtothe antimicrobialactivityofPEandfailedtosatisfytheselection criteria.Atotalof60articleswereexcludedafterreadingthe titleandabstract,and12wereexcludedafterscreeningthefull textbecausetheytestedpropertiesotherthanantimicrobial pathologyforhumansoranimals.Onestudytestedan intesti-nalprotozoanparasitethatcausesdiarrheainbothhumans anddomesticanimals14;onearticleusedanagent

accelerat-ingthegrowthofplantsandthedevelopmentofroots.15PE

hasbeenstudiedasarepellentandinsecticideagainstinsect peststocrops,5asanantimicrobialagentforwoodfungi,and

asaweedcontrolagent.4,6,16–19 Two studiesusedthePEas

phenolsourceandtested theantibacterialactivity of sepa-ratecomponents.20,21Inaddition,twoarticleswereexcluded

astheresearchersfeaturednoaccesstofulltextversions,22,23

andonearticlewasareviewstudy.24

In the patent databases, INPI (0), Google patents (0), Espacenet(7),patentsonline(44),USPTO(11),andWIPO(7), thesearchstrategyinitiallyretrieved69patents.Afterremoval ofduplicates,thisnumber wasreducedto37.Atotalof25 patentswereexcludedafterreadingthetitlesandabstracts (Fig.1)astheywerenotrelatedtoPE.Oftheremaining12

(4)

brazilian journal of microbiology49S(2018)128–139

131

patents,1patentwasexcludedbecauseitreportedapromoter ofenvironmentalpropertiesinsoil,plants,andfish.25Twelve

patentswereincludedintheanalysis. Studycharacteristics

Table2describesthe microorganismstested, the sourceof PE,concentrations,methodologiesusedandtheapplication areaforeachstudyfromarticles,andpatentsselectedinthe search.Table3showsthedataofthepatentsincludedinthis review.

Allarticleswere publishedbetween1998and2014.Most studiesshoweddifferentcellulosesourcestoburnand gen-erate different types ofPE for its test as an antimicrobial agent.Severalsourceswerecommercialextracts,1,7,26–33and

others were experimentalextracts.19,34,35 One study tested microbialstrainsisolated fromdogsand cats.26 Onearticle

analyzedfourstrains ofpathogenic Candidaalbicans,which wereisolatedfrompatientssufferingfromurinarytract infec-tion(twostrains),vaginitis,andonychomycosis(oneeach),7

andonetestedanotherC.albicansstrain.30Onestudytested

PE as an agent to prevent viral epidemics in agricultural andhumanenvironments.27 VariousstudiesreportedPEas

afoodpreservative.28,30,31,33,36,37Onlyoneinvivostudyused

Salmonella-infectedBalb/cmousemodel.35Allinvitrostudies

reportedthebacterialorantifungalactivityofPE.The meth-odsusedforthetestsincludeddiskdiffusionandminimum inhibitoryconcentration.Thegrowthprofileofthebacteria wasexaminedviatime-killandviralinactivationassays.27

Regardingpatentdocuments,thedatashowed11patents deposited from1981 to2009.Antibacterial, antifungal, and preservativeproprietiesofPEwere foundinthese patents, which claimed PE incorporation into additives for the treatmentof animal feedstuffs,38 fiber-reinforcedcellulosic

food casing,39 compositions forfood preservation,40–42

car-bonfiber,43 cosmeticcomposition,44biodeodorizing agent,45

antimicrobial compositions,46 pharmaceutical composition

forsymptomsofatopicdermatitis,47andcompositionsfororal

microbes.48

Discussion

Fromtheliteraturereviewed,mostresearchershavereported promising results for PE as an antimicrobial agent. The most studied activity for PE was for food preserva-tive, with seven articles28–33 and five patents presenting

related results.38,39,41,42,48 The PE was effective for the

following microorganisms important for the food indus-try: Salmonella enteritidis, Salmonella typhimurium, Salmonella muenster,Salmonellaseftenburg,Escherichia coli,Staphylococcus aureus,Pseudomonasputida,Pseudomonasaeruginosa, Lactobacil-lusplantarum,Listeriainnocua,Listeriamonocytogenes,Aeromonas hydrophila,Yersiniaenterocolitica,Saccharomycescerevisiae,and

Aspergillusniger.Table2showsallthestrainstestedineach study.PEwasusedasantimicrobialinfoodpreservationand hasdemonstratedabilitiestoreduceorinhibitpathogenicand spoilageorganisms.Comparingresultsofstudiespresented difficultygiventheirvariousdifferences.Thesestudiesused differentmethodologiesfortheantimicrobialactivityandfor

preparationofPE.Somestudiesprovidednoinformationon the preparations.Mostcommercial extractsweretestedfor useasfoodpreservative;onewasforviralepidemics,twofor antibacterialactivity,andanotherforantifungalinfections.

Su ˜nenetal.(1998)testedsevencommercialpreparations of PE used in food industry in Spain against L. monocyto-genes and other pathogenic microorganisms.30 In2001, the

sameauthortestedfourothercommercialpreparationsofPE usedintheSpanishfoodindustryandevaluatedtheir antimi-crobialproperties atlowtemperature againstA.hydrophila, Y.enterocolitica,andL.monocytogenes.All fourextracts effec-tively eliminatedorsuppressedthe growthofA. hydrophila

after21days.31Anotherstudyonfoodpreservativeexamined

theeffectsofselectedPEsonthecontrolofL.monocytogenes

infrankfurters.Treatments withPEreduced andcontrolled

L. monocytogenes growth in the most permissive franks for 10 weeks.32 Millyet al. (2008)usedPE fractionsappliedon

ready-to-eatmeatproductstocontrolthegrowthofinoculated

L.innocuaM1.28

In2012,VanLooetal.investigatedtheantibacterialactivity ofeightcommercialPEsamplesagainstS.enteritidis,S.aureus,

andE.coli,demonstratingthatthecommercialsmokes inhib-itedthegrowthofthesefoodbornepathogens.36

Haradaetal.(2013)determinedthemaximuminhibitory dilutions of bamboo PE against104 E. coli, 112 Staphylococ-cuspseudintermedius,and58P.aeruginosastrainsisolatedfrom dogsandcats.Theresultsindicatedthatbamboopyroligneous acidexertssignificantlyinhibitthegrowthofrepresentative bacterialpathogensfromcompanionanimals,although inhi-bitiondifferedamongspecies.26

Bamboo PE-inactivated picornavirus and encephalomy-ocarditis virus showed that phenol is the sole germicidal component,andthataceticacidaugmentedthephenol inac-tivatingactivity.ThesefindingssuggestthatbambooPEisa potentiallyusefulagenttopreventviralepidemicsin agricul-turalandhumanenvironments.27

Ibrahim et al. (2013) tested the PE, concentrated PE, and dichloromethane extracts of CPA, namely, DCM A and B, against four pathogenic strains of C. albicans. The resultsexhibitedsignificantinhibitionzones.Theresultsalso revealedthatextractDCMBofCPAshowedthemost signifi-cantpotentialasananti-candidalagent.7In2014,theauthor

concludedthat RhizophoraapiculataPEmayalsobeabroad antimicrobialagentagainstpathogenicbacteria.49

Otherauthorsinvestigatedtheeffectsoftemperatureon antimicrobialpropertiesoftwocommercialPEfractionsand PEderivedfrompecanshells,againsttwocommonfoodborne pathogens,ListeriaandSalmonella.Understandinghow stor-age temperatureaffectsthe efficacy ofantimicrobialsisan importantfactorthatcancontributetoreducinghighlevels andcostsofantimicrobialsandultimatelyimprovefoodsafety forconsumers.33

Threepapersreportedthedevelopmentofnew experimen-talPE.Theytesteddifferentkindsofcelluloseasfeedstock: walnut treebranches,Eucommiaulmoides,olivebranch, and rice hull. Wei et al. (2010) prepared and collected PE by pyrolizingwalnuttreebranchesatthreetemperatureranges: 90◦C–230◦C, 230◦C–370◦C, and 370◦C–450◦C. All the PEs exhibited antibacterialactivity.Thehighlevel of antibacte-rialactivityofWP3indicatedthatpyroligneousacidscollected

(5)

132

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 128–139

Table2–Demographicdatafromarticlesandpatentsconsideredinthisstudy. Microorganismtested Pyroligneousextract

source

Concentrations Methods Application

area Assays Samplesize

(pergroup)/ repetitionof assays

Period Positivecontrol Negativecontrol

30 Bacilluscereus(CECT495),Bacillus

subtilis(CECT38),S.aureus(CECT 239and976),L.monocytogenes

(CECT932),L.inocua(CECT4030),

Brochothrixthermosphacta(CECT 847),L.plantarum(CECT220),L. brevis(CECT216),L.coryniformes

(CECT982),L.lactisssp.cremoris

(CECT697),L.lactisssp.lactis(CECT 185),Leuconostoccarnosum(CECT 4024),Carnobacteriumdivergens

(CECT4016),E.coli(CECT533,471, 405),S.tyhimurium(CECT443),S. enteritidis(CECT556),Y. enterocolitica(CECT559),P. aeruginosa(CECT378),Vibrio vulnificus(CECT529)and

Rhodotorularubra(CECT1159). StrainsofC.albicans,S.cerevisiae

andP.aeruginosa022werefrom theirowncollection(Spanish NationalCollectionofType CulturesValencia,Spain).

Sevencommercial smoke condensates.1 0.05,0.1,0.2and 0.4%forL1,L4,S2 andS3;0.2,0.3,0.4, 0.6and0.8%forL2; 0.5,1,2,4,8%forL3 and0.5,1,1.5%for S2. Agardilution methods

n=2/Twice. 24and48h TSAandMRSagar withoutsmoke inoculatedwiththe workingcultures.

No Asfood

preservative.

31 L.monocytogenes(932),A.hydrophila (839)andY.enterocolitica(559) (SpanishNationalCollectionof TypeCultures,Valencia,Spain).

Fourcommercial smoke

condensates.1

1%forthedried extract,0.4%forL1, 0.6%forL2and4% forL3. Brothand agardilution methods n=1/three times 0,1,2,7,14 and21days InoculatedTSB withoutsmoke extractsservedas positivecontrols. Non-inoculated flaskswereusedfor sterilitycontrol.

Asfood preservative.

29 S.muenster,S.seftenburg,S.

typhimurium,E.coli8677,andP. putida;L.plantarumandL.innocua

M1;S.cerevisiaeandA.niger.

Ninecommercial liquidsmokes.1 Fractions(v/v)were 0.5%,0.75%,1.0%, 1.5%,and2.0%to 10.0%. Brothoragar dilution methods n=3/three times

24h Petridisheswithno smokeextractsthat wereinoculated.

No. Asfood

preservative.

32 L.monocytogenesScottA-2 (serotype4b,clinicalisolate),V7-2 (serotype1/2a,milkisolate),39-2 (retailfrankfurterisolate),and 383-2(groundbeefisolate).

Twocommercial liquidsmokes.1

Dippedfor5,15,30, 60,and90swith liquidsmokeextract.

Directspiral plating methods

n=3 10weeks Frankfurtersnot dipped.

No. Asfood

preservative.

28 L.innocuaM1,astrainofListeria resistanttotheantibiotics streptomycinandrifampicin.

Fourcommercial liquidsmokes.1

2% Directspiral

plating methods

n=15 2and4weeks Threesamplesof eachmeatproduct.

No. Asfood

(6)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 128–139

133

–Table2(Continued)

Microorganismtested Pyroligneousextract source

Concentrations Methods Application

area Assays Samplesize

(pergroup)/ repetitionof assays

Period Positivecontrol Negativecontrol

36 S.Enteritidis(PTA13A),E.coli 0157:H7(ATCC43888),S.aureus

(ATCC25923andATCC6538),and twomethicillin-resistantS.aureus

(MRSA).L.monocytogenes174 (serotypel/2a),L.monocytogenes

163(serotype4b),S.typhimurium 29,S.typhimuriumLT2(ATCC 19585),andS.aureusCol(MRSA).

Eightcommercial liquidsmoke extracts. 96%–0.375%. Broth microdilution method n=3 24h Controlcontaining PBSsolution. No. Asfood preservative. 27 Picornavirus,encephalomyocarditis virus. Twocommercial liquidsmokes.

Notinformed. Viral

inactivation assay

Notinformed. 6h Notinformed. Notinformed. Asanagent

for preventing viral epidemicsin agricultural andhuman environments. 26 104E.coli,112S.pseudintermedius

and58P.aeruginosastrainsisolated fromdogsandcats.

Onecommercial liquidsmokes. Serialdilutionsof BPA(i.e.1/2,1/3,1/4, 1/5,1/6,1/7,1/8,1/9, 1/10,1/11,1/12,1/13, 1/14,1/15,1/16,1/17, 1/18,1/19,and1/20). Maximum inhibitory dilution/agar method n=1 18h E.coli,E.faecalis,P. aeruginosa,S.aureus andS. pseudintermedius

wereusedasquality controls.

No. For

antibacterial infectionsin animals.

7 FourstrainsofpathogenicC.

albicanswhichwereisolatedfrom patientswithsufferingfrom urinarytractinfection(two strains),vaginitisand onychomycosis(oneeach).

Fourextractofliquid smokes. Between0.39and 100.00mg/mL. Diskdiffusion method; brothdilution method; time-kill assay

n=3 24and48h Notinformed. No. Asan

antifungal agent especiallyto treatcandidal infections. 1 B.cereus,B.subtilis,B.spizizenni,S.

aureus,MRSA,S.epidermidis, Streptococcuspyogenes,S.faecalis, Citrobacterfreundii,E.coli,Erwinia sp.,K.pneumonia,P.mirabilis,P. aeruginosa,Salmonellatyphiand Yersiniasp.(IndustrialBiotechnology ResearchLaboratoryCulture Collection.

Fourextractofliquid smokes. Between0.39and 100.00mg/mL. Diskdiffusion method; brothdilution method; time-kill assay n=3 24h Chloramphenicol (Sigma,Germany)at theconcentrationof 30␮g/mLwasused asapositivecontrol. Commercial antibioticdiskGFA (Whatman,England) with6.0mm. Asan antimicrobial agentagainst pathogenic bacteria.

(7)

134

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 128–139 –Table2(Continued)

Microorganismtested Pyroligneousextract source

Concentrations Methods Application

area Assays Samplesize

(pergroup)/ repetitionof assays

Period Positivecontrol Negativecontrol

33 L.monocytogenes2045(ScottA, serotype4b,fromDr.Martin Weidemann,DepartmentofFood Science,CornellUniversity,Ithaca, NY),L.monocytogenes10403S (serotypel/2a,fromDr.Aubrey Mendonca,DepartmentofFood ScienceandHumanNutrition, IowaStateUniversity,Ames),L. innocuaATCC33090,L.innocuaMl ATCC33091,S.typhimuriumLT2 ATCC19585,andS.heidelbergATCC 8326(AmericanTypeCulture Collection,Manassas,VA).

Threecommercial liquidsmokesfrom Mesquite,Hickory andpecanshell.

Eightserialdilutions rangedto48and 0.375%(v/v). Brothmicro dilution/agar method n=3 24h Controlscontaining onlyPBSplus bacteriawere included. No Asfood preservative.

19 S.aureus,E.coli,Bacteriumproteus,

Bacteriumprodigious,andAerobacter aerogenes. Walnuttree branches. Concentrationsof 40,20,10,5,2.5,1.25 and0.625mg/mL. Diskdiffusion and(EC50).

Notinformed. Notinformed. Notinformed. Notinformed. Asnatural

germicide. 34 S.aureus,E.coli,B.prodigious,B.

subtilis,A.aerogenes,Pseudomonas sp.andothersnon-human pathogenic. Eucommiaulmoides Oliv.Branch. Concentrationsof 50,25,12.5,6.25, 3.125,1.5625, 0.781mg/mL. Diskdiffusion method. n=1/three times

48h Sterilewater. No. Asgermicide.

35 Salmonellaentericaserovar typhimurium(ATCC#14028)(S. typhimurium)AmericanType TissueCultureCollection(ATCC, Manassas,Va.,U.S.A.).

Rice(Oryzasativa

L.)hull. Concentrationsof 0.1%,0.5%,and1.0% (v/v). Diskdiffusion method.

n=3 24h Notinformed. Notinformed. As

antimicrobial flavor formulations for applicationto humanfoods andanimal feeds. Forinvitroassayand

(1.0%,v/w)forinvivo assay. Salmonella-infected Balb/cmouse model. Threegroups of10mice each. 12/12hfor 48h

PBS-treatedcontrol. Vancomycin (20mg/mL).

(8)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 128–139

135

–Table2(Continued) Patentsdata 38 BacillusstearothermophilusATCC7953,S.typhimurium

ATCC14028,C.albicansATCC10231,Aspergillusflavus

ATCC9643,AspergillusnigerATCC9642,Chaetomium globosumATCC6205,PenicilliumfuniculosumATCC 11797,ChaetomiumglobosumATCC6205,Gibberella zeaeATCC24688,TrichodermavirideQM9123,Bacillus cereus,Enterobacteraerogenes,Serratiamarcescens, Pseudomanassp.,Proteussp.,andEnterobactersp.

Cellulosicfibermaterials,mainlyhard woodfibers,suchashickory,mapleand otherhardwoods.

Notinformed. Diskdiffusionmethod Asantimicrobial

formulationsfor applicationtoanimal feedstuffs.

39 P.sub.2BPenicilliumP.sub.2CNoeasilyrecognizable conidialstate;maybelonginMyceliaSteriles P.sub.2DPenicilliumP.sub.2EPenicilliumP.sub.4

TrichodermsP.sub.5PaecilomycesP.sub.9Paecilomyces

P.sub.11APenicilliumP.sub.11BPenicilliumP.sub.12A

AspergillusP.sub.12BPenicilliumS.sub.1Fusarium

S.sub.2PenicilliumS.sub.3MonocilliumS.sub.4

PenicilliumS.sub.5PenicilliumS.sub.6Penicillium

R.sub.1PenicilliumR.sub.2PenicilliumR.sub.3

PenicilliumV.sub.1PenicilliumV.sub.2Penicillium Penicillium(eitherP.sub.2DorP.sub.12B)Aspergillus glaucus(source:T.LaBuzaU.ofMinnesota)A.niger

ATCC1004.

RoyalSmokeAA.sup.(a);RoyalSmoke A.sup.(a);RoyalSmokeB.sup.(a);Royal Smoke16.sup.(a);CharsolC-12.sup.(b); CharsolC-10.sup.(b);CharsolX-11.sup.(b); CharsolC-6.sup.(b);CharsolC-3.sup.(b); SmokaromaCode–12.sup.(c);Code– 10.sup.(c);Code–S.sup.(c);Code– 6.sup.(c).

(a)GriffithLaboratories,Inc.12200South CentralAvenue,Alsip,I.(b)RedArrow ProductsCo.,P.O.Box507,Manitowoc,WI. (c)MeatIndustrySuppliers,Inc.770 FrontageRoad,Northfield,IL.

89wt.% Numberofviablemolds.

Antimycoticaction.

Asafoodpreservative.

41 L.monocytogenes ZESTISMOKE(Code10)Hickory

Specialties,Inc.ofBrentwood,Tenn.

Aceticacidinaconcentrationofabout 6.5–8.0%;carbonyl1.0–8.0%;0.1–1.0%;and water83–92.4%(w/v).

Wienerssprayed. Asfoodpreservative.

43 B.subtilis,S.aureus,S.epidermidis,E.coli,

MidoriMinorikin,Serratia,Salmonella.

Woodvinegarandbamboovinegar,

T=500–900◦C

Notinformed. Diskdiffusionmethod. Hospitaltextileindustry.

44 E.coli. WoodvinegarisQuercus(byCaicos)

T=80–150◦C

Between0.5%and5.0%. Detectionofbacteriain thewoodvinegar.

Cosmeticindustry.

45 E.coli,Salmonellasp.,S.aureus,Vibriosp. Notinformed. Between3.0%and5.0%. Testedastowhetherthe

growthinhibitionon.

Newnaturalbio deodorantcomposition. 42 E.coli8677,S.seftenberg,L.innocuaM1,L.

monocytogenes,S.cerevisiae,A.nigerspores.

ZESTI-SMOKECode1OandZESTI-SMOKE CodeV.MastertasteofCrossville, Tennessee.

Between0.5%and5.0%. Minimuminhibitory concentrations.

Asafoodpreservative.

46 E.coli,Salmonellasp.,Bacillussp.,Staphylococcussp.,

Vibriosp.,Aspergillussp.,Fusariumsp.,Tricodermasp.

andCandidasp.(CandidakruseiATCC6258,Candida parapsilosisATCC22019,CandidaglabrataATCC90.03,

C.albicansATCC64550andATCC90028).

Notinformed. Between100␮Lto1600␮L. Minimuminhibitory

concentrations.

Asantisepticisaddedto thefood.

47 Trichophytonrubrum. Purifiedwoodvinegarisaceticacid2–4%

byweight,formicacid0.050.15wt.%, Propionicacid0.050.15wt.%.

1–5%ofweightofthetotalweightofthe medicament.

Halotest. Amedicamentofatopic dermatitiscontaining refinedwoodvinegar. 48 Streptococcusmutans,Porphrymonasgingivalis,

fusobacteriumnucleatinssp.polymorphum.

ZESTI-SMOKECode1OandZESTI-SMOKE CodeV.MastertasteofCrossville, Tennessee.

Between0.01%and50.0%. Minimuminhibitory concentrations.

Asoralantimicrobial.

40 L.monocytogenes. ZESTI-SMOKECode1OandZESTI-SMOKE

CodeV.MastertasteofCrossville, Tennessee.

(9)

136

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 S (2 0 1 8) 128–139

Table3–Patentsdata,antibacterialcompositionsandclaimsrelatedtopyroligneousextractsantimicrobialactivity.

Patent Country Title Year Antibacterialcomposition Claimed

US430829338 UnitedStates Antimicrobialtreatmentandpreservationof animalfeedstuffs

1981 Pyroligneousacidandpyroligneousacid complexes.

Preservativeagentsforthetreatmentof animalfeedstuffs.

US437718739 UnitedStates Liquidsmokeimpregnatedfibrousfood casing

1983 Liquidsmoke. Afibrousreinforcedcellulosicfoodcasing withtheimpregnatedliquidsmoke providingantimycoticquality. US504317441 UnitedStates MeatprocessingwithListeriamonocytogene

re-inoculationcontrolstage

1991 Liquidsmokederivativeproduct containingaminimumofcarbonyland phenol.

Compositionsforantimicrobialtreatment offoodproducts.

JP2000160476(A)43 Japan Productionofcarbonfiberandcarbonfiber producedthereby

2000 Extractofmugwort(Artemisiaprinceps)

andoneofpyroligneousacidfromwood orbamboo.

Carbonfiberthathasantimicrobial activity.

KR20030005075(A)44 Korean Cosmeticcompositioncontaining pyroligneousacidsolution

2003 Thecosmeticcompositioncontains0.5to 5.0%byweightofapyroligneousacid solution,basedonthetotalweightofthe composition.

Acosmeticcompositioncontaininga pyroligneousacidsolutionwith antimicrobialactivityandantioxidant activityforprotectingtheskin. KR20030014052(A)45 Korean Naturalbiodeodorizingagentcomposition 2003 TheBacillusstrainhasafinal

concentrationof0.5x10not7to1x10not 7,basedon3to5%pyroligneoussolution.

Abiodeodorizingagentcompositionwith anexcellentantimicrobialactivityagainst putrefactiveorpathogenicbacteriaanda long-lastingdeodorizingeffect.

US20050175746A142 UnitedStates Lowflavoranti-microbialsderivedfrom smokeflavors

2005 Derivativesofliquidsmoke. Compositionsforantimicrobialtreatment offoodproducts.

KR20060109757(A)50 Korean Silver-ionizedwoodvinegarhavingenhanced antimicrobialactivityandusethereoffor improvingorpreventingdiseasecausedby pathogenicbacteria

2006 Thesilver-ionizedwoodvinegaris preparedbyionizingsilverinwood vinegarwithelectrolysis.

Compositionsforantimicrobialactivity.

KR102007004286847 Korean Pharmaceuticalcompositionforameliorating symptomsofatopicdermatitiswithoutskin irritationComprisingrefinednontoxicwood vinegarhavingnoharmfulmaterials

2007 Refinedwoodvinegar24wt.%ofacetic acid,0.05–0.15wt.%offormicacid, 0.50–0.15wt.%ofpropionicacid.

Pharmaceuticalcompositionfor amelioratingsymptomsofatopic dermatitisandimprovingantimicrobial activity.

US20070212310A148 UnitedStates Antimicrobialsmokeflavorfororal microfloracontrol

2007 Compositionsthatincludelowflavor antimicrobialliquidsmokederivatives.

Compositionsandmethodsforinhibiting thegrowthoforalmicrobesinasubject. US2009001109640 UnitedStates Preservativesforfood 2009 CombinationofNlongchainalkylofdi

basicaminoacidalkylesteracidsalt biocideswithliquidsmokecompositions.

Compositionsforantimicrobialtreatment offoodproducts.

(10)

brazilian journal of microbiology49S(2018)128–139

137

athighertemperaturefeaturestrongerinhibitioneffectson bacteria.19

PEofE.ulmoidesolivebranchwascollectedatdifferent tem-peratureranges:90◦C–200◦C,200◦C–340◦C,and340◦C–520◦C. TheresultsshowedthatthemaximumamountofthePEwas collectedattherange200◦C–340◦Candalsoshowedthemost anti-pathogenicactivities.Afterthepreliminaryanalysis, phe-nolswereconsideredtheactivecomponentsofbacteriostatic activity.34

A previously characterized rice hull PE was tested for bactericidal activity against S. typhimurium using the disk-diffusionmethod.Theinvivoantibacterialactivityofricehull smokeextract(1.0%,v/v)wasalsoexaminedina

Salmonella-infectedBalb/cmousemodel. Thecombinationofricehull smokeextractandvancomycinactedsynergisticallyagainst the pathogen. The beneficial results suggest that the rice hullPEpossessesthepotentialtocomplementwood-derived smokesasantimicrobialflavorformulationforapplicationin humanfoodsandanimalfeeds.35

TechnologyprospectingforPEasanantimicrobialagent: thepatentsearch

StudiesonPEinpatentswereolderthanarticles.In1981,PEs incorporatingselectiveadditiveswereusedasantifungaland antibacterialpreservativeagentsforthetreatmentofanimal feedstuffs.38In1983,PEwasusedinafibrousreinforced

cel-lulosicfoodcasingwithPEtoprovideantimycoticqualityin thecasingwithoutseparatingantimycoticagent.39In1991,a

PEderivativeproductwasappliedtowienerspost-peelingand beforepackagingtoinhibitL.monocytogenesreinoculationand extendtheshelflifeofthewienerswithoutadverselyaffecting theirtasteand/oredibility.41In2004and2008,otherpatents

developedmethodsandcompositionsforantimicrobial treat-mentoffoodproducts.40,42

TheantimicrobialpropertyofPEwasusedforthe devel-opmentof carbon fiber bysoaking carbon fibers in aheat treatment solution mainly comprising PE from wood or bamboo.43PEwasalsousedasbiodeodorizingagent

compo-sitioncontainingaculturesolution;thePEsolutionshowed an excellent antimicrobial activity against putrefactive or pathogenicbacteriaandalong-lastingdeodorizingeffect.45

Two studies developed antimicrobial products for skin; acosmetic composition containinga PE solution featuring anantimicrobialactivityandantioxidantactivityasamain component was obtained and considered suitable for skin protection.44 A pharmaceutical composition for

ameliorat-ing symptoms of atopic dermatitis comprising refined PE wasproventoavoidsideeffects,suchasskinirritationand badsmell, byremovingharmfulmaterialsandtoxicityand improvingantimicrobialactivity.47

One patent developed a silver-ionized PE to enhance antimicrobial activity of PE against pathogenic bacteria:

E.coli,Salmonellasp.,Bacillussp.,Staphylococcussp.,Vibriosp.,

Aspergillussp.,Fusariumsp.,Tricodermasp.,andCandidasp.46 AnotherpatentusedPEagainstpathogenicmicroorganismsof oralcavityandprovidedcompositionsandmethodstoinhibit thegrowthoforalmicrobesandpromoteoralcare.48

The examination of PE as an antimicrobial agent, the broad spectrum of its properties, with and without enhancing additives,was evaluated against heat-resistant, spore-forming, aerobicbacilli, gram-negative bacillus asso-ciatedwithavian,andhumanenteritis.Varioussaprophytic molds (mycelial fungi) are associated with animal feeds, spoilage and, in several instances, human and animal mycotoxicoses. In each instance, our findings indicate that PE effectively and irreversibly reduces natural and/or experimentalmicrobial contaminantsassociatedto animal feedstuffs.38

CellulosicsourcesofPE

The cellulose sources reported in the studies included in thissystematicreviewcomprisedwoodsofhickory,mesquite, apple, pecan, moso bamboo (Phyllostachys pubescens), Rhi-zophoraapiculata,walnuttreebranches,andE.ulmoidesolive. Branchandricehullandfivestudiespresentednoinformation aboutthesecellulosesources.

FutureprospectsforPE

Furtherinvivostudiesarerequiredforthedevelopmentofnew productsusingPEandtheinvestigationofitspossibleuseas anantimicrobialagentagainstresistantpathogenic microor-ganisms and development of pharmaceutical medicines. Manypathogenicmicroorganismsaretestedforuseasfood preservative;thisextractdemonstratedaremarkable antimi-crobialpotentialbutwasnotidentifiedininvivostudiesfor humansorclinicalassays.

Conclusion

In conclusion, the evidence suggests that PE features an antimicrobialactivityagainstpathogenicmicroorganismsfor humans andanimals.Itsuseisprolongedandsafeinfood products.However,onlyonestudywasconductedonanimals, andnoclinicalcasewasfound.

Funding

sources

TheauthorswouldliketothanktheBrazilianresearchsupport agenciesCAPESandFAPERGSforthefinancialsupport(PqG– Grant#17/2551-0001067-1).

Conflicts

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgments

The authors wish to thank the Coordination for the Improvement of Higher Education Personal (CAPES, Brazil) for the granting of Doctorate’s scholarship for the first author.

(11)

138

brazilian journal of microbiology49S(2018)128–139

r

e

f

e

r

e

n

c

e

s

1. IbrahimD,KassimJ,LimSH,RusliW.Evaluationof

antibacterialeffectsofRhizophoraapiculatapyroligneousacid onpathogenicbacteria.MalaysJMicrobiol.2014;10(3):197–204.

2. WuQ,ZhangS,HouB,etal.Studyonthepreparationof woodvinegarfrombiomassresiduesbycarbonization process.BioresourTechnol.2015;179:98–103.

3. MathewZA,ZakariaS.Pyroligneousacid—thesmokyacidic liquidfromplantbiomass.ApplMicrobiolBiotechnol. 2015;99:11.

4. OramahiHA,YoshimuraT.Antifungalandantitermitic activitiesofwoodvinegarfromVitexpubescensVahl.JWood Sci.2013;59(4):344–350.

5. YatagaiM.Biologicalactivityofwoodvinegaranditsrecent applications.NewFoodInd.2004;46:5–16.

6. HwangYH,MatsushitaYI,SugamotoK,MatsuiT. AntimicrobialeffectofthewoodvinegarfromCryptomeria japonicasapwoodonplantpathogenicmicroorganisms.J MicrobiolBiotechnol.2005;15(5):1106–1109.

7. IbrahimD,KassimJ,Sheh-HongL,RusliW.Efficacyof pyroligneousacidfromRhizophoraapiculataonpathogenic

Candidaalbicans.JApplPharmSci.2013;3(7):7–13,

http://dx.doi.org/10.7324/JAPS.2013.3702.

8. PussegodaK,TurnerL,GarrittyC,etal.Identifying approachesforassessingmethodologicalandreporting qualityofsystematicreviews:adescriptivestudy.SystRev. 2017;6(1):1–12.

9. CookD,GuyattGH,LaupacisA,SackettDL,GoldbergRJ. Clinicalrecommendationsusinglevelsofevidencefor antithromboticagents.Chest.1995;108(4suppl): 227S–230S.

10.CookDJ,GuyattGH,RyanG,etal.Shouldunpublisheddata beincludedinmeta-analyses?Currentconvictionsand controversies.JAMA.1993;269(21):2749–2753.

11.HigginsJPT,AltmanDG.In:HigginsJPT,GreenS,eds.

CochraneHandbookforSystematicReviewsofInterventions. Version5.1.0[UpdatedMarch2011].TheCochraneCollaboration, 2011.2011,http://dx.doi.org/10.1002/9780470712184.ch8. 12.MoherD,ShamseerL,ClarkeM,etal.Preferredreporting

itemsforsystematicreviewandmeta-analysisprotocols (PRISMA-P)2015statement.SystRev.2015;4(1):1.

13.CoccoAR,DeOliveiraDaRosaWL,DaSilvaAF,LundRG,Piva E.Asystematicreviewaboutantibacterialmonomersused indentaladhesivesystems:currentstatusandfurther prospects.DentMater.2015;31(11):1345–1362.

14.WataraiS,Tana,KoiwaM.Feedingactivatedcharcoalfrom barkcontainingwoodvinegarliquid(nekka-rich)iseffective astreatmentforcryptosporidiosisincalves.JDairySci. 2008;91(4):1458–1463.

15.ZhaiM,ShiG,WangY,etal.Functionalityofliquidsmokeas anall-naturalantimicrobialinfoodpreservation.Bioresour Technol.2010;10(1):6219–6224.

16.LeeSH,H’ngPS,LeeAN,SajapAS,TeyBT,SalmiahU. Productionofpyroligneousacidfromlignocellulosicbiomass andtheireffectivenessagainstbiologicalattacks.JApplSci. 2010;10(20):2440–2446.

17.VelmuruganN,ChunSS,HanSS,LeeYS.Characterizationof chikusaku-ekiandmokusaku-ekianditsinhibitoryeffecton sapstainingfungalgrowthinlaboratoryscale.IntJEnvironSci Technol.2009;6(1):13–22

http://www.scopus.com/inward/record.url?eid=2-s2.0-63449127561&partnerID=40&md5=582010a373d849e63 ab2033d8ad44b3e.

18.VelmuruganN,HanSS,LeeYS.Antifungalactivityof neutralizedwoodvinegarwithwaterextractsofPinus densifloraandQuercusserratasawdusts.IntJEnvironRes.

2009;3(2):167–176.http://search.proquest.com/docview/ 289702921?accountid=26639.

19.WeiQ,MaX,DongJ.Preparation,chemicalconstituentsand antimicrobialactivityofpyroligneousacidsfromwalnuttree branches.JAnalApplPyrolysis.2010;87(1):24–28.

20.LeboisM,ConnilN,OnnoB,PrévostH,DoussetX.Effectsof divercinV41combinedtoNaClcontent,phenol(liquid smoke)concentrationandpHonListeriamonocytogenes ScottAgrowthinBHIbrothbyanexperimentaldesign approach.JApplMicrobiol.2004;96(5):931–937.

21.ThuretteJ,MembreJM,ChingLH,TailiezR,CatteauM. BehaviorofListeriaspp.insmokedfishproductsaffectedby liquidsmoke,NaClconcentration,andtemperature.JFood Prot.1998;61(11):1475–1479.

22.WangH,CaoH.Progressofantimicrobialmechanismof woodvinegarfromagriculturalandforestrywastes.J Agro-Environ.2014;42:741–742.

23.QinW,XiHanM,TaoZ.Preparation,chemicalconstituents analysisandantimicrobialactivitiesofpyroligneousacidof walnutshell.TransChineseSocAgricEng.2008;24(7):276–279.

24.LingbeckJ,CorderoP,O’BryanCA,JohnsonMG,RickeSC, CrandallPG.Functionalityofliquidsmokeasanall-natural antimicrobialinfoodpreservation.MeatSci.

2014;97(2):197–206.

25.WadaS.Promoterforsoundactivationofnatural

environmentanditsproduction.EspacJP19900418589–Japan.

1994,656617(19940301).

https://worldwide.espacenet.com/publicationDetails/ biblio?II=2&ND=3&adjacent=true&locale=enEP&FT=D&date =19940301&CC=JP&NR=H0656617A&....

26.HaradaK,IguchiA,YamadaM,HasegawaK,NakataT, HikasaY.Determinationofmaximuminhibitorydilutionsof bamboopyroligneousacidagainstpathogenicbacteriafrom companionanimals:aninvitrostudy.JVetAdv.

2013;3(11):300–305.

27.MarumotoS,YamamotoSP,NishimuraH,etal.Identification ofagermicidalcompoundagainstpicornavirusinbamboo pyroligneousacid.JAgricFoodChem.2012;60(36):9106–9111.

28.MillyPJ,ToledoRT,ChenJ.Evaluationofliquidsmoketreated ready-to-eat(RTE)meatproductsforcontrolofListeria innocuaM1.JFoodSci.2008;73(4):M179–M183.

29.MillyPJ,ToledoRT,RamakrishnanS.Determinationof minimuminhibitoryconcentrationsofliquidsmoke fractions.FoodMicrobiolSaf.2005;70(1):12–17.

30.Su ˜nenE.Minimuminhibitoryconcentrationsofsmokewood extractsagainstspoilageandpathogenicmicro-organisms associatedwithfoods.LettApplMicrobiol.1998;27:45–48(Cect 4030).

31.Su ˜nenE,Fernandez-GalianB,Aristimu ˜noC.Antibacterial activityofsmokewoodcondensatesagainstAeromonas hydrophila,YersiniaenterocoliticaandListeriamonocytogenesat lowtemperature.FoodMicrobiol.2001;18(4):387–393.

32.GedelaS,EscoubasJR,MurianaPM.Effectofinhibitoryliquid smokefractionsonListeriamonocytogenesduringlong-term storageoffrankfurters.JFoodProt.2007;70(2):

386–391.

33.LingbeckJ,CorderoP,O’BryanCA,JohnsonMG,RickeSC, CrandallPG.Temperatureeffectsontheantimicrobial efficacyofcondensedsmokeandlauricarginateagainst ListeriaandSalmonella.JFoodProt.2014;77(6):934–940.

34.GaoH,SuY,ZhangQ,etal.Chemicalconstituentsanalysis andantimicrobialactivitiesofpyroligneousacidofEucommia ulmoidesOliv.Branch.ActaBotBoreal-OccídentSin2011. 2011;31(10):2106–2112,1000-4025(2011)10-2106-07 J.

35.KimSP,KangMY,ParkJC,NamSH,FriedmanM.Ricehull smokeextractinactivatesSalmonellaTyphimuriumin laboratorymediaandprotectsinfectedmiceagainst mortality.JFoodSci.2012;77(1):80–85.

(12)

brazilian journal of microbiology49S(2018)128–139

139

36.VanLooEJ,BabuD,CrandallPG,RickeSC,VanLE.Screening ofcommercialandpecanshell-extractedliquidsmoke agentsasnaturalantimicrobialsagainstfoodborne pathogens.JFoodProt.2012;75(6):1148–1152.

37.KimSP,YangYJ,KangMY,etal.Compositionofliquidrice hullsmokeandanti-inflammatoryeffectsinmice.JAgric FoodChem.2011;59:4570–4581.

38.TribbleTB,RoseGW.Antimicrobialtreatmentand

preservationofanimalfeedstuffs.UnitedStatesPat4308293.

1981:1–9http://www.freepatentsonline.com/4308293.html. 39.ChiuHS.Liquidsmokeimpregnatedfibrousfoodcasing.

UnitedStatesPat4377187.1983:1–20

http://www.freepatentsonline.com/4377187.html. 40.BakalGJ.Preservativesforfood.UnitedStatesPatAppl

20090011096.2008:1–6

http://www.freepatentsonline.com/y2009/0011096.html. 41.LindnerRL.MeatprocessingwithListeriamonocytogene

re-inoculationcontrolstage.UnitedStatesPat5043174.

1991:1–6http://www.freepatentsonline.com/5043174.html. 42.Moeller,PatrickW,RamakrishnamsreekumarF.Natural

biodeodorizingagentcomposition.US536160. 2004;1(19):1–43.

43.MatsuiS.Productionofcarbonfiberandcarbonfiber producedthereby.EspacJP19980339429–Japan.

1998;2000160476(2000160476),20000613.

https://worldwide.espacenet.com/publicationDetails/ biblio?II=1&ND=3&adjacent=true&locale=en EP&FT=D&date =20000613&CC=JP&NR=2000160476A&....

44.ChangMS.Cosmeticcompositioncontainingpyroligneous acidsolution.EspacKR20030005075A-Korea.

2003;2003000507(20030005075),20030115.

https://worldwide.espacenet.com/publicationDetails/ biblio?II=0&ND=3&adjacent=true&locale=enEP&FT=D&date =20030115&CC=KR&NR=20030005075A....

45.KoSH,LeeHS,ParkGS,ParkSJ,SimDS,SongHJ.Natural biodeodorizingagentcomposition.EspacKR20010048390.

2003;2003001405(20030014052),20030215.

https://worldwide.espacenet.com/publicationDetails/ biblio?II=1&ND=3&adjacent=true&locale=enEP&FT=D&date= 20030215&CC=KR&NR=20030014052A....

46.LeeJH,BaiDG,ChoKJ,HuhSM,ParkSH.Silver-ionizedwood vinegarhavingenhancedantimicrobialactivityanduse thereofforimprovingorpreventingdiseasecausedby pathogenicbacteria.EspacKR20060109757A-Korea.

2005;2006010975(20060109757).

https://worldwide.espacenet.com/publicationDetails/ biblio?II=0&ND=3&adjacent=true&locale=enEP&FT=D&date =20061023&CC=KR&NR=20060109757A....

47.ByunMW.Pharmaceuticalcompositionforameliorating symptomsofatopicdermatitiswithoutskinirritation comprisingrefinednontoxicwoodvinegarhavingno harmfulmaterials.PATENTSCOPEKR1020070042868-Korea.

2007:970334.

https://patentscope.wipo.int/search/en/detail.jsf?docId= KR970334&recNum=1&office=&queryString=FP%3A%28wood +vinegar+AND+antimicrobial+activ....

48.WuY,BedfordJ,RileyK.Antimicrobialsmokeflavorfororal microfloracontrolUnited.UnitedStatesPatAppl20070212310.

2007:2013–2014,

http://dx.doi.org/10.1177/001440299105800203. 49.IbrahimD,KassimJ,LimS,RusliW.Evaluationof

antibacterialeffectsofRhizophoraapiculatapyroligneousacid onpathogenicbacteria.MalaysianJMicrobiol.

2014;10(3):197–204.

50.VelmuruganN,ChunSS,HanSS,LeeYS.Characterizationof chikusaku-ekiandmokusaku-ekianditsinhibitoryeffecton sapstainingfungalgrowthinlaboratoryscale.IntJEnvironSci Technol.2009;6(1):13–22.

Referências

Documentos relacionados

(2011) studied potential antimicrobial activity of cashew apple extracts obtained by using reflux and showed the inhibitory effect on the growth of Bacillus

Moreover, we investigated the synergistic effects of extracts with antimicrobial activity in association with antibiotics against drugs resistant bacteria.. MATERIALS

Antimicrobial activity of lactic acid bacteria isolated from minced beef meat against some pathogenic bacteria. Enzymatic determination of total

Crude extracts and isolated compounds were tested for antimicrobial activity against twenty strains of microorganisms including Gram-positive and Gram-negative bacteria and

Related studies of antimicrobial activity indicate that crude extracts containing flavonoids, triterpenes and steroids have showed significative activity against

à própria desaceleração da economia global no contexto pós-crise de 2008, do fim do superciclo das commodities internacionais e dos reflexos econômicos em virtude das

Alguns dos mecanismos de interacção interdepartamental desenvolvidos consistem na necessidade de ligação entre o cliente e a empresa, na orientação da documentação técnica

Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus.. Safetiness