• Nenhum resultado encontrado

TRANSFERÊNCIA DE CALOR E MASSA

N/A
N/A
Protected

Academic year: 2022

Share "TRANSFERÊNCIA DE CALOR E MASSA"

Copied!
10
0
0

Texto

(1)

CURSO DE ENGENHARIA MECÂNICA

TRANSFERÊNCIA DE CALOR E MASSA

Atualizado por: Prof. Anderson Fávero Porte

Santa Cruz do Sul, agosto 2007.

(2)

1) GENERALIDADES

1.1) INTRODUÇÃO

Sempre que um corpo está a uma temperatura maior que a de outro ou, inclusive, no mesmo corpo existam temperaturas diferentes, ocorre uma cessão de energia da região de temperatura mais elevada para a mais baixa, e a esse fenômeno dá-se o nome de transmissão de calor.

O objetivo de presente curso é estudar as leis e os princípios que regem a transmissão de calor, bem como suas aplicações, visto que é de fundamental importância, para diferentes ramos de Engenharia, o domínio dessa área de conhecimento. Assim como o Engenheiro Mecânico enfrente problemas de refrigeração de motores, de ventilação, ar condicionado etc., o Engenheiro Metalúrgico não pode dispensar a transmissão de calor nos problemas relacionados a processos pirometalúrgicos ou hidrometalúrgicos, ou nos projetos de fornos ou de regeneradores.

Em nível idêntico, o Engenheiro Químico ou Nuclear necessita da mesma ciência em estudos sobre evaporação, condensação ou em trabalhos de refinaria e reatores, enquanto o Eletricista a utiliza no cálculo de transformadores e geradores e o Engenheiro Naval aplica em profundidade a transmissão de calor em caldeiras, máquinas térmicas, etc.

Até mesmo o Engenheiro Civil e o arquiteto, especialmente em países frios, sentem a importância de, em seus projetos, preverem tubulações interiores nas alvenarias das edificações, objetivando o escoamento de fluidos quentes, capazes de permitirem conforto maior mediante aquecimento ambiental.

Esses são, apenas, alguns exemplos, entre as mais diversas aplicações que a Transmissão de Calor propicia no desempenho profissional da Engenharia.

Conforme se verá no desenvolvimento da matéria, é indispensável aplicar recursos de Matemática e de Mecânica dos Fluidos em muitas ocasiões, bem como se perceberá a ligação e a diferença entre Transmissão de calor e Termodinâmica..

A Termodinâmica relaciona o calor com outras formas de energia e trabalha com sistemas em equilíbrio, enquanto a Transmissão de calor preocupa-se com o mecanismo, a duração e as condições necessárias para que o citado sistema atinja o equilíbrio.

É evidente que os processos de Transmissão de Calor respeitem a primeira e a segunda Lei da Termodinâmica, mas, nem por isto, pode-se esperar que os conceitos básicos da Transmissão de calor possam simplesmente originar-se das leis fundamentais da Termodinâmica.

Evidente também é, sem dúvida, que o calor se transmite sempre no sentido da maior para a menor temperatura, e só haverá transmissão de calor se houver diferença de temperatura, da mesma forma que a corrente elétrica transita do maior para o menor potencial e só haverá passagem de corrente elétrica se houver uma diferença de potencial;

percebe-se, de início, sensível analogia entre os fenômenos térmico e elétrico, o que é absolutamente correto, pois que, de fato, o fenômeno é de transporte e pode ser, inclusive, estudado de forma global, como calor, eletricidade, massa, quantidade de movimento, etc., resultando daí a absoluta identidade entre as diferentes leis que comandam deferentes setores do conhecimento humano.

(3)

1.2) REGIMES DE TRANSMISSÃO DE CALOR

Seja uma parede em forma de paralelepípedo, com todas as faces suficientemente isoladas, exceto duas opostas e paralelas; de início estas faces estão à mesma temperatura Ti, logo não há transmissão de calor através da parede. Em determinado instante, eleva-se subitamente uma das faces à temperatura Tf e haverá transporte de calor na direção x (Fig.

1.4)

Fig. 1.4

Imaginando-se que Ti e Tf sejam temperaturas mantidas inalteradas, haverá, para cada instante t que se considere, uma curva representativa de T = f(x), isto é, um mesmo ponto de uma mesma seção reta terá temperaturas diferentes no decorrer do tempo, daí as curvas para os tempos t1, t2, t3, etc. Desde que se conservem Ti e Tf, ocorrerá um determinado momento, a partir do qual os pontos de uma mesma seção reta não mais variarão sua temperatura com o tempo.

Com esse exemplo é possível caracterizar os dois regimes em que podem suceder as formas de transmissão de calor.

Durante o período em que um mesmo ponto da parede alterou sua temperatura com o tempo, diz-se que a parede estava em regime transitório, e, quando a temperatura do mesmo ponto conservou-se constante, diz-se que na parede reinava regime estacionário ou permanente; são esses os dois regimes de transmissão de calor.

O regime transitório pode ser particularmente um caso de periodicidade, no qual as temperaturas de um mesmo ponto variem ciclicamente segundo uma determinada lei, como, por exemplo, uma variação senoidal ou a variação da temperatura na cobertura de um edifício, exposta dia e noite às condições atmosféricas. A esse regime costuma-se denominar regime periódico.

É possível, e inclusive muito útil, definir regime estacionário e regime transitório em termos de fluxo de calor. Assim, regime estacionário é aquele em que o fluxo de calor é constante no interior da parede, pois os pontos interiores já apresentam saturação térmica e

(4)

não alterarão mais suas temperaturas, logo o fluxo de calor que entra é igual ao fluxo de calor que sai; e regime transitório é aquele em que o fluxo de calor é variável nas diferentes seções da parede ou, em outras palavras, o fluxo que entra é diferente do fluxo de calor que sai.

1.3) FORMAS DE TRANSMISSÃO DE CALOR

Existem três formas de transmissão de calor: condução, convecção e radiação.

Tais formas são fundamentalmente diferentes, regidas por leis próprias, mas que, na realidade, podem ocorrer em simultaneidade, o que torna, por vezes, muito complexa a solução absolutamente exata de um problema de transmissão de calor.

O bom senso do engenheiro, sua experiência e o adequado conhecimento da matéria ensejar-lhe-ão a oportunidade de desprezar uma ou até duas formas de transmissão de calor, no projeto ou num problema de Engenharia, desde que as formas não consideradas tenham presença insignificante, não ocasionando falhas nos resultados finais e oferecendo, autenticamente, uma solução de Engenharia não deixando um problema sem solução, dada a preocupação com a exatidão, que, conforme se poderá perceber no desenvolvimento de assunto, é em várias ocasiões, absolutamente dispensável.

Em capítulos seguintes será estudada, em detalhe, cada uma das formas de transmissão de calor, mas cabe aqui definir corretamente as diferenças entre as três citadas, para que o acompanhamento do assunto possa ser feito com maior segurança e categoria.

1.3.1) Transferência de Calor por Condução

Quando existe um gradiente de temperatura num corpo, a experiência mostra que ocorre uma transferência de energia de alta temperatura para a região de baixa temperatura.

Diz-se que a energia é transferida por condução e a taxa de transferência de calor por unidade de área é proporcional ao gradiente normal de temperatura

A ≈ q

x T

Quando a constante de proporcionalidade é inserida

x kA T

q ∂

− ∂

= 1-1

onde q é a taxa de transferência de calor e ∂T/∂x é o gradiente de temperatura na direção do fluxo de calor. A constante positiva k é chamada condutividade térmica do material, sendo o sinal de menos inserido para satisfazer o segundo princípio da termodinâmica, ou seja, o calor deve fluir no sentido da temperatura decrescente, como indicado no sistema de coordenadas da Fig. 1-1

(5)

Fig. 1-1 Esquema mostrando a direção do fluxo de calor

A equação 1-1 é chamada de lei de Fourier da condução de calor, em homenagem ao físico matemático francês Joseph Fourier que trouxe contribuições significativas ao tratamento analítico da transferência de calor por condução. É importante observar que a Eq. 1-1 é a equação de definição de condutividade térmica e que k tem unidade de watt por metro por grau Celsius [W/(m.oC)] no Sistema Internacional de Unidades (SI).

O problema a ser tratado agora é o da determinação da equação básica que governa a transferência de calor através de um sólido utilizando a Eq. 1-1 como ponto de partida.

Considere o sistema unidimensional mostrado na Fig. 1-2. Se o sistema está em regime permanente, isto é, se a temperatura não varia com o tempo, então o problema é simples devendo-se somente integrar a Eq. 1-1 e substituir os valores apropriados para a solução nas quantidades desejadas. Entretanto, se a temperatura do sólido varia com o tempo, ou se existem fontes ou sumidouros de calor no interior do sólido, a situação é mais complicada. Consideremos o caso geral onde a temperatura pode variar com o tempo e fontes de calor podem ocorrer no interior do corpo. Para o elemento de espessura dx, o seguinte balanço de energia pode ser feito:

Fig. 1-2 Volume elementar para a análise da condução de calor unidimensional

Energia conduzida para dentro pela face esquerda + calor gerado no interior do elemento = variação de energia interna + energia conduzida para fora pela face direita.

Estas quantidades de energia são dadas pelas seguintes expressões:

Energia conduzida para dentro pela face esquerda:

(6)

x kA T qx

− ∂

=

Calor gerado no interior do elemento: qx = qAdx Variação da energia interna: Tdx

cA

E ∂τ

ρ ∂

=

Energia conduzida para fora pela face direita:

∂ + ∂

− ∂

∂ =

− ∂

= +

+ dx

x k T x x k T A x]

kA T

qx dx x dx

onde q= energia gerada por unidade de volume c = calor específico do material

ρ = densidade

A combinação das relações acima fornece:

∂ + ∂

− ∂ τ

∂ ρ ∂

=

∂ +

− ∂ dx

x k T x x k T A Tdx cA Adx x q

kA T

ou

τ

∂ ρ ∂

=

∂ +

∂ T

c x q

k T

x 1-2

Esta é equação da condução de calor unidimensional. Para tratar do fluxo de calor em mais de uma dimensão deve-se considerar o calor conduzido para dentro e para fora do volume elementar em todas as três direções coordenadas, como mostrado na Fig. 1-3. O balanço de energia conduz a:

Fig.1.3

+ τ +

+

= + +

+ + + +

d q dE q

q q q q

qx y z ger x dx y dy z dz sendo as quantidades de energia dadas por

x kdydz T qx

− ∂

=

(7)

dydz x dx

k T x x k T qx dx

∂ + ∂

− ∂

+ =

y kdxdz T qy

− ∂

=

dxdz y dy

k T y y k T qy dy

∂ + ∂

− ∂

+ =

z kdxdy T qz

− ∂

=

dxdy z dz

k T z z k T qz dz

∂ + ∂

− ∂

+ =

dxdydz q

qger =

τ

∂ ρ ∂

τ =

cdxdydz T d

dE

Assim a equação geral tridimensional da condução fica:

ρ τ

= ∂

∂ +

∂ + ∂

∂ + ∂

T

c z q

k T z y k T y x k T

x 1.3

Para condutividade constante a Eq. 1.3 pode ser escrita

τ α ∂

= ∂

∂ + + ∂

∂ +∂

T

k q z

T y

T x

T 1

2 2 2 2 2 2

1.4 onde a quantidade α = k/ρc é chamada de difusividade térmica do material. Quanto maior o valor de α, mais rapidamente o calor irá se difundir através do material. Isto pode ser visto observando-se as quantidades que compõem α. Um valor elevado de α pode resultar tanto de um valor elevado da condutividade térmica quanto de um valor baixo da capacidade térmica ρc. Um valor baixo da capacidade térmica significa que menor quantidade de energia em trânsito através do material é absorvida e utilizada para elevar a temperatura do material; assim, mais energia encontra-se disponível para ser transferida.

Nas deduções acima, a expressão da derivada x + dx foi escrita na forma de uma expansão de Taylor onde somente os dois primeiros termos da série foram considerados no desenvolvimento.

Muitos problemas práticos envolvem somente casos especiais das equações gerais apresentadas acima. Como uma orientação pata desenvolvimento em capítulos futuros, é conveniente mostrar a forma reduzida da equação geral para alguns casos de interesse prático.

- Fluxo de calor unidimensional em regime permanente (sem geração de calor)

2 0

2

dx = T

d 1.5

(8)

- Fluxo de calor unidimensional em regime permanente com fontes de calor

2 0

2

=

∂ +

k q x

T 1.6

- Condução bidimensional em regime permanente sem fontes de calor

2 0

2 2 2

∂ = +∂

y T x

T 1.7

1.3.1.1) Condutividade Térmica

A Eq. 1-1 é a equação de definição para a condutividade térmica. Com base nesta definição, podem ser feitas medidas experimentais para a determinação da condutividade térmica de diferentes materiais. Tratamentos analíticos da teoria cinética podem ser usados para gases em temperaturas moderadamente baixas para antecipar com precisão os valores observados experimentalmente. Em alguns casos existem teorias para o cálculo da condutividade térmica em líquidos e sólidos, mas em geral nestas situações os conceitos não são muito claros, permanecendo várias questões em aberto.

O mecanismo da condução térmica num gás é simples. A energia cinética de uma molécula é identificada com sua temperatura; assim, numa região de alta temperatura as moléculas têm velocidades maiores do que numa região de baixa temperatura. As moléculas estão em movimento contínuo ao acaso, colidindo umas com as outras e trocando energia e quantidade de movimento.Esta movimentação ao acaso das moléculas independe da existência de um gradiente de temperatura no gás. Se uma molécula se movimenta de uma região de alta temperatura para uma de baixa temperatura, ela transporta energia cinética para esta região de baixa temperatura do sistema perdendo esta energia através de colisões com moléculas de energia mais baixa.

Foi dito que a unidade da condutividade térmica é watts por metro por grau Celsius [W/(m.oC)] no SI. Note que existe uma taxa de calor envolvida, e o valor numérico da condutividade térmica indica a rapidez com que o calor será transferido num dado material.

Qual é a taxa de transferência de energia levando-se em consideração o modelo molecular discutido acima? Quanto mais veloz o movimento das moléculas, mais rapidamente a energia será transportada. Portanto, a condutividade térmica de um gás deve ser dependente da temperatura. Um tratamento analítico simplificado mostra que a condutividade térmica de um gás varia com a raiz quadrada da temperatura absoluta. (Convém lembrar que a velocidade do som em um gás varia com a raiz quadrada da temperatura absoluta

kRT

v= ; esta velocidade é aproximadamente a velociade média das moléculas.)

O mecanismo físico da condução de energia térmica em líquidos é qualitativamente o mesmo dos gases; entretanto, a situação é consideravelmente mais complexa, uma vez que o espaçamento das moléculas é menor e os campos de força molecular exercem uma forte influência na troca de energia no processo de colisão.

A energia térmica pode ser conduzida em sólidos de duas maneiras: vibração da grade e transporte por elétrons livres. Em bons condutores elétricos um grande número de elétrons move-se sobre a estrutura do material. Como estes elétrons podem transportar carga elétrica, podem também conduzir energia de uma região de alta temperatura para uma

(9)

região de baixa temperatura, como nos gases. A energia também pode ser transmitida como energia de vibração na estrutura do material. Entretanto, este último modo de transferência de energia não é tão efetivo quanto o transporte por elétrons, sendo esta a razão pela qual bons condutores elétricos são quase sempre bons condutores de calor, como por exemplo o cobre, o alumínio e a prata, e isolantes elétricos geralmente são bons isolantes térmicos.

Um problema técnico importante é o armazenamento e o transporte, por longos períodos, de líquidos criogênicos como o hidrogênio líquido. Tais aplicações causaram o desenvolvimento de superisolantes para serem usados em temperaturas mais baixas (até aproximadamente –250oC). O superisolamento mais efetivo é constituído de múltiplas camadas de materiais altamente refletivos separados por espaçadores isolantes. O sistema é evacuado para minimizar as perdas pela condução no ar, sendo possível atingir condutividades térmicas tão baixas quanto 0,3 mW/(m.oC).

1.3.2) Transferência de Calor por Convecção

É sabido que uma placa de metal aquecida irá se resfriar mais rapidamente quando colocada em frente ao ventilador do que exposta ao ar parado. Este processo é chamado de transferência de calor por convecção. O termo convecção fornece ao leitor uma noção intuitiva em relação ao processo de transferência de calor; entretanto, esta noção intuitiva deve ser ampliada para que se possa conseguir um tratamento analítico adequado do problema. Por exemplo, sabemos que a velocidade do ar sobre a placa aquecida influencia a taxa de transferência de calor. Mas esta influência sobre o resfriamento será linear, ou seja, dobrando-se a velocidade do ar estaremos dobrando a taxa de calor transferido? Devemos supor que a taxa de transferência de calor será diferente se a placa for resfriada com água em vez de ar. Porém de quanto será essa diferença? Estas questões podem ser respondidas com o auxílio de algumas análises básicas a serem apresentadas nos próximos capítulos.

Agora, o mecanismo físico da transferência de calor por convecção será esquematizado e mostrada a sua relação com o processo de condução.

Considere a placa aquecida mostrada na fig 1.5. A temperatura da placa é Tp, e a temperatura do fluido é T. Nesta está representado o comportamento da velocidade do escoamento, que se reduz a zero na superfície da placa como resultado da ação viscosa.

Como a velocidade da camada de fluido junto à parede é zero, o calor deve ser transferido somente por condução neste ponto. Assim devemos calcular o calor transferido, usando a Eq. 1-1, com a condutividade térmica do fluido e o gradiente de temperatura junto à parede.

Por que, então, se o calor é transferido por condução nesta camada, falamos em transferência de calor por convecção e precisamos considerar a velocidade do fluido? A resposta é que o gradiente de temperatura depende da razão na qual o calor é removido;

uma velocidade alta produz um gradiente elevado de temperatura, e assim por diante.

Portanto, o gradiente de temperatura junto à parede depende do campo de velocidade;

conseqüentemente, em análises posteriores, desenvolveremos uma expressão que relaciona essas duas quantidades. Deve ser lembrado, entretanto, que o mecanismo de transferência de calor na parede é um processo de condução.

O efeito global da convecção é expresso através da lei de Newton do resfriamento

q = hA(Tp - T) 1.8

(10)

Fig. 1-5 transferência de calor por convecção

Aqui a taxa de transferência de calor é relacionada à diferença de temperatura entre a parede e o fluido e à área superficial A. A quantidade h é chamada de coeficiente de transferência de calor por convecção, e a Eq. 1.8 é a equação de definição deste parâmetro.

Para alguns sistemas é possível o cálculo analítico de h. Para situações complexas e determinação é experimental o coeficiente de transferência é algumas vezes chamado de condutância de película devido à sua relação com o processo da condução na fina camada de fluido estacionário junto à superfície da parede. Pela Eq. 1.8 a unidade de h é watt por metro quadrado por grau Celsius [W/(m2.oC)] no SI.

Em vista desta discussão, pode-se antecipar que a transferência de calor por convecção irá exibir uma dependência da viscosidade do fluido além da sua dependência das propriedades térmicas do fluido (condutividade térmica, calor específico, densidade).

Isto é esperado porque a viscosidade influência o perfil de velocidade e, portanto, a taxa de transferência de energia na região junto à parede.

Se uma placa aquecida estiver exposta ao ar ambiente sem uma fonte externa de movimentação de fluido, o movimento do ar será devido aos gradientes de densidade nas proximidades da placa. Esta convecção é chamada natural ou livre em oposição à convecção forçada, que ocorre no caso de se ter um ventilador movimentando o ar sobre a placa. Os fenômenos de ebulição e condensação são também agrupados dentro desse assunto de transferência de calor por convecção

1.3.3) Transferência de Calor por Radiação

Em contraste com os mecanismos de condução e convecção, onde a energia é transferida através de um meio natural, o calor pode também ser transferido em regiões onde existe o vácuo perfeito. O mecanismo neste caso é a radiação eletromagnética que é propagada como resultado de uma diferença de temperatura; trata-se da radiação térmica.

Considerações termodinâmicas mostram que um radiador ideal, ou corpo negro, emite energia numa taxa proporcional à quarta potência da temperatura absoluta do corpo.

Quando dois corpos trocam calor por radiação, a troca líquida de calor é proporcional à diferença T4. Assim

q = σA(T14 – T24) 1-9

Onde σ é a constante de proporcionalidade chamada de constante de Stefan-Boltzmann que vale σ = 5,669 x 10-8 W/(m2.K4). A Eq. 1-9 é chamada de lei de Stefan-Boltzmann da

Referências

Documentos relacionados

Nos casos em que o maior número de detalhes estiver colocado no lado direito da peça, usamos a vista lateral direita, projetando-a à esquerda da elevação, conforme exemplos

Desse modo, temos por objetivo neste artigo pontuar casos que utilizam abordagens publicitárias direcionada ao público infantil e como a publicidade e propaganda

O diálogo sobre política regional entre a UE e o Brasil concentra- se nas políticas de coesão territorial e de redução das disparidades sociais e regionais, na elaboração de

costumam ser as mais valorizadas. B) Uma soma de fatores, como fácil acesso à água, possibilidade de utilizar os rios como meio de transporte e o baixo custo imobiliário devido

Dessa forma, conclui-se que, no presente estudo realizado com adolescentes que residem no interior do Estado de Santa Catarina, foi possível identificar que o percentual

Pois se muitos morreram por causa da transgressão de um só, muito mais a graça de Deus, isto é, a dádiva pela graça de um só homem, Jesus Cristo, transbordou para muitos.. •

Todavia, nos substratos de ambos os solos sem adição de matéria orgânica (Figura 4 A e 5 A), constatou-se a presença do herbicida na maior profundidade da coluna

Caixilharia de alumínio sem corte térmico, sem quadrícula, de cor clara, fixo, sem proteção solar exterior e protecção solar interior em black-out com calhas laterais, de cor