• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
6
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Fucoidan

induces

G1

arrest

of

the

cell

cycle

in

EJ

human

bladder

cancer

cells

through

down-regulation

of

pRB

phosphorylation

Hye

Young

Park

a,1

,

Il-Whan

Choi

b,1

,

Gi-Young

Kim

c

,

Byung

Woo

Kim

d,e

,

Wun-Jae

Kim

f

,

Yung

Hyun

Choi

a,e,∗

aDepartmentofBiochemistry,DongeuiUniversityCollegeofKoreanMedicine,Busan614-052,RepublicofKorea bDepartmentofMicrobiology,CollegeofMedicine,InjeUniversity,Busan608-756,RepublicofKorea

cLaboratoryofImmunobiology,DepartmentofMarineLifeSciences,JejuNationalUniversity,Jeju690-756,RepublicofKorea

dDepartmentofLifeScienceandBiotechnology,CollegeofNaturalSciences&HumanEcology,DongeuiUniversity,Busan614-714,RepublicofKorea eBlue-BioIndustryRICandAnti-AgingResearchCenter,DongeuiUniversity,Busan614-714,RepublicofKorea

fDepartmentofUrology,CollegeofMedicine,ChungbukNationalUniversity,Cheongju362-763,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30December2014 Accepted22March2015 Availableonline25April2015

Keywords:

Fucoidan EJcells G1arrest Apoptosis pRB

a

b

s

t

r

a

c

t

Fucoidan,asulfatedpolysaccharidefoundinmarinealgaeandbrownseaweeds,hasbeenshowntoinhibit theinvitrogrowthofhumancancercells.ThisstudywasconductedinculturedhumanbladdercancerEJ cellstoelucidatethepossiblemechanismsbywhichfucoidanexertsitsanti-proliferativeactivity,which untilnowhasremainedpoorlyunderstood.FucoidantreatmentofEJcellsresultedindose-dependent inhibitionofcellgrowthandinducedapoptoticcelldeath.Flowcytometricanalysisrevealedthatfucoidan ledtoG1arrestincellcycleprogression.Itwasassociatedwithdown-regulationofcyclinD1,cyclinE, andcyclin-dependent-kinases(Cdks)inaconcentration-dependentmanner,withoutanychangeinCdk inhibitors,suchasp21andp27.Furthermore,dephosphorylationofretinoblastomaprotein(pRB)bythis compoundwasassociatedwithenhancedbindingofpRBwiththetranscriptionfactorsE2F-1andE2F-4. Overall,ourresultsdemonstratethatfucoidanpossessesanticanceractivitypotentialagainstbladder cancercellsbyinhibitingpRBphosphorylation.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Bladdercanceris anyofseveraltypes ofmalignancy arising fromtheepithelial lining ofthe urinary bladder.In theUnited States,bladdercanceristhefourthmostcommontypeofcancer inmenandtheninthmostcommoncancerinwomen,although theincidenceofbladdercancerinAsiaismuchlower(Kakehietal., 2010;Abdollahetal.,2013).Despiterecentadvancesinsurgicaland chemotherapeuticprocedures,long-termsurvivalratesarepoor, andthemostcommoncauseofmortalityisrecurrencewith metas-tasis(Racioppietal.,2012).Therefore,itisimportanttodevelop othereffectivestrategiestoimprovethesurvivalrateforbladder cancerpatients.

Several epidemiological studies have revealed that dietary intakeofmarinealgaeand seaweedsareprotective againstthe riskofvarioustypesofmalignancies(Kimetal.,2011;Parkand

∗ Correspondingauthor.

E-mail:choiyh@deu.ac.kr(Y.H.Choi). 1Theseauthorscontributedequallytothiswork.

Pezzuto,2013;Ahmedetal.,2014).Brownseaweedsareusedas an importanthealthcare foodand a pharmaceutical product in Asiancountries.Fucoidanisamajorsulfatedpolysaccharidefound inbrownseaweed;ithasbeenwellcharacterizedandisknown tohave variousbiologicalfunctions,includingantioxidant, anti-inflammatory,andanticancereffects(Lietal.,2008;Sennietal., 2011;Fitton,2011;Wangetal.,2012;Senthilkumaretal.,2013; ThomasandKim,2014).Wereportedrecentlythatfucoidanmay offer substantial therapeutic potential for treatment of inflam-matoryandneurodegenerativediseasesthatareaccompaniedby microglial activation (Park et al., 2011a). In addition, fucoidan suppresses cancercell proliferation and inhibitsthe growth of transplantedtumorxenograftsbyinducing apoptosisand/orby blockingabnormalcellcycleprogressionattheG1orG2/Mphase (Riouetal.,1996;Fukahorietal.,2008;Parketal.,2011b,2013; Zhangetal.,2011,2013;Hsuetal.,2013;Xueetal.,2013;Yang etal.,2013;Parketal.,2014;Banafaetal.,2013;Chenetal.,2014; SenthilkumarandKim,2014;Choetal.,2014).However,thiseffect isselectiveforcancercells,asnormalcelllinesareresistanttocell cyclearrestand apoptosisbyfucoidan.Moreover,fucoidanalso inhibitsmigrationandinvasionofhighlymetastaticcancercells

http://dx.doi.org/10.1016/j.bjp.2015.03.011

(2)

viadown-regulationofmatrixmetalloproteinasesandinhibitionof thephosphoinositide3-kinase/Aktandnuclearfactor-kBsignaling pathways(Saitohetal.,2009;Leeetal.,2012;Wangetal.,2014; SenthilkumarandKim,2014).However,themolecularmechanisms ofitsanti-proliferativeactionsonhumanbladdercarcinomacell growthhave not yetbeen examined.Thus, thepurposeof this studywastoinvestigatetheeffectsoffucoidanoncell prolifera-tionofthehumanbladdercarcinomacelllineEJandtoexplorethe potentialmechanismsoftheeffects.Ourdataindicatethatfucoidan inhibitedthegrowthofEJcellsinaconcentration-dependent man-ner,arrestingthemintheG1phaseoftheircellcycleandinducing apoptosis.

Materialsandmethods

Cellculture

EJcells werepurchased fromAmericanTypeCulture Collec-tion (ATCC, Manassas, VA, USA) and maintained in RPMI-1640 medium(GIBCO-BRL,Gaithersburg,MD)supplementedwith10% fetal bovine serum (FBS) and 2mM of l-glutamine and

peni-cillin/streptomycin.Thecellswereculturedinanincubatorwith 5%CO2at37◦C.FucoidanwaspurchasedfromSigma-Aldrich(St.

Louis,MO,USA)anddissolvedinphosphate-bufferedsaline(PBS) asastocksolutionata200mg/mlconcentration,andthestock solu-tionwasthendilutedwiththemediumtothedesiredconcentration priortouse.

MTTassay

Measurementofcellviabilitywasdeterminedusingthe 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich)assay,whichisbasedontheconversionofMTTto MTT-formazanbymitochondria.Inbrief,cells(2×104cells/well)

wereseededin24-wellplatesandexposedtofucoidanfor48h. Aftertreatment,5mg/mlMTTsolutionwasadded,followedby3h incubationat37◦Cinthedark,andthemediawasthenremoved.

The formazan precipitate was dissolved in dimethyl sulfoxide (Sigma-Aldrich), and absorbance of the formazan product was measured at a wavelength of 540nm with an enzyme-linked immunosorbentassay(ELISA)reader(MolecularDevices, Sunny-vale,CA,USA)(Leeetal.,2014).Forthemorphologicalstudy,cells werephotographeddirectlyusing aninverted microscope(Carl Zeiss,Oberkochen,Germany).

Flowcytometryanalysis

Exponentiallygrowingcellswerecomparedtocellstreatedwith variousconcentrationsoffucoidanfor48h.Aftertreatmentwith fucoidan,thecellswerecollectedandfixedin70%ethanolat4◦C

for30min,and theDNAcontentofcells wasstainedwith pro-pidiumiodide(PI)usingaDNAstainingkit(CycleTESTPLUSKit, BectonDickinson,SanJose,CA,USA)inaccordancewiththe manu-facturer’sinstructions.ThecellswerethensubjectedtoaFACScan flowcytometer(BectonDickinson)withthepercentagesofcellsin differentphasesofthecellcyclecalculatedfromDNAhistograms. Cellswithsub-G1DNAcontentwereconsideredapoptotic cells (Kimetal.,2014).

Morphologicalobservationofnuclearchange

Afterculturewithvariousconcentrationsoffucoidan,cellswere washed twicewith PBS and fixedwith 3.7% paraformaldehyde (Sigma-Aldrich)inPBSfor10minatroomtemperature.Thefixed cellswerewashedtwicewithPBSandstainedwith 4,6-diamidino-2-phenylindole(DAPI,Sigma-Aldrich)solutionfor10minatroom

Table1

OligonucleotidesusedinRT-PCR.

Genename Sequence

CyclinD1 Sense 5′-TGG-ATG-CTG-GAG-GTC-TGC-GAG-GAA-3′

Antisense 5′-GGC-TTC-GAT-CTG-CTC-CTG-GCA-GGC-3

CyclinE Sense 5′-AGT-TCT-CGG-CTC-GCT-CCA-GGA-AGA-3′

Antisense 5′-TCT-TGT-GTC-GCC-ATA-TAC-CGG-TCA-3

Cdk2 Sense 5

-GCTTTCTGCCATTCTCATCG-3

Antisense 5′-GTCCCCAGAGTCCGAAAGAT-3

Cdk4 Sense 5

-ACG-GGT-GTA-AGT-GCC-ATC-TG-3

Antisense 5′-TGG-TGT-CGG-TGC-CTA-TGG-GA-3

Cdk6 Sense 5

-CGA-ATG-CGT-GGC-GGA-GAT-C-3

Antisense 5′-CCA-CTG-AGG-TTA-GAG-CCA-TC-3

p21 Sense 5′-CTCAGAGGAGGCGCCATG-3′

Antisense 5′-GGGCGGATTAGGGCTTCC-3

p27 Sense 5′-AAG-CAC-TGC-CGG-GAT-ATG-GA-3′

Antisense 5′-AAC-CCA-GCC-TGA-TTG-TCT-GAC-3

GAPDH Sense 5

-CGG-AGT-CAA-CGG-ATT-TGG-TCG-TAT-3

Antisense 5′-AGC-CTT-CTC-CAT-GGT-GGT-GAA-GAC-3

temperature.ThecellswerewashedtwomoretimeswithPBS. Cov-erslipsweremountedonglassslidesandanalyzedbyfluorescence microscopyusingaZeissAxiophotmicroscope(CarlZeiss).

Annexin-Vstaining

Toanalyzeapoptosis,thecellsweretreatedwiththeindicated concentrationsoffucoidanfor48handresuspendedinan annexin-Vbindingbuffercontaining10mMHEPES/NaOH(pH7.4),140mM NaCl,and2.5mMCaCl2.Aliquotsofthecellswereincubatedwith annexin-V fluorescein isothiocyanate(FITC, R&D Systems, Min-neapolis, MN, USA), mixed, and incubated for 15min at room temperatureinthedark.PIataconcentrationof5␮g/mlwasadded todistinguishnecrotic cells.Theapoptoticcells (AnnexinV+/PI− cells)weremeasuredbyafluorescence-activatedcellsorter analy-sisinaFACScanflowcytometer(ParkandHan,2014).

RNAextractionandreversetranscription-polymerasechain reaction(PCR)

TotalRNAwasisolatedusinganRNeasyminikit(Qiagen,LaJolla, CA,USA)andprimedwithrandomhexamerstosynthesize comple-mentaryDNAusingAMVreversetranscpriptase(AmershamCorp., ArlingtonHeights,IL,USA)followingthemanufacturer’s instruc-tions.PCRwasperformedinaMastercycler(Eppendorf,Hamburg, Germany)withtheindicatedprimers,whichwerepurchasedfrom Bioneer(Seoul,RepublicofKorea),inTable1.Theconditionsforthe PCRreactionswere1×(94◦Cfor3min),35X(94Cfor45s;58Cfor

45s;and72◦Cfor1min),and1×(72Cfor10min).The

amplifica-tionproductsobtainedbyPCRwereelectrophoreticallyseparated ona1.0%agarosegelandvisualizedbyethidiumbromide(EtBr, Sigma-Aldrich)staining(Gongetal.,2014).In aparallel experi-ment,glyceraldehyde-3-phosphatedehydrogenase(GAPDH)was usedasaninternalcontrol.

Totalproteinextraction,immunoprecipitation,andWesternblot analysis

For isolation of total protein fractions, the cells were har-vested and washedoncewithice-cold PBS,and lysed withcell lysis buffer[20mMTris pH7.5,150mM NaCl,1%Triton X-100, 2.5mM sodiumpyrophosphate, 1mM EDTA,0.5g/mlleupeptin, 1% Na3CO4, 1mM phenylmethane-sulfonyl fluoride], and

(3)

120

A

B

100

80

60

Cell viability (%)

Cell numbers

40

20

0

0 50

Fucoidan (µg/ml)

DNA contents

G1 G2/M

47.4 79.4

17.1 8.5

91.1 92.7% of G1

% of G2/M % of S

2.8 4.5 3.0

5.9 29.8

22.8

S

Fucoidan (µg/ml)

100 150

0 50 100 150

Fig.1. InhibitionofcellviabilityandinductionofG1arrestbyfucoidantreatment inhumanbladdercancerEJcells.(A)Cellsweretreatedwiththeindicated concen-trationsoffucoidanfor48h.Thecellswereharvested,andthepercentageofcell viabilitywascalculatedwithanMTTassay.Dataarepresentedasmean±SDin trip-licate.SignificancewasdeterminedbytheStudent’st-test(*p<0.05vs.untreated control).(B)Thecellswerecollected,fixed,andstainedwithPIforflowcytometry analysis.DNAcontentisrepresentedonthex-axis,andthenumberofcellscounted isrepresentedonthey-axis.Eachpointrepresentsthemeanoftwoindependent experiments.

assay (Bio-Rad Lab., Hercules, CA, USA), following the proce-duredescribedbythemanufacturer.Forimmunoprecipitation,cell extractswereincubatedwithimmunoprecipitatingantibodiesin extractionbufferfor1hat4◦C,andthentheimmunocomplexes

wereprecipitatedwithproteinA-Sepharosebeads(Sigma-Aldrich). ForWesternblotassay,thetotalproteinsandimmunoprecipitated proteinswere subjected to electrophoresis on sodium dodecyl sulphate(SDS)–polyacrylamide gelsandtransferred to nitrocel-lulose membranes (Schleicher & Schuell, Keene, NH, USA) by electroblotting.Blotsweresubsequentlyblockedwith5%non-fat milkandprobedwiththedesiredantibodiesfor1hat4◦C,

incu-bated withdiluted enzyme-linked secondary antibodyat room temperaturefor afurther1h, and thenvisualizedbyenhanced chemiluminescence(ECL,Amersham)accordingtorecommended procedures.Eextracellular-regulatedkinase(ERK)wasusedasan internal control. The primary antibodies were purchased from SantaCruzBiotechnologyInc.(SantaCruz,CA,USA). Peroxidase-labeleddonkeyantirabbitimmunoglobulinandperoxidase-labeled sheepantimouse immunoglobulin were purchased from Amer-sham.

Statisticalanalysis

Thedatawereexpressedasmeans±SD fortriplicate experi-ments.StatisticalanalyseswereperformedusingaStudent’st-test. Apvalue<0.05wasconsideredstatisticallysignificant.

Results

FucoidaninhibitscellviabilityandinducesG1arrestinEJcells

Todeterminewhetherfucoidaninfluencedthecellviabilityof theEJcells,thecellswereculturedinthepresenceoffucoidanfor 48h,andthecellviabilitywasdeterminedwithanMTTassay.As showninFig.1A,fucoidanreducedtheviabilityoftheEJcellsin aconcentration-dependentmanner.Thecellcyclephase distribu-tionofexponentiallygrowingEJcellswasnextcomparedtocells

Fucoidan (µg/ml)

Fucoidan (µg/ml)

Apoptotic cells (%)

0

A

B

C

50 100 150

0 0 5 10 15 20 25 30

50 100 150

Fig.2. InductionofapoptosisbyfucoidantreatmentinEJcells.Thecellsweretreated withvariousconcentrationsoffucoidanfor48h.(A)Themorphologicalchangesof thecellswereimagedusinganinvertedmicroscope(originalmagnification,200×). (B)ThecellswerefixedandstainedwithDAPIsolution.After10minincubationat roomtemperature,thestainednucleiwereobservedwithafluorescentmicroscope (originalmagnification,400×).(C)Thecellswereharvestedfordeterminingthe per-centageofannexin-Vpositive/PInegative(apoptoticcells).Thedataareexpressedas themean±SDofthreeindependentexperiments.Thesignificancewasdetermined bytheStudent’st-test(*p<0.05vs.untreatedcontrol).

treatedwithfucoidan.Comparedwiththeuntreatedcontrol,the fucoidan-treatedcellsaccumulatedintheG1phaseofthecellcycle inaconcentration-dependentmanner(Fig.1B),andtherewasa decreaseinthenumberofcellsintheSandG2/Mphases.Taken together,theseresultssuggestthatthegrowthinhibitoryeffectof fucoidanonEJcellsistheresultofitblockingtheG1phase.

FucoidaninducesapoptosisinEJcells

Asfucoidaninducedmorphologicalchanges,suchasmembrane blebbinganda reductionincellvolumeunder thesame condi-tions(Fig.2A),weassessed theeffectoffucoidantreatmenton theapoptoticcharacteristicsoftheEJcellstodeterminewhether apoptosiswasinvolvedinfucoidan-mediatedantiproliferation[0].

Fig.2Brevealsthatnucleicmorphologicalchangesofapoptosisas indicatedbyrepresentativeimagesofcondensedandfragmented nucleiwereclearlyevidentinfucoidan-treatedEJcellsincontrast totheuntreatedcells.Toquantifyfucoidan-inducedapoptosis,the EJcellstreatedwithfucoidanwerestainedwithannexinV-FITCand analyzedbyflowcytometry.AsshowninFig.2C,fucoidanincreased theannexin-V-FITCstainedapoptoticpopulationofcells,andthese effectsweredosedependent.Theseobservationsindicatethatthe inhibitionofcellviabilityobservedinresponsetofucoidanisalso associatedwiththeinductionofapoptosis.

Effectoffucoidanontheexpressionofcellcyclecheckpoint regulators

(4)

0

1 0.6 0.5 0.4

1 0.9 0.9 0.8

1 0.9 0.9 1

1 0.9 0.8 0.5

1 0.8 0.5 0.4

1 0.9 0.8 0.7

1 0.8 0.7 0.4

1 0.7 0.6 0.3

1 1 1 1

1 1 1 1

50

Fucoidan (µg/ml)

A

B

Cycline D1

100 150 0 50

Fucoidan (µg/ml)

100 150

Cycline E

Cdk2

Cdk4

Cdk6

GAPDH

Cycline D1

Cycline E

Cdk2

Cdk4

Cdk6

ERK

Fig.3.Down-regulationofG1-associatedcyclinsandCdksbyfucoidantreatmentinEJcells.(A)Aftertreatmentwithvariousconcentrationsoffucoidanfor48h,thecells werecollected,andtotalRNAwasisolatedandreverse-transcribed.TheresultingcDNAswerethensubjectedtoPCRwiththeindicatedprimers,andthereactionproducts wereseparatedin1.0%agarosegelandvisualizedbyEtBrstaining.GAPDHwasusedasaninternalcontrol.(B)Thecelllysateswereseparatedandequalamountsoftotal celllysatesweresubjectedtoSDS–polyacrylamidegels,transferred,andprobedwiththeindicatedantibodies.ERKwasusedasaninternalcontrol.Therelativeratiosof expressionintheresultsoftheWesternblottingwerepresentedatthebottomofeachoftheresultsasrelativevaluesoftheGAPDHandERKexpression,respectively.

andthenRT-PCRandWesternblotanalysiswereperformed.As illustratedinFig.3,fucoidansuppressedtheexpressionof biomark-ers,suchascyclinD1,cyclinE,cyclin-dependent-kinase(Cdk)2, Cdk4,andCdk6,in thetransitionoftheG1totheSphasein a concentration-dependentmanner.However,fucoidandidnot sig-nificantlyaffectthelevelsofCdkinhibitors,suchasp21andp27 (Fig.4).

0

1 0.9 1 1

1 0.9 1 1

50 Fucoidan (µg/ml)

A

p21

p27

100 150

GAPDH

0

1 0.9 0.5 0.3

1 0.9 1 1.1

50 Fucoidan (µg/ml)

B

p21

p27

100 150

ERK

Fig.4. EffectsoffucoidanonthelevelsofCdkinhibitorsinEJcells.(A)Thecells weretreatedwithdifferentconcentrationsoffucoidanfor48h.TotalRNAwas iso-latedandreverse-transcribed,andtheresultingcDNAsweresubjectedtoPCR.The reactionproductsweresubjectedtoelectrophoresisin1.0%agarosegeland visual-izedbyEtBrstaining.GAPDHwasusedasaninternalcontrol.(B)Afterincubation withfucoidanunderthesameconditions,thecelllysateswereseparated,andequal amountsoftotalcelllysatesweresubjectedtoSDS–polyacrylamidegels,transferred, andprobedwithantibodiesagainstp21andp27.ERKwasusedasaninternal con-trol.TherelativeratiosofexpressionintheresultsoftheWesternblottingwere presentedatthebottomofeachoftheresultsasrelativevaluesoftheGAPDHand ERKexpression,respectively.

Fucoidandown-regulatespRBphosphorylationandincreasesthe bindingofpRBandE2Fs

As D-type cyclins and cyclin E-stimulatedCdk activity con-verges in hyperphosphorylation of the retinoblastoma protein (pRB), the effect of fucoidan on the phosphorylation status of pRBwasinvestigatedbyWesternblotanalysis.Fucoidancauseda remarkabledecreaseintotallevelsofpRBexpressionandchanged fromahyperphosphorylatedformtoahypophosphorylatedform (Fig.5A).Furthermore,co-immunoprecipitationanalysisindicated thatthereappearedtobenoassociationbetweenpRBandE2Fs, suchasE2F-1andE2F-4,intheuntreatedcontrolcells[0]. How-ever,therewasastrongincreaseinthebindingofpRBandE2Fs inthefucoidan-treatedEJcells(Fig.5B),suggestingthatfucoidan inhibitsthereleaseofE2FsproteinfrompRB.

Discussion

Although fucoidan exerts various pharmacological activities, such as anti-inflammatory, antioxidant, and anticancer effects (Riouetal.,1996;Lietal.,2008;Fukahorietal.,2008;Saitohetal., 2009;Fitton,2011;Sennietal.,2011;Parketal.,2011b,2013;Zhang etal.,2011,2013;Wangetal.,2012;Leeetal.,2012;Liuetal.,2012; Hsuetal.,2013;Xueetal.,2013;Yangetal.,2013;Senthilkumar etal.,2013;Parketal.,2014;Banafaetal.,2013;Chenetal.,2014; SenthilkumarandKim,2014;Wangetal.,2014),theanti-cancer activityoffucoidaninhumanbladdercancercellshasrarelybeen reported.Therefore,weelucidatedtheabilityoffucoidantoinhibit thegrowthofhumanbladdercancerEJcells.Inthisstudy,wefound thatfucoidanshowsconsiderablepotentialtoinhibitthe prolifer-ationofEJcellsviacellcyclearrestintheG1phaseandapoptosis induction.

(5)

0

1 0.8 0.5 0.2

1 0.9 0.5 0.5

1

1 3.1

– +

1 4.8

0.9 0.8 0.5

50 Fucoidan (µg/ml)

A

pRB

E2F-1

100 150

E2F-4

ERK

FCD (150 µg/ml)

IP : E2F-1

IP : E2F-4

B

pRB

pRB

Fig.5. InductionofhypophosphorylationofpRBandenhancedassociationofpRB andE2FsbyfucoidantreatmentinEJcells.(A)Aftertreatmentwithvarious concen-trationsoffucoidanfor48h,thetotalcelllysateswerepreparedandseparatedby electrophoresisonan8%or10%SDS–polyacrylamidegel.Westernblottingwasthen performedusinganti-pRB,anti-E2F-1,andanti-E2F-4antibodies.ERKwasusedasan internalcontrol.(B)Thecellswereincubatedwithorwithout150␮g/mloffucoidan for48h,andthenequalamountsofproteins(0.5mgofprotein)were immunoprecip-itatedwithanti-E2F-1oranti-E2F-4antibody.Immunocomplexeswereseparated by8%SDS–polyacrylamidegelelectrophoresis,transferredtoanitrocellulose mem-brane,andprobedwithanti-pRBantibody.ProteinsweredetectedbyECLdetection. TherelativeratiosofexpressionintheresultsoftheWesternblottingwere pre-sentedatthebottomofeachoftheresultsasrelativevaluesoftheERKexpression oruntreatedcontrol,respectively.

inhibitors,includingp21andp27(Dobashietal.,2003;Paternot etal.,2010).Inthepresent study,theresultsfromRT-PCR and immunoblottinganalysisclearlydemonstratedthatthelevelsof cyclinD1 and cyclin E expression weremarkedly inhibited by fucoidantreatmentatbothtranscriptionalandtranslational lev-els(Fig.3).Inaddition,fucoidan-inducedG1arrestwascorrelated withthedown-regulationofCdks,suchasCdk2,Cdk4,andCdk6. Although,arecentstudyindicatedthatfucoidandown-regulated cyclinE,Cdk2,Cdk4resultinginG0/G1arrestthroughbindingof Cdkinhibitorp21toCdk2andCdk4incellstreatedwithfucoidanin humanbladdercancer5637cells(Choetal.,2014),theexpression ofCdkinhibitorssuchasp21andp27wasremainedunchangedin fucoidan-treatedEJcells(Fig.4).

Ontheotherhand,pRBasatumorsuppressorisalso impor-tantforcellcycleprogressionduringtheG1toSphasetransition. DephosphorylationofpRBinhibitscellcycleprogressionby inter-acting with transcription factors of the E2F family, whereas phosphorylationofpRBresultsininductionofcellcycle progres-sionthroughthebreakingofpRB/E2Fcomplexes(Dobashietal., 2003;Paternotetal.,2010).Therefore,ifthelevelsofeitherprotein aredecreasedortheassociationbetweentheirrespectivebindings partnersisdiminished,aconcomitantdecreaseinthedegreeofpRB phosphorylationwouldbeexpected.In conjunctionwith down-regulationoftotallevelsofpRB,thedatashowedthattreatment withfucoidaninhibitedthephosphorylationofpRBandenhanced theassociationofpRBandE2Fs(Fig.5).TheroleofCdkinhibitors

hasattractedattentionintheinductionofG1phasearrest,which isrelatedtotherestrictionoftheproliferationofcancercellsvia fucoidantreatment.However,accordingtoBooetal.(2012), restric-tionofE2FexpressionplaysanimportantroleininducingG1cell cyclearrestinPC-3prostaticcancercells,alongwiththeincreased expressionof Cdkinhibitor p21.Moreover,a recentstudy con-ductedinourlabrevealedthatphosphorylationinhibitionofpRB wassimultaneouslyinvolvedinadditiontotheexpressionincrease ofCdkinhibitorp21inT24bladdercancercells’G1arrestbrought aboutbyfucoidan(Parketal.,2014).Hence,evenifcancercells’G1 arrestresultingfromfucoidantreatmentdiffersaccordingtotypes ofcancercells,itcanatleastbesaidthatexpressionincreaseof Cdkinhibitorssuchasp21andphosphorylationinhibitionplayan importantfactorsinG1arrest.

Conclusions

In conclusion, the resultspresented here demonstrate that: (i) reduced survival of EJ cells after exposure to fucoidan is associatedwithG1phase cellcyclearrestand apoptosis induc-tion;(ii)fucoidaninhibitscellcycleprogressionintheG1phase bydecreasingG1-related cyclins and Cdks;(iii) treatmentwith fucoidanresultsinincreasedbindingofpRBtoE2Fs.Thesenovel phenomenahavenotbeenpreviouslydescribedinbladdercancer cellsandsuggestthatfucoidanandrelatedcompoundsmayhave significantpotentialinthedevelopmentofcancertreatments.

Authors’contributions

HYP and IWC contributed in running the laboratory work, analysisofthedataand draftedthepaper.GYK, BWKandWJK contributedtocritical readingof themanuscript.WJKand YHC designed the study, supervised the laboratory work and con-tributedtocriticalreadingofthemanuscript.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbyBlue-BioIndustryRegional Innova-tionCenter(RIC08-06-07)atDongeuiUniversityasaRICprogram underMinistryofTrade,Industry&EnergyandBusancityandthe NationalResearchFoundationofKorea(NRF)grantfundedbythe Koreagovernment(MSIP)(No.NRF-2014R1A2A1A09006983).

References

Abdollah,F.,Gandaglia,G.,Thuret,R.,Schmitges,J.,Tian,Z.,Jeldres,C.,Passoni,N.M., Briganti,A.,Shariat,S.F.,Perrotte,P.,Montorsi,F.,Karakiewicz,P.I.,Sun,M.,2013. Incidence,survivalandmortalityratesofstage-specificbladdercancerinUnited States:atrendanalysis.CancerEpidemiol.37,219–225.

Ahmed,A.B.,Adel,M.,Karimi,P.,Peidayesh,M.,2014.Pharmaceutical, cosmeceuti-cal,andtraditionalapplicationsofmarinecarbohydrates.Adv.FoodNutr.Res. 73,197–220.

Banafa,A.M.,Roshan,S.,Liu,Y.Y.,Chen,H.J.,Chen,M.J.,Yang,G.X.,He,G.Y.,2013. FucoidaninducesG1phasearrestandapoptosisthroughcaspases-dependent pathwayandROSinductioninhumanbreastcancerMCF-7cells.J.Huazhong Univ.Sci.Technol.Med.Sci.33,717–724.

Boo,H.J.,Hong,J.Y.,Kim,S.C.,Kang,J.I.,Kim,M.K.,Kim,E.J.,Hyun,J.W.,Koh,Y.S., Yoo,E.S.,Kwon,J.M.,Kang,H.K.,2012.Theanticancereffectoffucoidaninpc-3 prostatecancercells.Mar.Drugs11,2982–2999.

Canavese,M.,Santo,L.,Raje,N.,2012.Cyclindependentkinasesincancer:potential fortherapeuticintervention.CancerBiol.Ther.13,451–457.

(6)

Cho,T.M.,Kim,W.J.,Moon,S.K.,2014.Aktsignalingisinvolvedinfucoidan-induced inhibitionofgrowthandmigrationofhumanbladdercancercells.FoodChem. Toxicol.64,344–352.

Dobashi,Y.,Takehana,T.,Ooi,A.,2003.Perspectivesoncancertherapy:cellcycle blockersandperturbators.Curr.Med.Chem.10,2549–2558.

Fitton,J.H.,2011.Therapiesfromfucoidan;multifunctionalmarinepolymers.Mar. Drugs9,1731–1760.

Fukahori,S.,Yano,H.,Akiba,J.,Ogasawara,S.,Momosaki,S.,Sanada,S.,Kuratomi,K., Ishizaki,Y.,Moriya,F.,Yagi,M.,Kojiro,M.,2008.Fucoidan,amajorcomponent ofbrownseaweed,prohibitsthegrowthofhumancancercelllinesinvitro.Mol. Med.Rep.1,537–542.

Gong,F.Y.,Zhang,D.Y.,Zhang,J.G.,Wang,L.L.,Zhan,W.L.,Qi,J.Y.,Song,J.X.,2014. siRNA-mediatedgenesilencingofMexBfromtheMexA-MexB-OprMefflux pumpinPseudomonasaeruginosa.BMBRep.47,203–208.

Hsu,H.Y.,Lin,T.Y.,Hwang,P.A.,Tseng,L.M.,Chen,R.H.,Tsao,S.M.,Hsu,J.,2013. Fucoidaninduceschangesintheepithelialtomesenchymaltransitionand decreasesmetastasisbyenhancingubiquitin-dependentTGF␤receptor degra-dationinbreastcancer.Carcinogenesis34,874–884.

Kakehi,Y.,Hirao,Y.,Kim,W.J.,Ozono,S.,Masumori,N.,Miyanaga,N.,Nasu,Y., Yokomizo,A.,2010.BladderCancerWorkingGroupreport.Jpn.J.Clin.Oncol. 40(Suppl.1),i57–i64.

Kim,S.K.,Thomas,N.V.,Li,X.,2011.Anticancercompoundsfrommarinemacroalgae andtheirapplicationasmedicinalfoods.Adv.FoodNutr.Res.64,213–224. Kim,Y.S.,Li,X.F.,Kang,K.H.,Ryu,B.,Kim,S.K.,2014.Stigmasterolisolatedfrom

marinemicroalgaeNavicula incertainduces apoptosisinhumanhepatoma HepG2cells.BMBRep.47,433–438.

Lee,H.,Kim,J.S.,Kim,E.,2012.FucoidanfromseaweedFucusvesiculosusinhibits migrationandinvasionofhumanlungcancercellviaPI3K-Akt-mTORpathways. PLoSONE7,e50624.

Lee,S.J.,Hwang,S.O.,Noh,E.J.,Kim,D.U.,Nam,M.,Kim,J.H.,Nam,J.H.,Hoe,K.L., 2014.Transactivationofbadbyvorinostat-inducedacetylatedp53enhances doxorubicin-inducedcytotoxicityincervicalcancercells.Exp.Mol.Med.46, e76.

Li,B.,Lu,F.,Wei,X.,Zhao,R.,2008.Fucoidan:structureandbioactivity.Molecules 13,1671–1695.

Liu,F.,Wang,J.,Chang,A.K.,Liu,B.,Yang,L.,Li,Q.,Wang,P.,Zou,X.,2012.Fucoidan extractderivedfromUndariapinnatifidainhibitsangiogenesisbyhuman umbil-icalveinendothelialcells.Phytomedicine19,797–803.

Park,E.J.,Pezzuto, J.M., 2013. Antioxidantmarineproducts in cancer chemo-prevention.Antioxid.RedoxSignal19,115–138.

Park,H.S.,Hwang,H.J.,Kim,G.Y.,Cha,H.J.,Kim,W.J.,Kim,N.D.,Yoo,Y.H.,Choi, Y.H.,2013.InductionofapoptosisbyfucoidaninhumanleukemiaU937cells throughactivationofp38MAPKandmodulationofBcl-2family.Mar.Drugs11, 2347–2364.

Park,H.Y.,Han,M.H.,Park,C.,Jin,C.Y.,Kim,G.Y.,Choi,I.W.,Kim,N.D.,Nam,T.J.,Kwon, T.K.,Choi,Y.H.,2011a.Anti-inflammatoryeffectsoffucoidanthroughinhibition ofNF-␬B,MAPKandAktactivationinlipopolysaccharide-inducedBV2microglia cells.FoodChem.Toxicol.49,1745–1752.

Park,H.S.,Kim,G.Y.,Nam,T.J.,Kim,N.D.,Choi,Y.H.,2011b.Anti-proliferativeactivity offucoidanwasassociatedwiththeinductionofapoptosisandautophagyinAGS humangastriccancercells.J.FoodSci.76,T77–T83.

Park, H.Y., Kim, G.Y., Moon, S.K., Kim, W.J., Yoo, Y.H., Choi, Y.H., 2014. FucoidaninhibitstheproliferationofhumanurinarybladdercancerT24cells

by blocking cell cycle progressionand inducing apoptosis. Molecules 19, 5981–5998.

Park,M.H.,Han,J.S.,2014.Padinaarborescensextractprotectshighglucose-induced apoptosisinpancreatic␤cellsbyreducingoxidativestress.Nutr.Res.Pract.8, 494–500.

Paternot,S.,Bockstaele,L.,Bisteau,X.,Kooken,H.,Coulonval,K.,Roger,P.P.,2010.Rb inactivationincellcycleandcancer:thepuzzleofhighlyregulatedactivating phosphorylationofCDK4versusconstitutivelyactiveCDK-activatingkinase.Cell Cycle9,689–699.

Racioppi, M., D’Agostino, D., Totaro, A., Pinto, F., Sacco, E., D’Addessi, A., Marangi, F., Palermo, G., Bassi, P.F., 2012. Value of current chemother-apyandsurgeryinadvancedandmetastaticbladdercancer.Urol.Int. 88, 249–258.

Riou, D., Colliec-Jouault, S., Pinczon du Sel, D., Bosch, S., Siavoshian, S., Le Bert,V.,Tomasoni,C.,Sinquin,C.,Durand,P.,Roussakis,C.,1996.Antitumor andantiproliferativeeffectsofafucanextractedfromAscophyllumnodosum againstanon-small-cellbronchopulmonarycarcinomaline.AnticancerRes.16, 1213–1218.

Saitoh,Y.,Nagai,Y.,Miwa,N.,2009.Fucoidan-VitaminCcomplexsuppressestumor invasionthroughthebasementmembrane,withscarceinjuriestonormalor tumorcells,viadecreasesinoxidativestressandmatrixmetalloproteinases. Int.J.Oncol.35,1183–1189.

Senni,K.,Pereira,J.,Gueniche,F.,Delbarre-Ladrat,C.,Sinquin,C.,Ratiskol,J.,Godeau, G.,Fischer,A.M.,Helley,D.,Colliec-Jouault,S.,2011.Marinepolysaccharides:a sourceofbioactivemoleculesforcelltherapyandtissueengineering.Mar.Drugs 9,1664–1681.

Senthilkumar,K.,Kim,S.K.,2014.Anticancereffectsoffucoidan.Adv.FoodNutr.Res. 72,195–213.

Senthilkumar,K.,Manivasagan,P.,Venkatesan,J.,Kim,S.K.,2013.Brownseaweed fucoidan:biologicalactivityandapoptosis,growthsignalingmechanismin can-cer.Int.J.Biol.Macromol.60,366–374.

Sperka,T.,Wang,J.,Rudolph,K.L.,2012.DNAdamagecheckpointsinstemcells, ageingandcancer.Nat.Rev.Mol.CellBiol.13,579–590.

Thomas,N.V.,Kim,S.K.,2014.Fucoidansfrommarinealgaeaspotentialmatrix metalloproteinaseinhibitors.Adv.FoodNutr.Res.72,177–193.

Wang,P.,Liu,Z.,Liu,X.,Teng,H.,Zhang,C.,Hou,L.,Zou,X.,2014.Anti-metastasis effectoffucoidanfromUndariapinnatifidasporophyllsinmouse hepatocarci-nomaHca-Fcells.PLoSONE9,e106071.

Wang,W.,Wang,S.X.,Guan,H.S.,2012.Theantiviralactivitiesandmechanismsof marinepolysaccharides:anoverview.Mar.Drugs10,2795–2816.

Xue,M.,Ge,Y.,Zhang,J.,Liu,Y.,Wang,Q.,Hou,L.,Zheng,Z.,2013.Fucoidaninhibited 4T1mousebreastcancercellgrowthinvivoandinvitroviadownregulationof Wnt/␤-cateninsignaling.Nutr.Cancer65,460–468.

Yang,L.,Wang,P.,Wang,H.,Li,Q.,Teng,H.,Liu,Z.,Yang,W.,Hou,L.,Zou,X.,2013. FucoidanderivedfromUndariapinnatifidainducesapoptosisinhuman hepa-tocellularcarcinomaSMMC-7721cellsviatheROS-mediatedmitochondrial pathway.Mar.Drugs11,1961–1976.

Zhang,Z.,Teruya,K.,Eto,H.,Shirahata,S.,2011.Fucoidanextractinducesapoptosis inMCF-7cellsviaamechanisminvolvingtheROS-dependentJNKactivationand mitochondria-mediatedpathways.PLoSONE6,e27441.

Imagem

Fig. 2. Induction of apoptosis by fucoidan treatment in EJ cells. The cells were treated with various concentrations of fucoidan for 48 h
Fig. 4. Effects of fucoidan on the levels of Cdk inhibitors in EJ cells. (A) The cells were treated with different concentrations of fucoidan for 48 h
Fig. 5. Induction of hypophosphorylation of pRB and enhanced association of pRB and E2Fs by fucoidan treatment in EJ cells

Referências

Documentos relacionados

As death activator in such cell cycle phases we used the disruptor of microtubules PTX that is known to arrest the cells in the mitotic phase.. We used two cell clones derived from

The present study shows that TNF inhibits the histone H1 and pRb kinase activities associated with CDKs in the cell lines WEHI, L929 and HeLa undergoing cell cycle arrest and

After radiation, the high expression of mPer2 in NIH 3T3 cells results in reduced cell death and enhanced cell proliferation and clonogenic survival, which means that

Our results revealed that ziyuglycoside II could inhibit the proliferation of BGC-823 cells by inducing apoptosis but not cell cycle arrest, which was associated with regulation

In summary, results showed that aqueous HUANG-LIAN inhibited cell proliferations by inducing apoptosis and cell-cycle arrest in A549 breast cancer cells. These

Results from flow cytometric analysis revealed that celastrol induced cell cycle arrest at G0/G1 phase in PC-3 cells dose- dependently after 48 hours treatment with 1 m M of

The suppression of cancer cell growth has been known to be primarily mediated by apoptosis and cell cycle arrest. We next applied flow cytometry to analyze cell cycle phase

Caesalpinioflavone reduced cell viability of tumor cell lines A549, MCF7, Hst578T and HTC, as consequence of cell cycle arrest in G1/S transition (A549 and MCF7) and