• Nenhum resultado encontrado

Effects of positive airway pressure therapy on cardiovascular and metabolic markers in males with obstructive sleep apnea

N/A
N/A
Protected

Academic year: 2021

Share "Effects of positive airway pressure therapy on cardiovascular and metabolic markers in males with obstructive sleep apnea"

Copied!
10
0
0

Texto

(1)

RevPortPneumol.2017;23(4):193---202

www.revportpneumol.org

ORIGINAL

ARTICLE

Effects

of

positive

airway

pressure

therapy

on

cardiovascular

and

metabolic

markers

in

males

with

obstructive

sleep

apnea

A.

Feliciano

a,b,

,

M.J.

Oliveira

c

,

A.

Cysneiros

a

,

C.

Martinho

a

,

R.P.

Reis

b,d

,

D.

Penque

e

,

P.

Pinto

f,g,h

,

C.

Bárbara

a,g,h

aPneumologyinThoraxDepartment,CentroHospitalarLisboaNorte,Lisboa,Portugal bFaculdadedeCiênciasMédicas,UniversidadeNovadeLisboa,Lisboa,Portugal

cServic¸odePneumologia,CentroHospitalardeVilaNovadeGaiaeEspinho,EPE,VilaNovadeGaia,Portugal dCardiologyUnit,HospitalPulidoValente,CentroHospitalarLisboaNorte,Lisboa,Portugal

eProteomicsLaboratory,DepartamentodeGenéticaHumana,InstitutoNacionaldeSaúdeDr.RicardoJorge,Lisboa,Portugal fSleepandNonInvasiveVentilationUnit,ThoraxDepartment,CentroHospitalarLisboaNorte,Lisboa,Portugal

gFaculdadedeMedicina,UniversidadedeLisboa,Lisboa,Portugal

hInstitutodeSaúdeAmbiental,FaculdadedeMedicina,UniversidadedeLisboa,Lisboa,Portugal

Received21October2016;accepted25February2017 Availableonline7June2017

KEYWORDS Obstructivesleep apnea; Lipidmetabolism; Glucosemetabolism; HOMA-IR; Homocysteine; PAP Abstract

Introduction:Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascu-lar/metaboliccomplications.Someanalyticalparameters(homocysteine,glycemicandlipidic profiles)arerecognizedmarkersoftheseconsequences.Limiteddataisavailableonthe asso-ciation of these markersand OSAS’s severity/response to positive airway pressure therapy (PAP).

Materialandmethods: In this prospective study we analyzed polysomnographic and ana-lytical data of male patients admitted to sleep laboratory. The aim was to evaluate metabolic/cardiovascular markersinsnorersandOSASpatients,torelatewithsleep param-eters andPAP response.One-hundredandthreepatientswere included,and73 (71%)were OSAS patients. OSAS patients were similar to snorers except for higher body mass index (BMI) and dyslipidemia.Severe OSAS patients showed higherglycemia, HbA1c, insulin, and insulin resistance, and lower HDL cholesterol in comparison to mild---moderate (p<0.05, p<0.05, p<0.001,p<0.001, p<0.05,respectively). Glycemic profileandtriglycerideswere slightlycorrelatedwithOSAS severity.46OSASpatientswere submittedto6monthsofPAP,

Correspondingauthor.

E-mailaddress:amelia.feliciano@chln.min-saude.pt(A.Feliciano). http://dx.doi.org/10.1016/j.rppnen.2017.02.010

2173-5115/©2017SociedadePortuguesadePneumologia.PublishedbyElsevierEspa˜na,S.L.U.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

194 A.Felicianoetal.

withastatisticaldecreaseinmeanvaluesofhomocysteine,glycemia,totalandLDLcholesterol (p<0.05,p<0.05,p<0.05,respectively),andinglycemiaandLDLcholesterolinseveregroup only(p<0.05,p<0.05,respectively).

Results:Thisstudydemonstratedanassociationbetweenglucosemetabolismparametersand triglycerideswithOSASseverityunderlyingthecomplexityoftheprocessleadingto cardiovas-cular/metaboliccomplicationsinthisdisorder.Moreover,homocysteine,glycemicandlipidic profileschangedsignificantlyafter6monthsofPAPtherapyinOSAS,supportingits cardiovas-cularandmetabolicprotectiveeffect.

Conclusion:Our studyhasreinforced theimportanceofanalyticalcardiovascular/metabolic evaluationascomplementarytoolofdiagnosis/treatmentresponseinOSAS.

©2017SociedadePortuguesadePneumologia.PublishedbyElsevierEspa˜na,S.L.U.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Obstructive sleep apnea syndrome (OSAS) is a com-mon sleep and chronic respiratory disorder,1,2 associated

with cardiovascular3---5 and metabolic (such as obesity,6

dyslipidemia7 and type 2 diabetes)8 complications. It has

beendifficult todetermine iftheseareduetoOSASor to associatedrisk factors.Sleepfragmentation and intermit-tent hypoxia are some mechanisms contributing to OSAS complications,9,10whichimprovewithpositiveairway

pres-sure treatment (PAP). However, the impact of PAP on othermechanisms involved isstillnot wellcharacterized. Someoxidative stressbiomarkershave been associatedto OSAS morbidity.11 Still controversy remains regarding the

bestdiagnostic/prognosticmarker.Anexampleis homocys-teine(Hcy), which is considered a‘‘promising’’ marker.12

Hcy is an intermediate product in the biosynthesis of methionineandcysteine,13andisdeterminantofthe

meth-ylation cycle.14 Hcy levels in adults follow a circadian

variation,15 being lower in the morning. Studies reported

Hcy asan independent risk factor for atherosclerosis,16,17

cerebral, and cardiovascular diseases (CVD),13,18---24 being

related with their prognosis.18 The proposed mechanisms

areitsadverseeffectsonvascularstructureandfunction,25

hypercoagulabilitystate,23 anddepletionofnitric oxide.26

Moreover,dyslipidemia,diabetes,cancer,renal,andthyroid dysfunction13,23areassociatedwithelevatedHcy.Also,older

age, malegender, variousdrugs, tobacco/coffee/alcohol, andvitamins deficiency.13,23 Hcy has been proposed asan

OSASbiomarkerregardingitsrelationshipwithCVD.Studies showhigherlevelsofHcy inOSAS with27---30 or without31,32

pre-existingcardiacdisease.Moreoverthereare contradic-torystudiesreportingtheeffectofPAPonHcylevels.29,33---37

TheaimofthisstudywastoanalyzeHcylevelsinsnorers andOSASpatients,itscorrelation withOSASseverity,and responsetoPAP.Additionally,glycemicandlipidparameters werealsoevaluated.

Material

and

methods

This prospective study included one hundred three con-secutivemale subjectswith suspicionof OSAS, whowere evaluated at a Sleep Clinic. Demographic data included age,bodymassindex(BMI),Epworthsleepinessscale,and

medicalhistory.Exclusioncriteriawerefemalegender(to avoidhormonalinfluence),othersleepdisorders, neuromus-cular,renal,andthyroiddisease,heartfailure,cancer,acute disease,andpreviousPAP.

All patients underwent an overnight polysomnography (PSG)usingEmblaS7000System(Embla,USA)witha techni-cianmonitoring.Sleeprecordingandeventsweremanually analyzed according tostandard criteria.38 The respiratory

disturbanceindex (RDI),oxygen desaturation index(ODI), percentage of time with saturation under 90% (T90) and lowest oxygen saturation (SpO2) were calculated. Based

on RDI≥5 obstructive events/h of sleep, patients were diagnosed as OSAS (n=73) and grouped into mild (RDI 5---14.9), moderate (RDI 15---29.9), and severe (RDI≥30). Later,inpre/postOSAStreatmentanalysis,mildand moder-atepatientswerecombined(RDI<30),inordertoevaluate theextremeofdiseasespectrum.

To calculate the sample size we focused in the main objective,thatisHcyanalysisbefore/afterPAPtreatment. The sample size wascalculatedwithPS software,version 3.1.2. It was planned a study of a continuous response variablefrom matched pairsof study subjects. Prior data indicated that the differencein the responseof matched pairswasnormallydistributedwithstandarddeviation2.If thetruedifferenceinthemeanresponseofmatchedpairs is0.95,thesamplesizeneedtobeof37pairsofsubjectsto beabletorejectthenullhypothesisthatthisresponse dif-ferenceiszerowithprobability(power)0.8(i.e.beta0.20). ThetypeIerrorprobabilityassociatedwiththistestofthis nullhypothesisis0.05(i.e.alfa0.05).

According to criteria,39 PAP therapy with automatic

devices (S9, Resmed, Australia) was prescribed for 46 patients in severe disease or in disease of any severity when associated with excessivediurnal sleepiness and/or cardio/cerebrovascularcomplications.Thesepatientswere evaluated at six months for compliance registration. As described,41 more than 4h use/night for at least 70% of

nightswasconsideredasacceptablecompliance.AfterPAP initiation,nomoreindications(excludinghealthylifestyle) weregiven,assumingareallifescenario.

Venous blood samples were collected after PSG and a 12-h fasting period, into EDTA-coated polypropylene tubes.At six monthsof PAP asecond morningblood sam-ple was collected. The collected blood was processed between 1 and 2h to determine Hcy (chemiluminescence

(3)

Effectsofpositiveairwaypressuretherapyoncardiovascularandmetabolicmarkersinmales 195 (CLIA), ADVIA Centaur xp, Siemens). Additionally,

param-eters of glycemic profile were determined, such as glucose(Enzyme UVHexoquinase --- ADVIA2400 Siemens), haemoglobin A1c (HbA1c) (HPLC --- Variant II BioRad), insulin (chemiluminescence (CLIA), ADVIA Centaur xp, Siemens) and insulin resistance (calculated by homeo-staticmodel assessment ofinsulin resistance--- HOMA-IR). Parametersoflipidprofilewere,also,determinedsuchas totalcholesterol(CHOD-PAP(enzymaticcolorimetric)ADVIA 2400, Siemens), low-density lipoprotein (LDL) cholesterol (bycalculation),high-densitylipoprotein(HDL)cholesterol (HDLPlus2ndgenerationelimination/catalaseADVIA2400, Siemens),andtriglycerides (Enzymaticcolorimetric(GPO) ADVIA 2400, Siemens). The HOMA-IR was determined by the product between fasting plasma glucose and insulin concentration, which has a reasonable linear correlation withthe gold standard of insulin resistance measurement (hyperinsulinemic---euglycemicclamp).40

All subjectsunderwentrestrictionof alcohol, tea, cof-fee,chocolate,beetroot,banana,avocado,tomato,plum, pineapple,kiwi,orange,nut,hazelnut,vanillacandies,and confectioneryduringthethreedayspriortoPSG.Patients underwent 24h urine collection (into a hydrochloric acid container andstoredat 4◦C)for catecholamines determi-nation(adrenaline,nor-adrenaline,anddopamine)(HPLC ---BioRad).

Thestudyprotocolwasapprovedbythelocalethics com-mitteesandallpatientsgavewritteninformedconsent.

Statistical analyses were performed using SPSS for windowssoftware(SPSS20Inc.,Chicago,IL,USA).All varia-bles were tested for normality of the distribution using Kolmogorov---Smirnovtest.Continuousvariableswithnormal distributionswereexpressedasmeans±standarddeviation (SD) and categorical variables in numbers (percentages). Pearson’sanalysiswasperformed forcorrelationsbetween parametricvariables.Independent-samplesT-testwasused forcomparisonsbetweenindependentgroupsforvaluesthat were normally distributed and paired-samples T-test was usedtocomparevariablesnormallydistributedbeforeand afterPAPtreatment.Categoricalvariableswerecompared usingX2 test. Results wereconsidered statistically

signifi-cantwhenpvaluewas<0.05.

Results

Clinical and analytical evaluation of snorers and OSAS patientsareshown in Table1.There werenostatistically significantdifferencesregardingdemographicandanalytical parameters.Instead,the existenceof knowndyslipidemia andBMIwerehigherinOSASpatients(p<0.001,p=0.001, respectively).HOMA-IR,totalcholesterol,andurinary nor-adrenalinewerehigherthannormalrangeinOSASpatients andHcywashigherthannormalrangeinbothgroups.

Concerning OSAS patients, there were no statistically differences betweenmild---moderate (46,63%) andsevere (27,37%)regardingdemographicparameters.Instead, dys-lipidemia and BMI were higher in severe OSAS patients (p<0.05,p<0.001,respectively).Glycemia,HbA1c,insulin, andHOMA-IRwerehigherandHDLcholesterolwaslowerin severegroup(p<0.05,p<0.05,p<0.001,p<0.001,p<0.05, respectively).Moreover,HbA1c,HOMA-IR,triglycerides,and

urinarycatecholamines werehigher than normalrange in severeOSASpatientsandtotalcholesterolandHcyinboth groups.

Somemetabolicparameterswereslightlycorrelatedwith OSASseverity.Glycemia,HbA1c,andtriglycerideswere pos-itivelycorrelatedwithRDI (p<0.05, Pearsoncorrelation). GlycemiaandHbA1cwerenegatively correlatedwith low-estSpO2(p<0.05,Pearsoncorrelation).Instead,insulinand

HOMA-IRwerepositivelycorrelatedwithRDI,T90,andODI (p<0.001, Pearson correlation) and negatively correlated withlowestSpO2(p<0.001)(Table2).

Clinical and analytical evaluation of OSAS treatment patients are shown in Tables 1 and 3. 46 OSAS patients underwent PAP (22 (48%) were mild---moderate and 24 (52%) were severe). Patients showed a mean compliance of4.37h/night.Additionally inPAP follow up,weightand smoking habits were always asked and there were no changes in both parameters. After six months of treat-ment,OSASpatientsshoweda statisticaldecreasein Hcy, glycemia, total and LDL cholesterol (p<0.05) (Table 3). Instead,insevere OSASonlyglycemiaandLDLcholesterol showedasignificantreduction(p<0.05).

Discussion

This study showed after six months of PAP, homocys-teine,glycemia,totalandLDLcholesteroldecreaseinOSAS patients pointing to cardiovascular/metabolic protective roleofthistreatment.

Inourstudy,HcywassimilarinsnorersandOSASpatients, andalsoindifferentOSASseverities,althoughbeinghigher thannormalrange.Hcyisanemergingindependentrisk fac-torfor CVD, but it is not clearits association withOSAS. BothsmokingandobesitymayaffectHcylevels,42---47which

couldbeconfounders in theassociation with CVD.In this study,smokinghabitsandprevalence of CVDwere similar betweensnorersandOSASpatients,andbetweendifferent levelsofOSASseverity.Concerningobesity,snorersandOSAS patientswereobese,stillOSASpatientspresentedahigher BMI,whichcouldinfluencetheHcylevels.Thepresenceof obesityeveninsnorersisprobablyresponsibleforOSAS sus-picionandreferraltosleepclinic.48 Also,severaldiseases

suchasdyslipidemia13,23areassociatedwithelevatedlevels

ofHcy,andthisdiseasewasmoreprevalentinOSASpatients. Ameta-analysis(432subjects)showedhigherHcylevels inOSASthanincontrols,49especiallywhenBMI30,age<50

years, and severe OSAS. Other authors50,51 also reported

higherHcylevelsinsevereOSAS. Arecentstudy reported higherHcylevelsinpatientswithcoronaryarterydisease, withOSASandwithbothdiseases,30andthehighestvalues

for Hcywere observedin the latter group.Further, there wasnocorrelation between Hcylevelsand oxygen desat-uration,asshowedinthepresent study.Contrarytothese results,somestudiesdidnotreportincreasedlevelsofHcy inOSASpatientswith34,35 orwithoutassociatedCVD.28,29,36

Although, Hcy wasnot correlated withsleep parameters, in OSAS patients it decreased for normal values after 6 monthsof PAP therapy,which may suggest that its levels couldinpartberelatedwithOSAS.Theseresultsaresimilar toastudyof12OSASpatientswithCVD,whichreporteda reductioninHcylevelsafterPAPtherapy.33 Thisbehaviour

(4)

196

A.

Feliciano

et

al.

Table1 Initialevaluationofstudyparticipants:demographics,comorbidities,polysomnographydata,glycemicandlipidicprofiles,homocysteine,andurinarycatecholamines

(BMI:bodymassindex;EPW:Epworthsleepinessscale;LDL:low-densitylipoprotein;HDL:high-densitylipoprotein;HOMA-IR:homeostasismodelassessment;OSAS:obstructive sleepapneasyndrome;RDI:respiratorydisturbanceindex;SD:standarddeviation;T90:desaturationtimeunder90%;U:urine).

Total Snorers OSAS Snorersvs. OSAS(p)

Mild-Mod OSAS

SevereOSAS Mild-Modvs. SevereOSAS (p) Mild-Mod OSASbefore PAP SevereOSAS beforePAP Mild-Modvs. severeOSAS beforePAP (p) N=103 N=30 N=73 N=46 N=27 N=22 N=24 Age(years) (media/SD) 46/8 45/10 46/8 0.354 46/8 47/7 0.737 47/9 47/7 0.931 Smokinghistory(n/%) 69/67.0 21/70.0 48/65.8 0.681 29/63.0 19/70.4 0.531 14/63.6 17/70.8 0.612 Alcoholconsumption (n/%) 66/64.1 15/50.0 51/69.9 0.057 30/65.2 21/77.8 0.265 15/68.2 18/75.0 0.617 BMI(kg/m2) (media/SD) 29.4/3.8 27.4/3.3 30.2/3.7 0.001 28.9/3.0 32.3/3.8 <0.001 29.4/2.4 32.0/3.7 0.006 Cardiacdisease(n/%) 55/53.4 13/43.3 42/57.5 0.193 23/50.0 19/70.4 0.092 12/54.5 17/70.8 0.263 Respiratorydisease (n/%) 15/14.6 2/6.7 13/17.8 0.188 7/15.2 6/22.2 0.571 3/13.6 6/25.0 0.382 Dyslipidemia(n/%) 49/47.6 4/13.3 45/61.6 <0.001 22/47.8 23/85.2 0.026 10/45.5 20/83.3 0.030 Diabetes(n/%) 7/6.8 1/3.3 6/8.2 0.374 2/4.3 4/14.8 0.115 0/0 3/12.5 0.099 EPWscale(media/SD) 9.5/4.8 9.3/5.1 9.5/4.7 0.843 9.7/4.7 9.2/4.8 0.694 11.7/4.1 9.5/5.0 0.103 RDI(events/h) (media/SD) 20.4/23.3 2.8/1.3 27.6/24.2 <0.001 11.9/6.1 54.3/19.5 <0.001 12.2/6.2 55.0/19.3 <0.001 T90(%)(media/SD) 5.6/13.2 1.6/8.1 7.2/14.5 0.047 1.0/2.3 17.9/19.6 <0.001 1.2/2.0 16.4/18.2 <0.001 Sleepefficiency(%) (media/SD) 79.2/14.4 77.3/14.4 79.1/14.5 0.407 80.4/14.7 79.1/14.0 0.703 75.2/18.6 77.2/13.8 0.675 LowestSpO2(%) (media/SD) 84.1/7.5 88.5/4.6 82.3/7.7 <0.001 85.3/5.4 77.1/8.3 <0.001 83.3/6.6 77.7/7.8 0.012 ODI (dessaturations/h) (media/SD) 16.8/22.5 2.2/2.9 22.8/24.2 <0.001 8.1/5.7 47.8/23.2 <0.001 8.9/6.0 48.1/23.8 <0.001 Glucose(mg/dL) (media/SD) 101.0/25.8 101.2/31.3 100.9/23.4 0.951 95.9/17.2 109.4/29.8 0.017 97.3/20.2 109.4/31.0 0.128 Glycosylated haemoglobin(%) (media/SD) 5.8/0.8 5.8/1.0 5.8/0.8 0.957 5.6/0.5 6.1/1.0 0.012 5.6/0.7 6.2/1.0 0.036 Insulin(mU/L) (media/SD) 14.7/8.6 12.7/6.8 15.5/9.1 0.124 12.4/6.8 20.9/10.1 <0.001 11.3/5.0 20.8/10.4 <0.001 HOMA-IR(media/SD) 3.8/2.8 3.3/2.8 4.0/2.8 0.241 3.1/2.2 5.7/2.9 <0.001 2.8/1.7 5.6/2.9 <0.001

(5)

Effects of positive airway pressure therapy on cardiovascular and metabolic markers in males 197 Table1(Continued)

Total Snorers OSAS Snorersvs. OSAS(p)

Mild-Mod OSAS

SevereOSAS Mild-Modvs. SevereOSAS (p) Mild-Mod OSASbefore PAP SevereOSAS beforePAP Mild-Modvs. severeOSAS beforePAP (p) N=103 N=30 N=73 N=46 N=27 N=22 N=24 Totalcholesterol (mg/dL) (media/SD) 192.1/37.7 185.9/41.3 194.6/36.1 0.290 194.2/38.4 195.3/32.4 0.092 191.6/42.7 193.7/30.0 0.852 LDLcholesterol (mg/dL) (media/SD) 121.0/31.6 117.2/33.4 122.6/30.9 0.435 122.1/30.6 123.5/32.0 0.854 123.8/32.6 122.0/28.2 0.850 HDLcholesterol (mg/dL) (media/SD) 44.7/10.1 44.7/10.4 44.7/10.0 1.000 46.8/11.3 41.2/6.0 0.019 44.6/12.3 41.0/5.5 0.190 Triglycerides(mg/dL) (media/SD) 134.6/79.3 121.0/68.0 140.2/83.3 0.265 128.8/79.4 159.7/87.6 0.126 120.0/57.1 160.7/88.7 0.074 Homocysteine (␮mol/L) 15.2/3.4 14.7/3.3 15.3/3.5 0.399 15.3/3.8 15.3/2.9 0.997 14.9/3.1 15.6/2.6 0.436 Adrenaline(␮g/24h U)(media/SD) 19.9/15.5 17.7/16.3 20.8/54.2 0.765 13.8/12.3 32.7/87.4 0.152 14.2/13.1 34.7/92.6 0.308 Noradrenaline (␮g/24hU) (media/SD) 85.7/180.4 64.6/28.1 94.3/213.4 0.45 63.1/35.5 147.5/345.4 0.103 62.0/35.4 149.7/365.9 0.269 Dopamine(␮g/24hU) (media/SD) 434.6/771.5 373.9/197.0 459.5/908.5 0.611 340.9/202.1 661.5/1465.5 0.147 334.7/220.4 657.2/1550.0 0.339

(6)

198 A.Felicianoetal. Table2 Correlationbetweenvariablesofpolysomnographyandglycemicandlipidicprofiles,homocysteine,andurinary cate-cholamines(LDL:low-densitylipoprotein;HDL:high-densitylipoprotein;HOMA-IR:homeostasismodelassessment;ODI:oxygen desaturationindex;RDI:respiratorydisturbanceindex;T90:desaturationtimeunder90%;U:urine).

Glucose(mg/dL) Glycosylatedhaemoglobin(%) Insulin(mU/L) HOMA-IR

r p r p r p r p RDI(events/h) 0.217 0.027 0.217 0.028 0.423 <0.001 0.382 <0.001 T90(%) 0.179 0.071 0.121 0.224 0.342 <0.001 0.331 0.001 Sleepefficiency(%) 0.01 0.923 0.018 0.857 0.009 0.925 0.061 0.539 LowestSpO2(%) 0.264 0.007 0.242 0.014 0.321 0.001 0.372 <0.001 ODI(dessaturations/h) 0.181 0.068 0.172 0.083 0.428 <0.001 0.384 <0.001 Totalcholesterol(mg/dL) LDLcholesterol(mg/dL) HDLcholesterol(mg/dL) Triglycerides(mg/dL)

r p r p r p r p RDI(events/h) 0.087 0.385 0.056 0.577 0.123 0.215 0.205 0.038 T90(%) 0.133 0.180 0.111 0.267 0.021 0.833 0.154 0.122 Sleepefficiency(%) 0.115 0.246 0.126 0.206 0.012 0.908 0.002 0.986 LowestSpO2(%) 0.110 0.269 0.079 0.432 0.008 0.937 0.141 0.155 ODI(dessaturations/h) 0.094 0.343 0.081 0.421 0.119 0.229 0.175 0.076

Homocysteine(␮mol/L) Adrenaline(␮g/24hU) Noradrenaline(␮g/24hU) Dopamine(␮g/24hU)

r p r p r p r p RDI(events/h) 0.028 0.782 0.083 0.407 0.107 0.284 0.08 0.42 T90(%) 0.083 0.405 0.045 0.651 0.028 0.78 0.001 0.99 Sleepefficiency(%) 0.135 0.176 0.095 0.342 0.052 0.61 0.033 0.744 LowestSpO2(%) 0.001 0.992 0.029 0.773 0.044 0.659 0.013 0.899 ODI(dessaturations/h) 0.056 0.577 0.024 0.81 0.053 0.592 0.029 0.77

underPAP wasconfirmed in a recent meta-analysis.52 On

thecontrary,otherstudies29,35---37reportedthatPAPtherapy

ormandibularadvancementdevice37didnotinfluenceHcy

levelsinOSASpatients.

Previous studies suggest that OSAS is associated with dyslipidemia7andtype2diabetes.8Infact,inthisstudy

dys-lipidemiawasmoreprevalentinOSASpatientscomparingto snorers,althoughbothgroupsshowedsimilarglycemicand lipidprofiles.

Indeed,someauthorsfoundthatOSASisindependently associatedwithdisordersoflipidmetabolism,53mainlydue

tointermittent hypoxia54 and sleep fragmentation.55

Fur-thermore,asinthisstudy,triglycerideswereassociatedwith OSASseverity.53Thisisanimportantissueoncedyslipidemia

isamajorcauseofatheroscleroticCVD.56

Moreover, severe OSAS showed a change in glycemic profile,eveninabsenceofknowndiabetes, probably sug-gestingapre-diabeticstate,anditwascorrelatedwithsleep parameters(RDI and nocturnal desaturation). A condition characterizedbyinsulinresistanceandglucoseintolerance isknownasprediabetes.57 Individualspresentingthisstate

areatriskofCVDandthemajoritywilldevelopdiabetes,58,59

puttingourseverepatientsinanincreasedriskforboth dis-orders.Theseresultsareinagreementwithameta-analysis whichconfirmedthatmoderate/severeOSASincreasesthe risk of development of type 2 diabetes,60 even following

adjustmentofobesity,age,co-morbidities,andmedication use.61 Sleep fragmentation and intermittent hypoxia62

seem to be involved in carbohydrate dysregulation in OSAS, with impaired lipid metabolism, inflammation,

oxidative stress and sympathetic nervous system activation.63

Concerning the evaluation of both profiles after PAP therapy, OSAS patients presented a statistical change in glycemicandlipidprofiles,withadecreaseinglucose,total andLDLcholesterol.SometrialsprovideevidencethatPAP therapy may improve glucose metabolism64 especially in

sleepypatients.65However,otherstudiesdonotsupportthis

improvement,66 butthedurationoftreatmentcouldbean

explanation.Arecentstudyhasshownimprovementin glu-cose metabolism with PAP therapy evenin OSAS patients (overweightorobese)withprediabetes.67Additionally,even

in non-diabeticadultswithOSAS,twometa-analyseshave reportedthatPAPtherapymodestlydecreasesHOMA-IR.68,69

AnotherstudyindiabeticOSASpatientshasshownthatone month of PAPtherapy ledtoreductionof fastingglucose, HbA1c,andHOMA-IR,withoutchangeinBMI.70

A meta-analysis reported that PAP therapy decreases total cholesterol level, especially in OSAS patients who are younger, more obese, and who use PAP for a longer period (≥12 weeks).71 However,in this meta-analysisPAP

had no effect on fasting glucose or HOMA-IR. Also in a meta-regression analysis, PAP improved total and LDL cholesterol, withan increasein HDLcholesterol.7 A more

recentmeta-analysis72 reportedthatPAP significantly

low-eredtotalcholesterol,triglyceride,andHDL,butnotLDL, particularlyinmoderate-severepatients,goodcompliance anddaytimesomnolence. Howeverthe magnitudeoflipid reductionwasmodestandonlysignificantinstudieswhere autonomichyperactivitywasalsoloweredbyPAP.Infact,in

(7)

Effectsofpositiveairwaypressuretherapyoncardiovascularandmetabolicmarkersinmales 199 T able 3 OSAS, Mild-Moderate and severe OSAS patients: comparative analysis in terms of glycemic and lipidic profiles, homocysteine, and urinary catecholamines, before and after PA P therapy (LDL: low-density lipoprotein; HDL: high-density lipoprotein; HOMA-IR: homeostasis model assessment; OSAS: obstructive sleep apnea syndrome; PAP: positive airway pressure; U: urine). OSAS Mild-Moderate OSAS Severe OSAS n Pr e PA P P ost PA P p n Pr e PA P P ost PA P p n Pr e PA P P ost PA P p Glucose (mg/dL) 46 103.6/26.8 99.24/22.2 0.030 22 97.3/20.2 96.6/21.7 0.695 24 109.4/31.0 101.6/22.9 0.027 Glycosylated haemoglobin (%) 46 5.9/0.9 5.9/1.0 0.914 22 5.6/0.7 5.7/0.8 0.125 24 6.2/1.0 6.1/1.1 0.584 Insulin (mU/L) 46 16.3/9.5 20.9/23.1 0.169 22 11.3/5.0 12.1/5.9 0.316 24 20.8/10.4 28.9/29.6 0.206 HOMA-IR 43 4.4/2.8 5.4/6.2 0.294 20 2.9/1.8 3.0/2.0 0.762 23 5.6/2.9 7.4/7.8 0.311 Total cholesterol (mg/dL) 46 192.7/36.2 184.2/29.5 0.043 22 191.6/42.7 184.0/28.4 0.254 24 193.7/29.9 184.3/31.0 0.087 LDL cholesterol (mg/dL) 45 122.9/30.1 108.6/32.6 0.003 22 123.8/32.6 114.6/25.3 0.066 23 122.0/28.2 102.9/37.9 0.017 HDL cholesterol (mg/dL) 46 42.7/9.4 43.3/8.6 0.657 22 44.6/12.3 45.9/10.0 0.598 24 41.0/5.5 40.9/6.4 0.937 T riglycerides (mg/dL) 46 141.2/77.2 137.4/76.0 0.736 22 120.0/57.1 118.3/47.1 0.861 24 160.7/88.7 154.9/92.8 0.775 Homocysteine (␮ mol/L) 46 15.3/2.8 13.2/2.6 0.005 22 14.9/3.1 16.0/2.5 0.039 24 15.6/2.6 16.5/2.7 0.065 Adrenaline (␮ g/24 h U) 46 24.9/67.6 18.4/11.5 0.53 22 14.2/13.1 16.9/6.8 0.386 24 34.7/92.6 19.8/14.5 0.451 Noradrenaline (␮ g/24 h U) 46 107.8/266.4 54.3/22.0 0.182 22 62.0/35.4 51.3/17.4 0.212 24 149.7/365.9 56.9/25.6 0.229 Dopamine (␮ g/24 h U) 46 503.0/1130.1 311.8/132.0 0.26 22 334.7/220.4 298.8/122.0 0.453 24 657.2/1550.0 323.8/142.2 0.307

thepresentstudyOSASpatientspresentedahigher preva-lenceofdyslipidemiaandafterPAPtherewasadecreasein totalandLDLcholesterol,withoutchanginglifestylehabits. Moreover,urinarycathecolaminesdecreasetonormallevels, howeverwithoutstatistical significance,whichcouldhave conditionedlipidloweringeffectofPAP.

Treatment withPAP in OSAS mayimprove dyslipidemia throughameliorating hypoxia, inflammation,73 and insulin

resistance.74 However,dyslipidemiainOSASpatientsisfar

frombeingasimpleprocessbecause,besidesOSASseverity, severalfactorscancontributeforitsuchasobesity,diet,and exercise.34,53,75,76 This factandprobablysample sizecould

explainthat theremainder of lipidic profile (triglyceride, totalandHDLcholesterol)wasnotaffected byPAPinthis study.

This study showed a similar pattern of urinary cate-cholaminesbetweensnorersandOSASpatientsandbetween OSASpatientsofdifferentseverities.Additionally,insevere OSAS patients urinary catecholamines were higher than normal range. Although urinary cathecolamines were not correlatedwithsleepparameters,aftersixmonthsofPAP, theydecreased tonormal levels,nonetheless without sta-tistical significance. These results may be due to sample sizebecauseprevious studiesreportedthat inOSAS there is an increase in sympathetic activity, independently of obesity.77 In fact,Pintoetal.78 reported24-h urinary

nor-epinephrinelevelssignificantlyhigherinsevereOSASthan in mild---moderate, with a significant reduction after one month of PAP. Another study79 reported that PAP

with-drawal resulted in rise in urinary noradrenaline and that waspositivelyassociatedwithhypoxaemiaseverity. Reduc-tionofsympatheticactivitycanbeapotentialmediatorof metabolicbenefitfromPAP (withimprovement ofglucose levels)asshowninastudybyPamidietal.67

Thereare somelimitations of thisstudy,such assmall samplesize,femaleexclusion,andBMIdifferencesbetween groups.Furthermore,drugsanddiseasesthatinterferewith vitaminBmetabolism arepotential causes for higherHcy concentrations,80 andthesevitaminswerenotdetermined

inthisstudy.

Conclusion

Thepresentstudydemonstratedanassociationbetween glu-cose metabolism parameters and triglycerides with OSAS severity, contributing to the complexity of the process leading to cardiovascular/metabolic complications in this disorder.Moreover,Hcy,glycemic,andlipidprofileschanged significantlyafter6monthsofPAPtherapyinOSASpatients, supporting its cardiovascular and metabolic protective effect.

Inconclusion, ourstudy hasreinforcedthe importance ofanalytical cardiovascular/metabolicevaluation as com-plementary toolof diagnosis/treatment response in OSAS patients.

Ethical

disclosures

Protection of human and animal subjects.The authors declarethatnoexperimentswereperformedonhumansor animalsforthisstudy.

(8)

200 A.Felicianoetal.

Confidentialityofdata.Theauthorsdeclarethatnopatient dataappearinthisarticle.

Right to privacy and informed consent.The authors declarethatnopatientdataappearinthisarticle.

Conflicts

of

interest

Theauthorshavenoconflictsofinteresttodeclare.

References

1.Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleepapnea.ProcAmThoracSoc.2008;5:144---53.

2.FranklinK,Lindberg E.Obstructivesleepapneaisacommon disorderinthepopulation---areviewontheepidemiologyof sleepapnea.JThoracDis.2015;7:1311---22.

3.Martinez D, Klein C, Rahmeier L, da Silva RP, Fiori CZ, CassolC,etal.Sleepapneaisastronger predictorfor coro-naryheartdiseasethantraditionalriskfactors.SleepBreath. 2012;16:695---701.

4.MaceyPM,KumarR,WooMA,Yan-GoFL,HarperRM.Heartrate responsestoautonomicchallengesinobstructivesleepapnea. PLoSOne.2013;8:e76631.

5.Floras JS. Sleep apnea and cardiovascular risk. J Cardiol. 2014;63:3---8.

6.RyanS,CrinionSJ,McNicholasWT.Obesityandsleep-disordered breathingwhentwo‘badguys’meet.QJM.2014;107:949---54. 7.Nadeem R, Singh M, Nida M, Waheed I, Khan A, Ahmed S,

et al. Effect ofobstructive sleep apnea hypopnea syndrome onlipidprofile:ametaregressionanalysis.JClinSleepMed. 2014;10:475---89.

8.PamidiS,TasaliE.Obstructivesleepapneaandtype2diabetes: istherealink?FrontNeurol.2012;3:126.

9.DempseyJ,VeaseyS,MorganB,O’DonnellC.Pathophysiology ofsleepapnea.PhysiolRev.2010;90:47---112.

10.LévyP,RyanS,OldenburgO,ParatiG.Sleepapnoeaandthe heart.EurRespirRev.2013;22:333---52.

11.FengJ,ZhangD,ChenB.Endothelialmechanismsof endothe-lialdysfunctioninpatientswithobstructivesleepapnea.Sleep Breat.2012;16:283---94.

12.Veeranna V, Zalawadiya SK, Niraj A, Pradhan J, Ference B, BurackRC,etal.Homocysteineandreclassificationof cardio-vasculardiseaserisk.JAmCollCardiol.2011;58:1025---33. 13.FaehD,ChioleroA,PaccaudF.Homocysteineasariskfactorfor

cardiovasculardisease:shouldwe(still)worryaboutit?Swiss MedWkly.2006;136:745---56.

14.Loscalzo J,Handy DE. Epigeneticmodifications:basic mech-anisms and role in cardiovascular disease (2013 Grover ConferenceSeries).PulmCirc.2014;4:169---74.

15.BremnerWF,HolmesEW,KanabrockiEL,HermidaRC,AyalaD, GarbinciusJ,etal.Circadianrhythmofserumtotal homocys-teineinmen.AmJCardiol.2000;86:1153---6.

16.XiaoY, ZhangY, LvX, Su D,Li D,XiaM, etal. Relationship betweenlipidprofileandplasmatotalhomocysteine,cysteine andtheriskofcoronaryarterydiseaseincoronaryangiographic subjects.LipidHealthDis.2011;10:137.

17.Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, et al. HomocysteineinducestheexpressionofC-reactiveproteinvia NMDAr-ROS-MAPK-NF-KBsignalpathwayinratvascularsmooth musclecells.Atherosclerosis.2014;236:73---81.

18.StangerO,HerrmannW,PietrzikK,FowlerB,GeiselJ,Dierkes J,etal.Clinicaluseandrationalmanagementofhomocysteine, folicacid,andBvitaminsincardiovascularandthrombotic dis-eases.ZKardiol.2004;93:439---53.

19.Girelli D,Martinelli N, Olivieri O, Pizzolo F, FrisoS, Faccini G,etal.Hyperhomocysteinemiaandmortalityaftercoronary arterybypassgrafting.PLoSOne.2006;1:e83.

20.ZhouYH,TangJY,WuMJ,LuJ,WeiX,QinYY,etal.Effectoffolic acidsupplementationoncardiovascularoutcomes:asystematic reviewandmetaanalysis.PLoSOne.2011;6:e25142.

21.Ford AH, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L, et al. Homocysteine, grey matter and cogni-tivefunctioninadultswithcardiovasculardisease.PLoSOne. 2012;7:e33345.

22.OkuraT,MiyoshiK,IritaJ,EnomotoD,NagaoT,KukidaM,etal. Hyperhomocysteinemiaisoneoftheriskfactorsassociatedwith cerebrovascularstiffness inhypertensivepatients, especially elderlymales.NaturecomSciRep.2014;4:5663.

23.ShenovV,MehendaleV,PrabhuK,ShettyR,RaoP.Correlationof serumhomocysteinelevelswiththeseverityofcoronaryartery disease.IndJClinBiochem.2014;29:339---44.

24.Baszczuk A, Kopczynski Z. Hyperhomocysteinemia in patients with cardiovascular disease. Postepy Hig Med Dosw.2014;68:579---89[abstract].

25.ZhangS,Yong-YiB,LuoLM,XiaoWK,WuHM,YeP.Association betweenserumhomocysteineandarterialstiffnessinelderly: acommunity-basedstudy.JGeriatrCardiol.2014;11:32---8. 26.LentzSR.Mechanismsofhomocysteineinduced

atherothrom-bosis.JThrombHaemost.2005;3:1646---54.

27.LavieL, PerelmanA, Lavie P.Plasmahomocysteinelevelsin obstructivesleepapnea---associationwithcardiovascular mor-bidity.Chest.2001;120:900---8.

28.LavieL.Obstructivesleepapnoeasyndrome:anoxidativestress disorder.SleepMedRev.2003;7:35---51.

29.SvatikovaA,WolkR,MageraMJ,ShamsuzzamanAS,PhillipsBG, SomersVK.Plasmahomocysteininobstructivesleepapnea.Eur HeartJ.2004;25:1325---9.

30.Ersoy EO,Fırat H, AkaydınS, ÖzkanY, Durusu M,Yüce GD, et al. Associationof obstructive sleep apnea with homocys-tein, nitric oxide and total antioxidant capacity levels in patientswithorwithoutcoronaryarterydisease.TuberkToraks. 2014;62:207---14.

31.CanM,Ac¸ikgözS,MunganG,Bayraktaro˘gluT,Koc¸akE,Güven B,etal.Serumcardiovascularriskfactorsinobstructivesleep apnea.Chest.2006;129:233---7.

32.KokturkO,CiftciTU,MollarecepE,CiftciB.Serum homocys-teinelevelsandcardiovascularmorbidityinobstructivesleep apneasyndrome.RespMed.2006;100:536---41.

33.JordanW,BergerC,CohrsS,RodenbeckA,MayerG,Niedmann PD, et al. CPAP-therapy effectively lowers serum homocys-teineinobstructive sleepapneasyndrome.JNeural Transm. 2004;111:683---9.

34.Robinson GV,PepperellJCT, Segal HC, Davies RJO,Stradling JR.Circulatingcardiovascularriskfactorsinobstructivesleep apnoea: data from randomised controlled trials. Thorax. 2004;59:777---82.

35.BarcelóA,BarbéF,delaPe˜naM,VilaM,PérezG,PiérolaJ,etal. Antioxidantstatusinpatientswithsleepapnoeaandimpactof continuouspositiveairway pressuretreatment. EurRespirJ. 2006;27:756---60.

36.Ryan S, Nolan GM, Hannigan E, Cunningham S, Taylor C, McNicholas WT. Cardiovascular risk markers in obstructive sleepapnoeasyndrome andcorrelationwithobesity. Thorax. 2007;62:509---14.

37.Dal-Fabbro C,GarbuioS, D’AlmeidaV,Cintra F,TufikS, Bit-tencourt L. Mandibular advancement device and CPAP upon cardiovascular parameters in OSA. Sleep Breath. 2014;18: 749---59.

38.Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK,etal.Rulesforscoringrespiratoryeventsinsleep:update ofthe2007AASMManualforScoringofSleepandAssociated EventsDeliberationsoftheSleepApneaDefinitionsTaskForce

(9)

Effectsofpositiveairwaypressuretherapyoncardiovascularandmetabolicmarkersinmales 201

oftheAmericanAcademyofSleepMedicine.JClinSleepMed. 2012;8:597---619.

39.QaseemA,HoltyJ-E,OwensD,DallasP,StarkeyM,ShekelleP. TheClinicalGuidelinesCommitteeoftheAmericanCollegeof PhysiciansManagementofObstructiveSleepApneainAdults:a clinicalpracticeguidelinefromtheAmericanCollegeof Physi-cians.AnnInternMed.2013;159:471---83.

40.WallaceTM,Levy JC, MatthewsDR.Useand abuseofHOMA modeling.DiabCare.2004;27:1487---95.

41.WeaverTE,SawyerAM.Adherencetocontinuouspositiveairway pressuretreatmentforobstructivesleepapnea:implicationsfor futureinterventions.IndianJMedRes.2010;131:245---58. 42.FungTT,Rimm EB,Spiegelman D,RifaiN,Tofler GH,Willett

WCD,etal.Associationbetweendietarypatternsandplasma biomarkersofobesityandcardiovasculardiseaserisk.AmJClin Nutr.2001;73:61---7.

43.DePergola G,PannacciulliN,ZamboniM,MinennaA,Brocco G,Sciaraffia M,etal. Homocysteineplasmalevelsare inde-pendentlyassociatedwithinsulinresistanceinnormalweight, overweightandobesepre-menopausalwomen.DiabetesNutr Metab.2001;14:253---8.

44.Sanchez-MargaletV,ValleM,RuzFJ,GasconF,MateoJ,Goberna R.Elevatedplasmatotalhomocysteinelevelsin hyperinsuline-micobesesubjects.JNutrBiochem.2002;13:75---9.

45.Konuko˘gluD,SerinO,ErcanM,TurhanMS.Plasmahomocysteine levelsinobeseandnon-obesesubjectswithorwithout hyper-tension;itsrelationshipwithoxidativestressandcopper.Clin Biochem.2003;36:405---8.

46.BazzanoLA,HeJ,MuntnerP,VupputuriS,WheltonPK. Rela-tionshipbetweencigarettesmokingandnovelriskfactorsfor cardiovasculardiseaseintheUnitedStates. AnnIntern Med. 2003;138:891---7.

47.Sobczak A, Wardas W, Zielinska-Danch W, Pawlicki K. The influence of smoking on plasma homocysteine and cysteine levels in passive and active smokers. Clin Chem Lab Med. 2004;42:408---14.

48.SlaterG,PengoM,KoskyC,SteierJ.Obesityasanindependent predictorof subjective excessive daytime sleepiness. Respir Med.2013;107:305---9.

49.Niu X, Chen X, Xiao Y, Dong J, Zhang R, Lu M, et al. The differences in homocysteine level between obstructive sleepapneapatientsandcontrols:ameta-analysis.PLoSOne. 2014;9:e95794.

50.ChenM, Wu B, Ye X, Zhou Z, Yue X, Wang W, et al. Asso-ciationbetweenplasmahomocysteinelevelsand obstructive sleepapnoeainpatientswithischaemicstroke.JClinNeurosci. 2011;18:1454---7.

51.SalesLV,BruinVM,D’AlmeidaV,PompéiaS,BuenoOF,TufikS, etal.Cognitionandbiomarkersofoxidativestressinobstructive sleepapnea.Clinics(SaoPaulo).2013;68:449---55.

52.ChenX,NiuX,XiaoY,DongJ,ZhangR,LuM,etal.Effectof continuouspositiveairwaypressureonhomocysteinelevelsin patientswithobstructivesleepapnea:ameta-analysis.Sleep Breath.2014;18:687---94.

53.ToyamaY,ChinK,ChiharaY, TakegamiM,TakahashiK,Sumi K,etal.Associationbetweensleepapnea,sleepduration,and serumlipidprofile inanurban, male,workingpopulation in Japan.Chest.2013;143:720---8.

54.DewanNA,NietoFJ,SomersVK.Intermittenthypoxemiaand OSA:implicationsforcomorbidities.Chest.2015;147:266---74. 55.Qian Y, Yi H, Zou J, Meng L, Tang X, Zhu H, et al.

Independentassociationbetweensleepfragmentationand dys-lipidemiainpatientswithobstructivesleepapnea.ScientRep. 2016;6:26089.

56.GrahamI,CooneyMT,BradleyD,DudinaA,ReinerZ. Dyslipi-demiasinthepreventionofcardiovasculardisease:risksand causality.CurrCardiolRep.2012;14:709---20.

57.CentersforDiseaseControlandPrevention.Nationaldiabetes factsheet:nationalestimatesandgeneralinformationon dia-betesandprediabetesintheUnitedStates,2011.Atlanta,GA: USDepartmentofHealthandHumanServices,Centersfor Dis-easeControlandPrevention;2011.

58.NathanDM,DavidsonMB,DeFronzoRA,HeineRJ,HenryRR, PratleyR,etal.AmericanDiabetesAssociationimpairedfasting glucoseandimpairedglucosetolerance:implicationsforcare. DiabCare.2007;30:753---9.

59.De FronzoRA, Abdul-GhaniM. Assessmentand treatmentof cardiovascular risk in prediabetes: impaired glucose toler-ance and impaired fasting glucose. Am J Cardiol. 2011;108 Suppl.:3B---24B.

60.WangX,BiY,ZhangQ,PanF.Obstructivesleepapnoeaandthe riskoftype2diabetes:ameta-analysisofprospectivecohort studies.Respirology.2013;18:140---6.

61.KentBD, GroteL, RyanS, PépinJL, BonsignoreMR,Tkacova R, et al. Diabetes mellitus prevalence and control in sleep-disorderedbreathing:theeuropeansleepapneacohort(ESADA) study.Chest.2014;146:982---90.

62.BorelAL,MonneretD,TamisierR,BaguetJP,FaureP,LevyP, etal.Theseverityofnocturnalhypoxiabutnotabdominal adi-posityisassociatedwithinsulinresistanceinnon-obesemen withsleepapnea.PLoSOne.2013;8:e71000.

63.Brianc¸on-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J. The impact of sleep disorders on glucosemetabolism:endocrineandmolecularmechanisms. Dia-betolMetabolSynd.2015;7:25.

64.SteiropoulosP,PapanasN,NenaE,TsaraV,FitiliC,Tzouvelekis A,etal.Markersofglycemiccontrolandinsulinresistancein non-diabetic patientswithobstructivesleepapnea hypopnea syndrome:doesadherencetoCPAPtreatmentimproveglycemic control?SleepMed.2009;10:887---91.

65.WeinstockTG,Wang X,RueschmanM,Ismail-BeigiF,AylorJ, Babineau DC, et al. A controlled trial of CPAP therapy on metaboliccontrolinindividualswithimpairedglucosetolerance andsleepapnea.Sleep.2012;35:25B---617B.

66.Hecht L, Mohler R, Meyer G. Effects of CPAP-respirationon markers of glucose metabolism in patients with obstructive sleepapnoeasyndrome:asystematicreviewandmeta-analysis. GerMedSci.2011;9:Doc20.

67.PamidiS,WroblewskiK,StepienM,Sharif-SidiK,KilkusJ, Whit-moreH,etal.Eighthoursofnightlycontinuouspositiveairway pressure treatmentof obstructivesleep apneaimproves glu-cosemetabolismin patientswithprediabetes.Arandomized controlledtrial.AmJRespirCritCareMed.2015;192:96---105. 68.IftikharIH,KhanMF,DasA,MagalangUJ.Meta-analysis:

con-tinuouspositiveairwaypressureimprovesinsulinresistancein patientswithsleepapneawithoutdiabetes.AnnAmThoracSoc. 2013;10:115---20.

69.YangD,LiuZ,YangH, LuoQ. Effectsofcontinuouspositive airwaypressure onglycemiccontrolandinsulinresistancein patientswithobstructivesleepapnea:ameta-analysis.Sleep Breath.2013;17:33---8.

70.GuoLX,ZhaoX,PanQ,SunX,LiH,WangXX,etal.Effectof continuouspositiveairwaypressuretherapyonglycemic excur-sionsandinsulinsensitivityinpatientswithobstructivesleep apnea-hypopnea syndromeand type2 diabetes.ChinMedJ. 2015;128:2301---6.

71.Xu H,YiH, Guan J,YinS. Effect ofcontinuouspositive air-waypressureonlipidprofileinpatientswithobstructivesleep apneasyndrome:ameta-analysisofrandomizedcontrolled tri-als.Atherosclerosis.2014;234:446---53.

72.LinMT,LinHH,LeePL,WengPH,LeeCC,LaiTC,etal.Beneficial effect of continuous positive airway pressure on lipid pro-filesinobstructivesleepapnea:ameta-analysis.SleepBreath. 2015;19:809---17.

(10)

202 A.Felicianoetal.

73.Cholidou KG, Kostakis ID, Manali ED, Perrea D, Margeli A, VougasK,etal.Calprotectin:aproteinrelatedto cardiovascu-larriskinadultpatientswithobstructivesleepapnea.Cytokine. 2013;61:917---23.

74.BuechnerNJ,ZidekW, EerM,Haske M,SannerBM. Obstruc-tivesleepapneasyndrome.Effectsoftherapyondyslipidemia. Somnologie.2001;5:97---102.

75.Trzepizur W, LeVaillant M,Meslier N,Pigeanne T, Masson P, HumeauMP, et al. Independentassociation between noctur-nalintermittenthypoxemiaandmetabolicdyslipidemia.Chest. 2013;143:1584---9.

76.IpMS,LamKS,HoC,TsangKW,LamW.Serumleptinandvascular riskfactorsinobstructivesleepapnea.Chest.2000;118:580---6. 77.GrassiG,FacchiniA,TrevanoFQ,Dell’OroR,ArenareF,Tana F,etal.Obstructivesleepapnea-dependentand-independent adrenergicactivationinobesity.Hypertension.2005;46:321---5.

78.PintoP,BárbaraC,MontserratJ,PatarrãoR,GuarinoM,Carmo M,et al.Effects ofCPAPon nitrateand norepinephrine lev-elsinsevereandmild---moderatesleepapnea.BMCPulmMed. 2013;13:13.

79.PhillipsC,YangQ,WilliamsA,RothM,YeeB,HednerJ,etal. Theeffectofshort-termwithdrawalfromcontinuouspositive airwaypressuretherapyonsympatheticactivity andmarkers of vascular inflammation in subjects with obstructive sleep apnoea.JSleepRes.2007;16:217---25.

80.Curro M, Gugliandolo A, Gangemi C, Risitano R, Lentile R, Caccamo D. Toxic effects of mildly elevated homocys-teine concentrations in neuronal-like cells. Neurochem Res. 2014;39:1485---95.

Referências

Documentos relacionados

In this chapter we have presented a brief account of the differential characteristics of oral presentations at high school, showing that the distribution of

Evidence of inland sand migration based on OSL ages used across a variety of transgressive dune systems in Europe ( Fig. 2 ) and their coincidence with periods of increase storminess

Issa FG, Sullivan CE — The immediate effects of nasal continuous positive airway pressure treatment on sleep pattern in patients with obstructive sleep apnea syndrome. Krieger J,

Daytime hypercapnia in adult patients with obstructive sleep apnea syndrome in France, before initiating nocturnal nasal continuous positive airway pressure therapy. Hypercapnia

Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin

Effects of nocturnal continuous positive airway pressure therapy in patients with resistant hypertension and obstructive sleep apnea: effects of nocturnal continuous positive airway

Effect of long-term continuous positive airway pressure ventilation on blood pressure in patients with obstructive sleep apnea hypopnea syndrome: a meta-analysis of clinical

Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea.. Major role for hypoxia inducible factor-1 and the