• Nenhum resultado encontrado

K2MgSiO4 : a novel K+-trapped biodiesel heterogeneous catalystproduced from serpentinite Mg3Si2O5(OH)4.

N/A
N/A
Protected

Academic year: 2021

Share "K2MgSiO4 : a novel K+-trapped biodiesel heterogeneous catalystproduced from serpentinite Mg3Si2O5(OH)4."

Copied!
8
0
0

Texto

(1)

Journal

of

Molecular

Catalysis

A:

Chemical

j o ur n a l ho me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

K

2

MgSiO

4

:

A

novel

K

+

-trapped

biodiesel

heterogeneous

catalyst

produced

from

serpentinite

Mg

3

Si

2

O

5

(OH)

4

Fabiane

Carvalho

Ballotin

a

,

Thérèse

Ebambi

Cibaka

a

,

Tatiana

A.

Ribeiro-Santos

a

,

Eleonice

Moreira

Santos

b

,

Ana

Paula

de

Carvalho

Teixeira

a

,

Rochel

Montero

Lago

a,∗

aUniversidadeFederaldeMinasGerais,InstitutodeCiênciasExatas,DepartamentodeQuímica,BeloHorizonte,MG31270-901,Brazil bUniversidadeFederaldeOuroPreto,EscoladeNutric¸ãoENUT,DepartamentodeAlimentos,OuroPreto,MG35400-000,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31October2015

Receivedinrevisedform1February2016 Accepted2February2016

Availableonline4February2016 Keywords:

K2MgSiO4

Serpentinite Biodiesel

a

b

s

t

r

a

c

t

Inthisstudy,anewcatalystforbiodieselsynthesis,basedonK2MgSiO4,wasproducedfromthemineral

serpentinite.TG,SEM,XRD,AA,BETanalysesshowedthatserpentiniteMg3Si2O5(OH)4impregnatedwith

KOH(5,10and20wt%),andthermallytreatedat500◦C,700and900◦C,canbeconvertedtothemain

crys-tallinephaseK2MgSiO4.AnalysesbyTPD-MS(CO2)andtitrationsuggestedthepresenceofweak/medium

basicsitesinrelativelyhighconcentrations.Biodieselproductionusingsoybeanoil(methanol:soybeanoil

ratioof1:12,1:9;1:6,60◦C)showedyieldshigherthan95%withcatalystat10wt%,whichcanbereused

forthreeconsecutivetimeswithoutsignificantdecreaseonthereactionyield.Theobtainedresultsare

discussedintermsofanewcatalyticphasebasedonK+ionstrappedinthecavitiesoftheMgSiO

42−

structurecontainingnegativelychargedoxygenbasicsites.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Basiccatalysts,suchasalkalinemetalhydroxidesand methox-idesarewidelyemployedashomogeneouscatalystsinthebiodiesel industrialprocess[1,2].However,theuseofhomogeneous cata-lysts,leadstosomeproblemssuchas:theneedofawashingstep, theformationofemulsions,largevolumesofwastewater,theneed ofadryingstepandlossofthecatalyst[2–4].Ontheotherhand, heterogeneouscatalystscanofferseveraladvantagessuchasthe possibilityofreuse[5],eliminationofsomestepsintheprocessand simpleseparationfromthefinalproduct[6],resultinginsignificant decreaseonproductioncosts[7].

Differentbasicheterogeneouscatalystshavebeeninvestigated, suchasmixedoxidesCaO–CeO2[8],aluminasupportedmetals[9], andespeciallyearthalkalinemetalsoxides,e.g.,CaO[10]andMgO [11],whicharethemostusedforbiodieselsynthesis.Several stud-ieshaveshownthatthebasicityandactivityofbiodieselcatalysts canbeincreasedbytheadditionofdifferentelements,especially potassium.SomeexamplesareK+dopedtitanatenanotubes[12]

∗ Correspondingauthor.Fax:+553134095777.

E-mailaddresses:fballotin@ufmg.br(F.C.Ballotin),tcibaka@gmail.com (T.E.Cibaka),tatianaaribeiros@yahoo.com.br(T.A.Ribeiro-Santos), emsquimica@hotmail.com(E.M.Santos),anapct@ufmg.br(A.P.d.C.Teixeira), rochel@ufmg.br(R.M.Lago).

K+supportedonTiO

2[13],KOH/bentonite[14]andK+/chrysotile [15].

Inthiswork,serpentiniteMg3Si2O5(OH)4wasusedasprecursor toproducea K+ basiccatalyst for biodieselsynthesis. Serpenti-nite,aninexpensivemineralandinsomecasesawaste,isformed byaSioxidetetrahedralsheetboundtoMg(OH)2based octahe-drallayer[16].Serpentinitehasbeenusedinsimpleapplications suchasconstruction,steelmills,magnesiumproduction[17], fer-tilizer[18]andforCO2storage[17,19].Serpentinitecanbeavery versatileprecursortoproduceMgbasedmaterialssinceunder con-trolledthermaltreatment,theMg3Si2O5(OH)4 phasedehydrates toproducedifferentMgcontainingphasessuchasdispersedMgO, Mg2SiO4besidesotherSiO2 basedphases.Asimplifiedequation canbeusedtorepresenttheserpentinitedecomposition:

Mg3Si2O5(OH)4→MgO+Mg2SiO4+SiO2+2H2O (1)

Hereon,itisdescribedthereactionofserpentinitewithKOHto producethephaseK2MgSiO4withbasicproperties,whereK+ions aretrappedinthecavitiesformedbytheSiO4andMgO4structural tetrahedra(Fig.1).

http://dx.doi.org/10.1016/j.molcata.2016.02.006 1381-1169/©2016ElsevierB.V.Allrightsreserved.

(2)

Fig.1.SchematicrepresentationofthethermaldecompositionofserpentiniteKOH/Mg3Si2O5(OH)4toformthephaseK2MgSiO4. 0 200 400 600 800 1000 88 90 92 94 96 98 100 20K900 We ig ht /% Temperature / °C SER 20K500 20K700

Fig.2.TG/DTGcurvesforserpentinite(SER)andserpentinitesamplesimpregnated withK+afterthermaltreatmentat500,700and900C(20K500,20K700and20K900).

2. Experimental 2.1. Catalystssynthesis

Pulverizedserpentinitesamples(PedrasCongonhasLtda)were sieved(#200)andimpregnatedwithaqueousKOHinproportions of0,5,10and20wt%ofpotassium.Thematerialsweredriedfor24h andthermallytreatedat500,700or900◦Cfor3hinairatmosphere. Thesecatalystsarenamedhereonas20K700,where20Kindicates 20wt%ofKandthermaltreatmentat700◦C.

2.2. Catalystscharacterization

Themetals (magnesiumand iron) wereanalyzed by atomic absorptionspectrometry(Hitachi-Z8200).TheSEMimageswere obtainedinaFEIQuanta200-FEGequipment.TheXRDstudieswere doneonaShimadzudiffractometer,modelXRD-7000withCuK␣ withascanspeedof4◦min−1.

Fig.3. XRDpatternsofserpentinitesamplesSER,and20K500,20K700and20K900.

Thermogravimetricanalyses(TGA)wereperformedin a Shi-madzu DTG60Hwithairflow (50mLmin−1)withheating rate of 10◦Cmin−1 up to 1000◦C. In order to determine the basic propertiesofthematerial20K700,asimultaneousTGA-MS(mass spectrometry)analysiswasapplied.Thebasepeak(m/z=44)was selectedtobemonitoredinaNETZSCHTG/STAequipmentcoupled withAelosspectrometer,model7.0.Thecatalystswerepreviously treatedinN2atmosphere(50mLmin−1)at500◦Cfor1h,followed bytreatmentat50◦CunderCO2flow(50mLmin−1)for1h.Then, thematerialwasheatedto900◦Cinargonatarateof10◦Cmin−1. Inordertodeterminethetotalbasicsites,0.5gofthesamples weredispersedin50mLofHCl0.1molL−1and20mLofdistilled water.After24hofstirring,25mLofthesolutionwastitratedwith NaOH0.1molL−1andphenolphthaleinasindicator.

The specific surface areas of the samples wereanalyzed by adsorptionofN2 at77KusinganAutosorb1-MPQuantachrome. Thesamplesweredegassedat200◦Cfor24hbeforetheanalyses.

(3)

Fig.4.SEMimagesofserpentinitebeforeandafterimpregnationwithKOH(20K)thermallytreatedat500,700and900◦C.

The absorption spectroscopy measurements for diffuse reflectancein theinfraredregionwithFourier transform(FTIR) wereperformed on a Brukerequipment, Alpha model. Spectra werecollected in therange of 400–4000cm−1 region,with 64 accumulations.

Theinfluenceofcarbonationandhydrationin theactivityof thecatalyst werestudiedduring 30days byexposing the cata-lystto atmosphere. The catalyst wascharacterized by infrared spectroscopy,thermogravimetricanalyses,TPD-MSand transester-ificationreactionsafterthe1,5,10,20and30daysofairexposure.

2.3. Biodieselsynthesis

Biodiesel syntheses were carried out using soybean oil, methanol,and thecatalysts basedon serpentinite impregnated with K (0, 5, 10 and 20wt%) treated at 700◦C/3h. The cat-alyst concentration in the reaction were adjusted to 1, 5 or 10wt%.Thereactionswereconductedat60◦C, inatwonecked glass reactor, under reflux and mechanical stirring for differ-enttimes.Theoil:methanolmolarratiosusedwere1:6,1:9and 1:12.

(4)

0 1 2 3 4 5 6 7 8 9 10 11

20K

10K

5K

0K

10K

20K

5K

0K

10K

20K

5K

900

°C

700 °C

500 °C

B

a

si

ci

ty

/

mm

ol OH

g

-1

SER

0K

Fig.5.TotalbasicityofserpentinitesamplesimpregnatedwithKOHbeforeandafterthermaltreatment.

0 200 400 600 0K700 5K700 10K700 Carbonate decomposition Medium basic sites Weak basic sites Int en sit y / a. u. Temperature / °C 20K700

Fig.6.TPD–MSCO2curves:0K700,5K700,10K700and20K700.

2.4. Catalystreuse

The catalysts reuse reactions were performed under opti-mizedconditionsof5wt%and10wt%ofthecatalyst20K700,with oil:methanolmolarratioof1:6at60◦C/2h.Afterthereaction,the liquidphasewasseparatedfromthecatalysts,andtherecycling experimentsweredoneby:

(i)simplereuseofthecatalystswithoutanytreatment,

(ii)thecatalystwaswashedwith3portionsof3mLofsolvent (acetone,hexaneormethanol),centrifuged,andusedforanew reaction,

(iii)thecatalystwaswashedoncewithmethanolandtreatedat 700◦Cinairfor1h. 0 20 40 60 80 100 10 5 Co v e rs ion / % Catalyst weight / % 1:6 1:9 1:12 1 KOH ho moge neous

Fig.7.Effectofcatalyst20K700concentrationwithdifferentsoybeanoil/methanol

ratiosandKOHhomogeneouscatalystinthebiodieselproduction(60◦C,180min).

2.5. Biodieselquantification

The biodiesel wasseparated and analyzed by1H NMR ona BrukerDPX200spectrometerfor conventionalreactionsandin BrukerDPX400equipmentforreusereactions.

Inordertocalculatetheyieldofthetransesterificationreaction, 1HNMRtechniquewasused[20].Mixturesofpurebiodieseland soybeanoilwereusedtobuildacalibrationcurve(Supplementary material).

3. Resultsanddiscussion

Theserpentinteusedasprecursorforthecatalystspreparation showedachemicalcompositionofSiO240wt%,MgO30wt%typical forthephaseslizarditeandantigoriteMg3Si2O5(OH)4,associated withtalc(Mg3Si4O11H2O),withasignificantconcentrationofiron (Fe2O310wt%).

Thermogravimetricanalysisofpureserpentinite(SER,Fig.2) showedaweightlossofca.1%until300◦C,relatedtoadsorbed water [21]. In the temperature range 500–800◦C, serpentinite

(5)

1ST

USE

2ND USE

3R

D USE

0 20 40 60 80

1

:6

(o

il:

me

th

a

n

o

l)

1:

6 (

o

il:

m

e

th

an

ol

)

1

:6

(o

il:

me

th

a

n

o

l)

1:

12

(

o

il:

m

e

th

an

ol

)

1

:1

2

(o

il:

me

th

a

no

l)

Co

nv

e

rs

ion

/ %

1:

12

(

o

il:

m

e

th

an

ol

)

Fig.8.Recyclingreactionsofthecatalysts,using5and10wt%,1:6and1:12oil:methanol(60◦C,120min),anddifferentrecoverablemethods.

decomposes by dehydroxylation with a weight loss of 10% to formnewphases.Based onthisresult,thethermal decomposi-tionofserpentinitewasinvestigatedinmoredetail at500,700 and900◦C.XRDpatternsshowed,forthepureserpentintetreated at500◦C, 0K500 nosignificantchangeinphasecomposition. On theotherhand,thematerialgraduallydehydroxilates(Eq.(2))at 700and900◦CandthenewphasesfosteriteMg2SiO4andolivine (MgFe)2SiO4areformed(Supplementarymaterial).

Mg2Si2O5(OH)4→MgO/Mg2SiO4/SiO2+2H2O (2)

Similarresultshavebeenobservedforthethermal decomposi-tionofchrysotile[15].

InordertopreparetheK2MgSiO4basedcatalysts,serpentinite wasimpregnatedwithKOHat5,10and20wt%potassium,andeach materialwastreatedat500,700and900◦C.Fig.2showstheTG profilesofthecatalystscontaining20%Kafterthermaltreatment (alltheotherTGprofilesareshowninSupplementarymaterial).

Itcan beobserved thattheweight lossof 10%observed for thepureserpentiniteprecursor graduallydecreasedasSERwas impregnatedwithKOH andpretreated at500and 700◦C.After pretreatmentat900◦Cnosignificantweightlosswasobserved.

XRDdata ofthe material20K500 (Fig.3) suggeststhat KOH promotedthe thermal decomposition at 500◦C which was not observedforthepureserpentiniteprecursor.Itwasalsoobserved theformationofthenewmainphaseK2MgSiO4 (JCPDSCardNo. 39-1426)withsmallamountsofforsteriteMg2SiO4(JCPDSCardNo. 4-768)andolivine(MgFe)2SiO4(JCPDSCardNo.2-1326).Similar resultswereobservedforthematerialstreatedat700and900◦C. TheXRDpatternsofthesamples5K700,10K700and 20K700 (see Supplementarymaterial)clearlyshowedthattheformationofthe phaseK2MgSiO4wasstronglyfavoredastheconcentrationofK+ increased.

Itisinterestingtoobservetheabsenceofthediffractionpeak at43◦ relatedtoMgO,whichsuggeststhatifMgOwasformedit islikelyverydisperse.ItcanalsobeenvisagedthattheMgOwas consumedintheformationofthemainphaseK2MgSiO4(Eq.(3)).

K2O+MgO+SiO2→K2MgSiO4 (3)

TheformationofthisphaseK2MgSiO4hasbeenreportedbythe ternarysolidstatereactionofK2O–MgO–SiO2athightemperatures [22].Detailedinvestigationof theK2MgSiO4 structure [23]

sug-gestsanetworkofSiO4tetrahedraconnectedtoMg2+O4tetrahedra wheretheK+ionsarelocatedintheinterstitialspacebetweenthe tetrahedral[23].

SEMimagessuggestthatserpentiniteisabulkycompactsurface, butafterthermaldecomposition,withorwithoutKOH,the mate-rialbecomesmorefragmented(Fig.4).BETsurfaceareaanalyses showed12m2g−1forserpentinite,whichafterthermaltreatment at700◦Cslightlyincreasedto27m2g−1.Ontheotherhand,the samplescontainingpotassium(5K700,10K700and20K700)showed adecreaseto7,5and11m2g−1,respectively,suggestingthatthe KOHhasaneffectonthetextureofthefinalmaterialproduced.

Thedifferentcatalystswereanalyzedforthetotalbasicityby simplereactionwithHCl(Fig.5).

Itcanbeobservedthatpureserpentiniteshowedatotalbasicity of3.3mmolOH−g−1.ThisbasicityislikelyrelatedtotheMg(OH)2 layersolubilizationbyHCl.Thetreatmentofpureserpentiniteat 500◦C(0K500)didnotshowanysignificantincreaseonthe basic-ity.Ontheotherhand,thebasicitystronglyincreasedto7.2mmol OH−g−1aftertreatmentat700◦C,likelyrelatedtothe decompo-sitionofserpentintewiththesegregationofMgO.Itisinteresting toobservethatat900◦Cthebasicitydecreasesprobablybythe reactionofMgOwithSiO2toformtheneutralmagnesiumsilicates. Aspotassiumwasaddedtotheserpentiniteandtreatedat500◦C, thebasicitywentto6.5,7.5and9.9mmolOH−g−1forthesamples 5K,10Kand20K,respectively.Aftertreatmentat700◦Cthe basic-ityslightlyincreasedwhereasat900◦Cadecreasewasobserved. Basedontheseresultsthesamplestreatedat700◦Cwereselected forfurthercharacterizationandusedasheterogeneouscatalystfor biodieselsynthesis.

Thepresenceofsurfacebasicsitesofthecatalystswas inves-tigated by CO2 TPD-MS technique (Fig. 6). The samples were pre-treatedat500◦CinaN2flow,andthenexposedtoCO2at50◦C forsubsequentTPD-MSanalyses.

Itcanbeobservedthatpureserpentinite(SER)andthesample 0K700showednosignificantadsorption/desorptionofCO2,which indicatesverylowconcentrationofsurfacebasicsites.Theseresults suggestthattheMgOproducedduringtheserpentinite decompo-sitionisnotreadilyavailableonthesurfaceforinteractionwith CO2. Thesamples 5K700 and 10K700 showedlow intensity des-orptionpeaks. On theother hand,the TPD-MS for thecatalyst 20K700showedthepresenceof3desorptionpeaks(Fig.6):weak

(6)

Fig.9. SEMimagesandEDSanalysesofthecatalysts(20K700,directreuseandacetonewashingreuse)after4uses.

basicsites (upto200◦C), mediumbasic sites(200–500◦C) and peaksabove500◦C.Accordingtoliterature,peaksbelow200◦Care relatedtoCO2weaklyadsorbedonthecatalystsurface, correspond-ingtohydroxylgroupsonthesurface[24]whereasthepeaksnear 350◦CcanbeassignedtoCO2desorbedfrommediumbasicity,for examplemagnesiumoxide[25,26]andMg2+andO2−pairs[24]. Above500◦C, theCO2 islikely duetocarbonatedecomposition [27].Studieswiththemineralchrysotileshowedsimilarresults [15].Shenetal.alsodetectedmediumstrengthbasicsites,which wereassignedtoKxMgO/SiO2[28].

Thebiodieselsynthesiswasinvestigatedwiththedifferent pre-paredcatalysts.The seriesSER,0K500,0K700 and0K900,showed

yieldslowerthan20%indicatingthatthepresenceofpotassium iscriticalforamoreactivecatalyst.Thebestresultswereobtained forthecatalysts20K700and20K900.Moredetailedinvestigation wascarriedoutwiththecatalyst20K700indifferentreaction con-ditions.Theeffectofcatalystconcentrationandoil/methanolratios intheconversionofsoybeanoilispresentedinFig.7.

Itcanbeobservedthatthereactionreachedgoodconversion (>80%)usingonly1wt%ofthecatalystattheoil:alcoholmolarratio of1:9.For5and10wt%,conversionsnear95%wereobtainedfor alloil:methanolratios.

Simpletestinthebiodieselreactionusingtheclassical homoge-neousKOHat0.5%(Fig.7)showedesteryieldsof95±2%.Similar

(7)

D0 D1 D-5 D-10 D-20 D-30 0,0 0,5 1,0 1,5 CO2 basic sites Ba s ici ty / m m o l g -1 Days

CO2 "bulk carbonate"

Fig.10.QuantificationofgroupsofCO2inthecatalysts.

results were obtained with the heterogeneous 20K700 present inthereactionat 5%.Considering theKcontentin thecatalyst 20K700 is nearly only 20%,similarTON of 30molMe-estermolK−1 wereobtainedforbothcatalysts.TheseresultssuggestthattheK presenceinboth,homogeneousandheterogeneouscatalystshave similaractivities.

Thecatalystsstabilitywasinvestigatedbyconsecutivereuses (Fig.8).Whenreactionswerecarriedoutwith10wt%catalystwith oil:methanolratioof1:12,adecreaseof21%ontheconversionwas observedafterthreeconsecutivereactions.Therecyclabilityofthe catalystwasalsostudiedinamorelimitingcondition(i.e.,5wt% catalystanda1:6oil:methanolratio,at60◦Cfor2h)(Fig.8).

Afterthereaction,thecatalystwascompletelyagglomerated duetotheimpregnationwiththeorganicphase.Theseconduse ofthiscatalystwithoutanytreatmentstillshowedverygood con-version.Also,bywashingthecatalyststoremovetheorganicphase (differentsolventswereused,i.e.,hexane,acetone,methanol)fairly goodconversionswereobtained.Ontheotherhand,thermal treat-mentat700◦Ccausedasignificantdecreaseontheconversion,i.e., from85toca.45%(notshown).Afterthethirduse,theconversion decreasedtolessthan40%especiallyafterthermaltreatmentat 700◦C.Theobtainedresultssuggestthatpotassiumislostafterthe firstreactionandnearly40%waslostafter4reactions.

Thefresh20K700andtheusedcatalysts(directreuseandacetone washingreuse),inthemorelimitingcondition,(after4uses)were analyzedbySEM/EDS(Fig.9)andXRF(X-rayfluorescence).

SimplecalculationoftheEDSsignalratioK/SiandXR fluores-cencemeasurementssuggestedthatafterthefirstuse,thecatalysts lostca.10–15%oftheKcontent.Thecatalystsstabilityisan impor-tantfactortoindustry,inthissense,20K700catalystwasexposed toairandinvestigatedduring30daysbyTG/DTG,FTIRand TPD-MSanalyses.TGanalyses(Supplementarymaterial)showedthat exposedcatalysts(1,5,10,20and30days)presentedsmallweight lossesintwotemperatureranges,upto500◦Crelatedtothelossof wateranddihydroxylationprocesses[29]andbetween600–800◦C likelyrelatedtocarbonatedecomposition.Carbonatationon cata-lystssurfaceshasalsobeenobservedbeforefordifferentmineral oxidesandbasiccatalysts[17,30].Thecarbonatesthermal decom-positionis wellknown totakeplace in thetemperature range 600–800◦C[31].

FTIRspectraforthematerialsexposedtoairupto30days (Sup-plementarymaterial)confirmedagradualhydrationat3300cm−1 referredto OHstretchingandat1659cm−1( OHbending)[32] and carbonation (CO3: 862 (out-of-plane bending)), 1440cm−1

Fig.11.SchematicrepresentationoftheK-trappedintheK2MgSiO4structure

(adaptedfromRef.[21]).

(symmetricbending)and1655cm−1(antisymmetricbending)[33] ofthecatalyst.

TheCO2 desorption wasmeasuredbyTPD-MS aftercatalyst exposurefor1,5,10,20and30days(Fig.10).Thepresenceofthree desorptiongroupswasobserved: surfacebasicsites,carbonates andespeciallyphysisorbedCO2(upto1.7mmolg−1).

Thecatalyst20K700exposedtoairfor1,5,10,20and30dayswas thentestedforbiodieselproductionat5wt%catalyst,methanol:oil ratioof1:6at60◦C.Theobtainedresults(Supplementary mate-rial)showednosignificantdeactivationduetotheexposureofthe catalysttoair.

Although the catalyst nature is not clear, one can consider thatthemaincrystallinephaseK2MgSiO4islikelyinvolvedinthe reaction.Thereisonlyonereportsuggestingthatthisphaseisa basiccatalystforthereactionofhexosestohydroxylmethylfurfural (HMF)[28].Inthisreport,theK2MgSiO4wasproducedfrompure K2CO3,MgOandSiO2atveryhightemperatures.

Thestructureof K2MgSiO4 hasbeendescribedasa “stuffed” crystobalitepolymorphofSiO2 [26],where athree-dimensional arrayofcorner-sharingSiO4tetrahedraformlargeopencavities. SomefractionoftheSiatomscanthenbereplacedwithMg2+and theK+ionsare“stuffed”,i.e.,trappedinsidethecavities[23].Avery simplerepresentationofthisstructureisshowninFig.11.

ThecompoundK2MgSiO4canalsobeviewedasanegatively chargedsolidmatrix[MgSiO4]2−containingK+trappedinthe struc-ture.Althoughthenatureofthebasicsitesforthebiodieselreaction isnotclear,itmightberelatedtothesurfaceandstructural oxy-genscontainingthenegativecharges.Moredetailedstudiesare necessarytofurtherinvestigatethenatureofthecatalyticsites.

4. Conclusions

Serpentiniteprovedtobeaveryinterestingprecursorto pro-ducethespecialcatalyticphaseK2MgSiO4whichisapparentlyvery activefor theproduction of biodiesel. Thisnewcatalytic phase seemstobebasedonK+ionstrappedinthecavitiesoftheMgSiO

42−

(8)

cat-alyst20K700at10wt%canbereusedforthreeconsecutivetimes withoutsignificantdecrease onthereactionyield. Experiments usingcatalystat5%showedpotassiumleachingandadecreaseon theconversionafterthesecondreaction.

Acknowledgements

TheauthorsacknowledgePedrasCongonhasLTDAforthe sam-ples,theUFMGmicroscopycenterfortheimagesandthesupport ofCNPQ,CAPESandFAPEMIG.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.molcata.2016.02. 006.

References

[1]U.Schuchardt,R.Sercheli,R.M.Vargas,J.Braz.Chem.Soc.9(1998)199–210. [2]C.S.Cordeiro,F.R.daSilva,F.Wypych,L.P.Ramos,Quim.Nova.34(2011)

477–486.

[3]M.E.Borges,L.Días,Renew.Sustain.EnergyRev.16(2012)2839–2849. [4]S.Semwal,A.K.Arora,R.P.Badoni,D.K.Tuli,Bioresour.Tech.102(2011)

2151–2161.

[5]G.J.Suppes,M.A.Dasari,E.J.Doskocil,P.J.Mankidy,M.J.Goff,Appl.Cat.A:Gen. 257(2004)213–223.

[6]W.Suryaputra,I.Winata,N.Indraswati,S.Ismadji,Renew.Energy50(2013) 795–799.

[7]A.K.Endalew,Y.Kiros,R.Zanzi,BiomassBioenergy35(2011)3787–3809. [8]X.Yu,Z.Wen,H.Li,S.T.Tu,J.Yan,Fuel90(2011)1868–1874.

[9]W.Wu,Z.Wan,W.Chen,H.Yang,D.Zhang,Adv.PowderTech.25(2014) 1220–1226.

[10]A.Bazargan,M.D.Kostic,O.S.Sramenkovic,V.B.Veljkovic,G.McKay,Fuel150 (2015)519–525.

[11]T.Seki,H.Kabashima,K.Akutsu,H.Tachikawa,H.Hattori,J.Cat.204(2011) 393–401.

[12]P.Hernández-Hipólito,N.Juaréz-Flores,E.Matínez-Klimova,A.Gómez-Cortés, X.Bokhimi,L.Escobar-Alarcón,T.E.Klimova,Cat.Today250(2015)187–196. [13]D.Salinas,S.Guerrero,P.Araya,Cat.Commun.11(2010)773–777. [14]F.E.Soetaredjo,A.Ayucitra,S.Ismadji,A.L.Maukar,Appl.ClaySci.53(2011)

341–346.

[15]A.P.C.Teixeira,E.M.Santos,A.F.P.Vieira,R.M.Lago,Chem.Eng.J.232(2013) 104–110.

[16]G.N.White,J.B.Dixon,in:J.B.Dixon,D.G.Schulze(Eds.),SoilMineralogywith EnvironmentalApplications,SoilScienceSocietyofAmerica,2002,pp. 389–414.

[17]S.Teir,H.Revitzer,S.eloneva,C.J.Fogelholm,R.Zevenhoven,Int.J.Miner. Process.83(2007)36–46.

[18]F.B.D.Prates,G.D.Genuncio,A.C.Ferrari,E.C.doNascimento,G.Z.Alvez,D.P. Palermo,E.Zonta,Cienc.Rural44(2014)810–816.

[19]J.Fagerlund,S.Teir,E.Nduagu,R.Zevenhoven,EnergyProced.1(2009) 4907–4914.

[20]G.Gelbard,O.Brès,R.M.Vargas,F.Vielfaure,U.F.Schuchardt,J.Am.OilChem. Soc.72(1995)1239–1241.

[21]R.D.Balucan,B.Z.Dlugogorski,E.M.Kennedy,I.V.Belova,G.E.Murch,Int.J. Green.GasControl.17(2013)225–239.

[22]L.Torres-Martinez,A.R.West,J.Mater.Sci.Lett.7(1988)821–822. [23]W.A.Dollase,Phys.Chem.Miner.25(1998)389–392.

[24]a)M.Verziu,B.Cojocaru,J.Hu,R.Richards,C.Ciuculescu,P.Filip,V.I. Parvulescu,GreenChem.10(2008)373–381;

b)V.Mutreja,S.Singh,A.Ali,Renew.Energy36(2011)2253–2258. [25]J.I.DiCosmio,V.K.Díes,M.Xu,E.Iglesia,C.R.Apesteguía,J.Cat.178(1998)

499–510.

[26]L.M.Correia,N.deSousaCampelo,D.S.Novaes,C.L.CavalcanteJr.,J.A.Cecilia, E.Rodrígues-Castellón,R.S.Vieira,Chem.Eng.J.269(2015)35–43.

[27]N.Güngör,S.Isc¸i,E.Günister,W.Mista,H.Teterycz,R.Klimkiewicz,Appl.Clay Sci.32(2006)291–296.

[28]X.Shen,Y.Wang,B.K.Ahring,H.Lei,Q.Gao,H.Liu,RSCAdv.(2015). [29]R.Trittschack,B.Grobéty,P.Brodard,Phys.Chem.Miner.41(2014)197–214. [30]K.S.Lackner,C.H.Wendt,D.P.Butt,E.L.JoyceJr.,D.H.Sharp,Energy20(1995),

1553–1170.

[31]J.P.Sanders,P.K.Gallagher,Thermochim.Acta388(2202)(2002)115–128. [32]H.Li,M.Li,G.Qiu,C.Li,C.Qu,B.Yang,J.AlloysComp.632(2015)639–644. [33]N.Sutradhar,A.Sinhamahapatra,B.Roy,H.C.Bajaj,I.Mukopadhyay,A.B.

Referências

Documentos relacionados

Considerando o grupo rural isoladamente, verificou-se uma correlação negativa entre o tempo médio de prática da actividade laboral e o número médio de dias de baixa e entre a

Há crise. Não há alternativa a governar uma justaposição do arco atlântico com o eixo continental. Forçado a jogar com ambas, é de novo altura de reinterpretar, de reformular

(Apocynaceae) seeds from two ecosystems of northeastern Brazil (Caatinga and Restinga) and subjected to water stress in light and darkness at 30°C after 35 days.. Greek, capital

Initially, the effect of the use of the mixture of immobilized commercial lipases was investigated in the reactions of transesterification of soybean oil with ethanol carried out

A magnetic heterogeneous catalyst for the production of FAME biodiesel was successfully prepared by using an amorphous silica as a support, KI as the chemically active

The reusability and stability of catalyst were tested using a methanol to oil molar ratio of 24:1 and catalyst to oil mass ratio of 3.0%, reaction time of 15 h; these

This retrospective and cross-sectional study was carried out on the records of consecutive patients with maxillofacial traumas who were referred to the Brazilian Institute of

Fazendo alusão as funções típicas de cada poder, concebe ao poder legislativo à atribuição de leis que estabeleçam limites dentro do poder estatal em questões sobre a