• Nenhum resultado encontrado

Generalized weighted Ostrowski and Ostrowski-Gruss type inequalities on time scales via a parameter function

N/A
N/A
Protected

Academic year: 2021

Share "Generalized weighted Ostrowski and Ostrowski-Gruss type inequalities on time scales via a parameter function"

Copied!
15
0
0

Texto

(1)

Mathematical Inequalities

Volume 11, Number 4 (2017), 1185–1199 doi:10.7153/jmi-2017-11-88

GENERALIZED WEIGHTED OSTROWSKI AND OSTROWSKI–GR ¨USS TYPE INEQUALITIES ON TIME SCALES VIA A PARAMETER FUNCTION

SETHKERMAUSUOR, EZER. NWAEZE ANDDELFIMF. M. TORRES

(Communicated by A. Vukeli´c)

Abstract. We prove generalized weighted Ostrowski and Ostrowski–Gr¨uss type inequalities on time scales via a parameter function. In particular, our result extends a result of Dragomir and Barnett. Furthermore, we apply our results to the continuous, discrete, and quantum cases, to obtain some interesting new inequalities.

1. Introduction

In order to estimate the absolute deviation of a differentiable function from its integral mean, Dragomir and Barnett [10] obtained in 1999 the following Ostrowski type inequality.

THEOREM1. (See [10]) Let f :[a,b] → R be continuous on [a,b] and twice dif-ferentiable on(a,b) with second derivative f:(a,b) → R. Then,

  f(x) − f(b) − f (a) b− a  x−a+ b2 b− a1  a a f(t)dt    M2  (x −a+b 2 )2 (b − a)2 + 1 4 2 +121 (b − a)2

for all x∈ [a,b], where M = sup a<t<b| f

(t)| < ∞.

By introducing a parameter, Liu [13] established in 2010 the following perturbed weighted generalized three-point integral inequality with bounded derivative.

Mathematics subject classification (2010): 26D10, 26D15, 26E70.

Keywords and phrases: Ostrowski’s inequality, Ostrowski–Gr¨uss inequality, parameter function, time scales.

This research was partially supported by Portuguese funds through CIDMA and FCT, within project UID/MAT/04106/2013.

c

  , Zagreb

(2)

THEOREM2. (See [13]) Let 0 k  1 and f : [a,b] → R be a differentiable

mapping. Assume there exists a constant γ ∈ R such that γ  f(x) for x ∈ [a,b], g :[a,b] → [0,∞) is continuous and positive on (a,b), and let h : [a,b] → R be

differ-entiable such that h(t) = g(t) on [a,b]. Then,     (1 − k) f (x) − k x ag(t)dt b ag(t)dt f(a) + b x g(t)dt b ag(t)dt f(b)  b a g(t)dt γ  (1 − k) (h(b) − h(a)) x−a+ b2  + (b − a) h(x) −h(a) + h(b)2   b a (h(t) − h(x))dt  b a f(t)g(t)dt     ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (1 − k) 1 2  b a g(t)dt +  h(x) −h(a) + h(b)2  (S −γ)(b − a), k ∈ [0,1 2] k 1 2  b a g(t)dt +  h(x) −h(a) + h(b)2  (S −γ)(b − a), k∈ (1 2,1] for all x∈ [a,b].

In order to unify the continuous and discrete calculus in a consistent manner, Hilger introduced in 1988 the theory of time scales [8,11]. Since the advent of this calculus, many researchers have been able to extend known classical integral inequali-ties to time scales. We refer the interested reader to papers [6,7,14,15,16,18,19,20, 21,22], books [1,3,5], and references therein. In 2014, Liu et al. [17] obtained the following inequality on time scales.

THEOREM3. (See [17]) Let 0 k  1, g : [a,b] → [0,∞) be rd -continuous and positive, and h :[a,b] → R be differentiable such that hΔ(t) = g(t) on [a,b]. Let a,b,t,x ∈ T, a < b, and f : [a,b] → R be twice differentiable. Then,

  (1 − k)2f(x) − 1 ( b ag(t)Δt)2  b a S(x,t)Δt   b a g(t) f Δ(σ(t))Δt + k ( abg(t)Δt)2  b a S(x,t) fΔ(a) t a g(s)Δs + f Δ(b) b t g(s)Δs  Δt + k(1 − k) ( abg(t)Δt) f(a) x a g(t)Δt + f (b)  b x g(t)Δt  b1− k ag(t)Δt  b a g(t) f (σ(t))Δt     M ( abg(t)Δt)2  b a  b a |S(x,t)||S(t,s)|ΔsΔt for all x∈ [a,b], where M = sup

a<t<b| f ΔΔ(t)| < ∞ and S(x,t) =  h(t) − ((1 − k)h(a) + kh(x)), a  t < x, h(x) − (kh(x) + (1 − k)h(b)), x  t  b.

(3)

Recently, in 2017, by using a different weighted Peano kernel, Nwaeze obtained in [19] the following weighted Ostrowski type inequality.

THEOREM4. (See [19]) Letν:[a,b] → [0,∞) be rd -continuous and positive and w :[a,b] → R be differentiable such that wΔ(t) =ν(t) on [a,b]. Suppose also that a,b,s,t ∈ T, a < b, f : [a,b] → R is differentiable, and ψ is a function of [0,1] into [0,1]. Then,    1+ψ(1 −λ) −ψ(λ) 2 f(t) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2  b a ν(t)Δt  b a ν(s) f (σ(s))Δs    M  b a |K(s,t)|Δs, where K(s,t) = ⎧ ⎨ ⎩

w(s) −w(a) +ψ(λ)w(b)−w(a)2 , s ∈ [a,t),

w(s) −w(a) + (1 +ψ(1 −λ))w(b)−w(a)2 , s ∈ [t,b], (1) and M= sup

a<t<b| f

Δ(t)| < ∞.

Inspired by the ideas employed in [17,19], here we obtain generalized Ostrowski and Ostrowski–Gr¨uss inequalities on time scales via a parameter function. Our results are different from the ones given in [17] since we are using the generalized weighted Peano kernel (1). Furthermore, we apply our results to the continuous, discrete, and quantum cases, to obtain some interesting new inequalities. More corollaries are also obtained by considering different parameter and weight functions. In particular, we generalize and extend Theorem1to time scales (see Remark20).

The paper is organized as follows. In Section2, we provide the reader with essen-tials on the calculus on time scales. Our results are then stated and proved in Section3.

2. Preliminaries on time scales

In this section, we briefly recall the theory of time scales. For further details and proofs we refer the reader to Hilger’s original work [11] and to the books [8,9].

DEFINITION5. A time scale is an arbitrary nonempty closed subset of the real numbersR.

Throughout this work, we assume T to be a time scale with the topology that is inherited from the standard topology onR. It is also assumed throughout that in T the interval[a,b] means the set {t ∈ T: a  t  b} for points a < b in T. Since a time scale may not be connected, we need the following concept of jump operators.

(4)

DEFINITION6. The forward and backward jump operatorsσ,ρ:T → T are de-fined byσ(t) = inf{s ∈ T : s > t} andρ(t) = sup{s ∈ T : s < t}, respectively.

The jump operators σ andρ allow the classification of points in T as follows. DEFINITION7. If σ(t) > t , then t is right-scattered, while if ρ(t) < t , then

we say that t is scattered. Points that are simultaneously right-scattered and left-scattered are called isolated. Ifσ(t) = t , then t is called right-dense, and ifρ(t) = t , then t is left-dense. Points that are both right-dense and left-dense are said to be dense. DEFINITION8. The (forward) graininess functionμ:T →[0,∞) is given byμ(t) =

σ(t) − t , t ∈ T. The set Tκ is defined as follows: if T has a left-scattered maximum m, then= T − {m}; otherwise, Tκ= T.

If T = R, thenμ(t) ≡ 0; if T = Z, then we haveμ(t) ≡ 1.

DEFINITION9. Assume f :T → R and fix t ∈ Tκ. Then the (delta) derivative fΔ(t) ∈ R at t ∈ Tκ is defined to be the number (provided it exists) with the property

that given anyε> 0 there exists a neighborhood U of t such that



 f (σ(t)) − f (s) − fΔ(t)[σ(t) − s] ε|σ(t) − s| ∀s ∈ U.

If T = R, then fΔ(t) =d f(t)

dt ; ifT = Z, then fΔ(t) = Δ f (t) = f (t + 1) − f (t).

THEOREM10. Assume f,g : T → R are differentiable at t ∈ Tκ. Then the prod-uct f g :T → R is differentiable at t with ( f g)Δ(t) = fΔ(t)g(t) + f (σ(t))gΔ(t).

DEFINITION11. Function f :T → R is said to be rd -continuous if it is

continu-ous at all right-dense points t∈ T and its left-sided limits exist at all left-dense points t∈ T. Then, we write: f ∈ Crd(T,R).

It turns out that every rd -continuous function has an anti-derivative (see, e.g., Theorem 1.74 of [9]).

DEFINITION12. Function F :T → R is a delta anti-derivative of f : T → R

pro-vided FΔ(t) = f (t) for any t ∈ Tκ. In this case, one defines theΔ-integral of f by  b

a f(s)Δs := F(b) − F(a) for all a,b ∈ T.

THEOREM13. Let f,g be rd -continuous, a,b,c ∈ T andα,β∈ R. Then, 1. abf(t) +βg(t)]Δt =α abf(t)Δt +β

b ag(t)Δt , 2. abf(t)Δt = − baf(t)Δt ,

(5)

4. abf(t)gΔ(t)Δt = ( f g)(b) − (f g)(a) − b

a fΔ(t)g(σ(t))Δt .

We use the following result to prove our generalized weighted Ostrowski inequal-ity on time scales.

THEOREM14. If f is Δ-integrable on [a,b], then so is | f |, and 

abf(t)Δt 

 b

a | f (t)|Δt.

We also make use of the hk polynomials, k∈ N0. They are defined as follows: h0(t,s) = 1 for all s,t ∈ T and then, recursively, by hk+1(t,s) =

 t

s hk,s)Δτ, s,t ∈ T.

3. Main results

For the proof of our main results (Theorems 16and24), we use the following useful lemma.

LEMMA15. (See [19]) Letν:[a,b] → [0,∞) be rd -continuous and positive and

w :[a,b] → R be delta-differentiable such that wΔ(t) =ν(t) on [a,b]. Moreover, sup-pose also that a,b,s,t ∈ T, a < b, f : [a,b] → R is delta-differentiable, and ψ is a function of[0,1] into [0,1]. Then the following equality holds:

1+ψ(1 −λ) −ψ(λ) 2 f(t) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2  b a ν(t)Δt = b a K(s,t) f Δ(s)Δs + b a ν(s) f (σ(s))Δs, where K(·,·) is given by (1).

3.1. Generalized weighted Ostrowski inequality on time scales We now state and prove our first main result.

THEOREM16. Letν:[a,b] → [0,∞) be rd -continuous and positive, and function w :[a,b] → R be delta-differentiable such that wΔ(t) =ν(t) on [a,b]. Suppose also that a,b,t,x ∈ T, a < b, f : [a,b] → R is twice delta-differentiable, andψ is a function of[0,1] into [0,1]. Then, the inequality

(6)

  Φ2(λ) f (x) − 1  b aν(t)Δt 2  b a K(t,x)Δt  b a ν(s) f Δ(σ(s))Δs  +ψ(λ) fΔ(a) + (1 −ψ(1 −λ)) fΔ(b) 2 abν(t)Δt  b a K(t,x)Δt bΦ(λ) aν(t)Δt  b a ν(t) f (σ(t))Δt + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2 Φ(λ)     b M aν(t)Δt 2  b a  b a |K(t,x)||K(s,t)|ΔsΔt (2)

holds for all x∈ [a,b] andλ∈ [0,1], where

Φ(λ) =1+ψ(1 −2λ) −ψ(λ), (3)

M= sup

a<t<b



 fΔΔ(t) < ∞, and K(·,·) is given by (1).

Proof. WithΦ(λ) given by (3), it follows from Lemma15that Φ(λ) f (x) = b 1 aν(t)Δt  b a K(t,x) f Δ(t)Δt + 1 b aν(t)Δt  b a ν(t) f (σ(t))Δt ψ(λ) f (a) + (1 −2ψ(1 −λ)) f (b). (4) From (4) we get Φ2(λ) f (x) = Φ(λ) b aν(t)Δt  b a K(t,x) f Δ(t)Δt + Φ(λ) b aν(t)Δt  b a ν(t) f (σ(t))Δt ψ(λ) f (a) + (1 −2ψ(1 −λ)) f (b)Φ(λ) (5) and Φ(λ) fΔ(t) = b 1 aν(t)Δt  b a K(s,t) f ΔΔ(s)Δs + 1 b aν(t)Δt  b a ν(s) f Δ(σ(s))Δs ψ(λ) fΔ(a) + (1 −2ψ(1 −λ)) fΔ(b). (6)

(7)

Substituting (6) into (5) results to Φ2(λ) f (x) = b 1 aν(t)Δt  b a K(t,x)  1 b aν(t)Δt  b a K(s,t) f ΔΔ(s)Δs + b 1 aν(t)Δt  b a ν(s) f Δ(σ(s))Δs−ψ(λ) fΔ(a)+(1−ψ(1−λ)) fΔ(b) 2  Δt + bΦ(λ) aν(t)Δt  b a ν(t) f (σ(t))Δt − ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2 Φ(λ) = 1 b aν(t)Δt 2  b a K(t,x)Δt  b a ν(s) f Δ(σ(s))Δs  + 1 b aν(t)Δt 2  b a  b a K(t,x)K(s,t) f ΔΔ(s)ΔsΔt ψ(λ) fΔ(a) + (1 −ψ(1 −λ)) fΔ(b) 2 abν(t)Δt  b a K(t,x)Δt + bΦ(λ) aν(t)Δt  b a ν(t) f (σ(t))Δt − ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2 Φ(λ). (7) The desired inequality (2) is obtained by rearranging (7) and applying Theorem14. 

REMARK17. Let w(t) = t . Then  b a |K(s,t)|Δs = h2 a,a +ψ(λ)b− a2  + h2 t,a +ψ(λ)b− a2  +h2 t,a+(1+ψ(1−λ))b−a2  +h2 b,a+(1+ψ(1−λ))b−a2  and  b a K(s,t)Δs = h2 t,a +ψ(λ)b− a2  − h2 a,a +ψ(λ)b− a2  +h2 b,a + (1 +ψ(1 −λ))b− a2  − h2 t,a + (1 +ψ(1 −λ))b− a2 

hold for allλ∈ [0,1] such that a +ψ(λ)b−a

2 and a+ (1 +ψ(1 −λ))b−a2 are inT and t∈a+ψ(λ)b−a

2 ,a + (1 +ψ(1 −λ))b−a2

 .

COROLLARY18. Let a,b,t,x ∈ T, a < b, and f : [a,b] → R be twice delta-differentiable. Then, for all x∈ [a,b], the following inequality holds for all λ ∈ [0,1]

(8)

such that ab−a

2 and a+(2−λ)b−a2 are in T and t ∈

 ab−a 2 ,a + (2 −λ)b−a2  :   (λ2− 2λ+ 1) f (x) − b a fΔ(σ(s))Δs (b − a)2  h2 x,a +λb− a2  − h2 a,a +λb− a2  + h2 b,a + (2 −λ)b− a2  − h2 x,a + (2 −λ)b− a2  +λ fΔ(a) + f2(b − a)Δ(b)  h2 x,a +λb− a2  − h2 a,a +λb− a2  + h2 b,a + (2 −λ)b− a2  − h2 x,a + (2 −λ)b− a2  1b− aλ b a f(t))Δt +λ(1 −λ) f(a) + f (b) 2    (b − a)M 2 b a |K(t,x)|  h2 a,a +λb− a2  + h2 t,a +λb− a2  + h2 t,a + (2 −λ)b− a2  + h2 b,a + (2 −λ)b− a2  Δt, where M= sup a<t<b   fΔΔ(t) < ∞, and K(t,x) =  t−ab−a 2  , t ∈ [a,x), t−a+ (2 −λ)b−a 2  , t ∈ [x,b].

Proof. Let w(t) = t andψ(λ) =λ. The result follows from Theorem16by using Remark17. 

As a particular case of Corollary18, we obtain an extension of Theorem1to an arbitrary time scaleT.

COROLLARY19. Let a,b,t,x ∈ T, a < b, and f : [a,b] → R be twice delta-differentiable. Then, the inequality

  f(x) − b a fΔ(σ(s))Δs (b − a)2  h2(x,a) − h2(x,b)  b− a1  b a f(t))Δt     M (b − a)2  b a |K(t,x)|  h2(t,a) + h2(t,b)  Δt

holds for all x∈ [a,b], where M = sup a<t<b   fΔΔ(t) < ∞ and K(t,x) =  t− a, t ∈ [a,x), t− b, t ∈ [x,b].

(9)

Proof. Choose λ= 0 in Corollary18. 

REMARK20. Theorem1is obtained from Corollary19by choosingT = R. To the best of our knowledge, Theorem16is new even when we consider particular time scales asT = R, T = Z or T = qN0, q> 1.

COROLLARY21. Let ν:[a,b] → [0,∞) be continuous and positive and function

w :[a,b] → R be differentiable such that w(t) =ν(t) on [a,b]. Suppose also that a< b, f : [a,b] → R is twice differentiable, and ψ is a function of [0,1] into [0,1].

Then, the inequality

  Φ2(λ) f (x) − 1  b aν(t)dt 2  b a K(t,x)dt  b a ν(s) f (s)ds  +ψ(λ) f(a) + (1 −ψ(1 −λ)) f(b) 2 abν(t)dt  b a K(t,x)dt bΦ(λ) aν(t)dt  b a ν(t) f (t)dt + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2 Φ(λ)     M b aν(t)dt 2  b a  b a |K(t,x)||K(s,t)|dsdt

holds for all x∈ [a,b] andλ ∈ [0,1], where K(·,·) is given by (1),Φ(λ) by (3), and

M= sup

a<t<b



 f(t) < ∞.

Proof. Choose T = R in Theorem16. 

COROLLARY22. Let a,b ∈ Z, a < b, ν :{a,...,b} → [0,∞) be positive and function w :{a,...,b} → R be such that Δw(t) =ν(t), t = a,...,b−1. Consider also

the given functions f :{a,...,b} → R andψ:[0,1] → [0,1]. Then, the inequality   Φ2(λ) f (x) − 1  ∑tb−1=aν(t) 2  b−1

t=a K(t,x)  b−1

s=aν(s)( f (s + 2) − f (s + 1))  +ψ(λ)( f (a + 1) − f (a)) + (1 −ψ(1 −λ))( f (b + 1) − f (b)) 2 ∑b−1 t=aν(t) b−1

t=aK(t,x) Φ(λ) ∑b−1t=aν(t) b−1

t=aν(t) f (t + 1) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2 Φ(λ)     Mb−1t=aν(t) 2 b−1

t=a b−1

s=a|K(t,x)||K(s,t)|

(10)

holds for all x∈ {a,...,b} andλ ∈ [0,1], where K(·,·) is given by (1), Φ(λ) by (3),

and M= sup

a<t<b



 f (t + 1) − 2 f (t) + f (t − 1) < ∞.

Proof. Choose T = Z in Theorem16. 

An interesting (quantum) calculus is obtained by choosing T = qN0 with q> 1 [12]. In this case, σ(t) = qt and fΔ(t) = Dqf(t) := f(qt)− f (t)

(q−1)t . The corresponding

integral is known in the literature as the dqt integral [12].

COROLLARY23. Let m,n ∈ N with m < n,ν:[qm,qn] → [0,∞) be positive, and function w :[qm,qn] → R be such that Dqw(t) =ν(t) on [qm,qn]. Consider also func-tions f :[qm,qn] → R andψ:[0,1] → [0,1]. Then, the inequality

  Φ2(λ) f (x) − 1  qn qmν(t)dqt 2  n−1

j=m K(qj,x)  qn qm ν(s) f(q2s) − f (qs) (q − 1)qs dqs  +qnψ(λ)  f(qm+1) − f (qm)+ qm(1 −ψ(1 −λ))f(qn+1) − f (qn) 2qm+n(q − 1) qn qmν(t)dqt n−1

j=m K(qj,x) qnΦ(λ) qmν(t)dqt  qn qm ν(t) f (qt)dqt+ ψ(λ) f (qm) + (1 −ψ(1 −λ)) f (qn) 2 Φ(λ)     M qn qmν(t)dqt 2 n−1

j=m n−1

i=m|K(q j,x)||K(qi,qj)|

holds for all x∈ [qm,qn] andλ∈ [0,1], where M= sup qm<t<qn  f(q2t) − (q + 1) f (qt) + q f (t)q(q − 1)2t2  < ∞, K(qj,x) = ⎧ ⎨ ⎩ w(qj) −w(qm) +ψ(λ)w(qn)−w(qm) 2  , qj∈ [qm,x), w(qj) −w(qm) + (1 +ψ(1 −λ))w(qn)−w(qm) 2  , qj∈ [x,qn], (8) andΦ(λ) is given by (3).

Proof. ChooseT = qN0, q> 1, and a = qmand b= qn, m< n, in Theorem16.  3.2. Generalized weighted Ostrowski–Gr¨uss inequality on time scales

Follows the second main result of our paper.

THEOREM24. Letν:[a,b] → [0,∞) be rd -continuous and positive, and function w :[a,b] → R be delta-differentiable such that wΔ(t) =ν(t) on [a,b]. Suppose also

(11)

that a,b,t,x ∈ T, a < b, f : [a,b] → R is delta-differentiable and ψ is a function of

[0,1] into [0,1]. Then, the inequality    1+ψ(1 −λ) −ψ(λ) 2(b − a) f(x) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2(b − a)  b a ν(t)Δt b1 − a  b a ν(t) f (σ(t))Δt −  f(b) − f (a) (b − a)2  b a K(t,x)Δt      1 b− a  b a K 2(t,x)Δt −  1 b− a  b a K(t,x)Δt 212 ×  1 b− a  b a  fΔ(t)2Δt −  1 b− a  b a f Δ(t)Δt 21 2 (9)

holds for all x∈ [a,b] andλ∈ [0,1], where K(·,·) is defined as in (1).

Proof. We start by making the following computations:  b a  b a  K(t,x) − K(s,x)fΔ(t) − fΔ(s)ΔtΔs = (b − a) b a K(t,x) f Δ(t)Δt −  b a K(t,x)Δt  b a f Δ(s)Δs   b a K(s,x)Δs  b a f Δ(t)Δt  + (b − a) b a K(s,x) f Δ(s)Δs = 2(b − a) b a K(t,x) f Δ(t)Δt − 2  b a K(t,x)Δt  b a f Δ(s)Δs  .

This implies that 1 b− a  b a K(t,x) f Δ(t)Δt −  1 b− a  b a K(t,x)Δt  1 b− a  b a f Δ(s)Δs  =2 1 (b − a)2  b a  b a  K(t,x) − K(s,x)fΔ(t) − fΔ(s)ΔtΔs. (10)

Following the same process, one gets 1 b− a  b a K 2(t,x)Δt −  1 b− a  b a K(t,x)Δt 2 =2 1 (b − a)2  b a  b a  K(t,x) − K(s,x)2ΔtΔs (11)

(12)

and 1 b− a  b a  fΔ(t)2Δt −  1 b− a  b a f Δ(t)Δt 2 =2(b − a)1 2  b a  b a  fΔ(t) − fΔ(s)2ΔtΔs. (12) From Lemma15, we also get that

1+ψ(1 −λ) −ψ(λ) 2 f(x) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2  b a ν(t)Δt  b a ν(t) f (σ(t))Δt =  b a K(t,x) f Δ(t)Δt. (13)

Using the Cauchy–Schwarz inequality on time scales (see [2]), we get    1 2(b − a)2  b a  b a  K(t,x) − K(s,x)fΔ(t) − fΔ(s)ΔtΔs   1 2(b − a)2  b a  b a  K(t,x) − K(s,x)2ΔtΔs 1 2 ×  1 2(b − a)2  b a  b a  fΔ(t) − fΔ(s)2ΔtΔs 1 2 . (14)

Inequality (9) is achieved by applying (10)–(13) and Definition12to (14).  COROLLARY25. Let T be a time scale with a,b ∈ T, a < b, and f : [a,b] → R be delta-differentiable. Then the inequality

   1λ b− a f(x) +λ f(a) + f (b) 2(b − a)  b a  σ(t) +tΔt b1 − a  b a  σ(t) +tf(t))Δt −  f(b) − f (a) (b − a)2  b a K(t,x)Δt      1 b− a  b a K 2(t,x)Δt −  1 b− a  b a K(t,x)Δt 21 2 ×  1 b− a  b a  fΔ(t)2Δt −  1 b− a  b a f Δ(t)Δt 21 2

holds for all x∈ [a,b] andλ∈ [0,1], where K(·,·) is defined by K(t,x) = ⎧ ⎨ ⎩ t2− a2λ 2(b2− a2), t ∈ [a,x), t2− a22λ 2 (b2− a2), t ∈ [x,b]. (15)

(13)

Proof. Letψ(λ) =λ and w(t) = t2+c, c ∈ R, in Theorem24. The result follows

becauseν(t) =σ(t) +t for t ∈ [a,b]. 

COROLLARY26. Let T be a time scale with a,b ∈ T, a < b, and f : [a,b] → R

be delta-differentiable. Then the inequality

   1 b−af(x)  b a  σ(t) +tΔt−b1 −a  b a  σ(t)+tf(t))Δt−  f(b)− f (a) (b−a)2  b a K(t,x)Δt      1 b− a  b a K 2(t,x)Δt −  1 b− a  b a K(t,x)Δt 212 ×  1 b− a  b a  fΔ(t)2Δt −  1 b− a  b a f Δ(t)Δt 21 2

holds for all x∈ [a,b], where K(·,·) is defined by (15).

Proof. Choose λ= 0 in the inequality of Corollary25.  Our Theorem24is new even for very standard time scales.

COROLLARY27. If w, f : [a,b] → R are differentiable,ψ:[0,1] → [0,1], then

   1+ψ(1 −λ) −ψ(λ) 2(b − a) f(x) + ψ(λ) f (a) + (1 −ψ(1 −λ)) f (b) 2(b − a)  b a w (t)dt b− a1  b a w (t) f (t)dt −  f(b) − f (a) (b − a)2  b a K(t,x)dt      1 b− a  b a K 2(t,x)dt −  1 b− a  b a K(t,x)dt 21 2 ×  1 b− a  b a  f(t)2dt−  1 b− a  b a f (t)dt 21 2

holds for all x∈ [a,b] andλ∈ [0,1], where K(·,·) is given by (1).

Proof. Choose T = R in Theorem24. 

COROLLARY28. If w, f : {a,a + 1,...,b − 1,b} → R,ψ:[0,1] → [0,1], then    1+ψ(1 −λ) −ψ(λ) 2(b − a) f(x) +ψ (λ) f (a) + (1 −ψ(1 −λ)) f (b) 2(b − a) b−1

t=aΔw(t) b− a1 b−1

t=aΔw(t) f (t + 1) −  f(b) − f (a) (b − a)2 b−1

t=aK(t,x)   

(14)

  1 b−a b−1

t=a K2(t,x)−  1 b−a b−1

t=a K(t,x) 212 1 b−a b−1

t=a  Δ f (t)2  1 b−a b−1

t=aΔ f (t) 212

holds for all x∈ {a,a+1,...,b−1,b} andλ∈ [0,1], where K(·,·) is given by (1) and Δ denotes the forward difference operator, that is, Δξ(t) =ξ(t + 1) −ξ(t).

Proof. Choose T = Z in Theorem24. 

COROLLARY29. Let m,n ∈ N with m < n, w, f : [qm,qn] → R and ψ:[0,1] →

[0,1]. Then, the inequality    1+ψ(1 −λ) −ψ(λ) 2(qn− qm) f(x) +ψ (λ) f (qm) + (1 −ψ(1 −λ)) f (qn) 2(qn− qm)  qn qm Dqw(t)dqt qn− q1 m q n qm Dqw(t) f (qt)dqt−  f(b) − f (a) (qn− qm)2 n−1

j=m K(qj,x)    1 qn− qm n−1

j=m K2(qj,x) −  1 qn− qm n−1

j=m K(qj,x) 21 2 ×  1 qn− qm n−1

j=m  f(qj+1) − f (qj) (q − 1)qj 2  1 qn− qm n−1

j=m f(qj+1) − f (qj) (q − 1)qj 21 2

holds for all x∈ [qm,qn] andλ∈ [0,1] with K(qj,x) given by (8).

Proof. Let T = qN0 with q> 1, a = qm and b= qn, m< n. Then the result is a direct consequence of Theorem24. 

Some other special cases of our Theorem24can be found in [4].

Acknowledgement. The authors would like to thank an anonymous referee for

several comments and suggestions, which were very useful to improve the paper.

R E F E R E N C E S

[1] RAVIAGARWAL, DONAL O’REGAN ANDSAMIRSAKER, Dynamic inequalities on time scales,

Springer, Cham, 2014.

[2] R. AGARWAL, M. BOHNER ANDA. PETERSON, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (2001), no. 4, 535–557, DOI 10.7153/mia-04-48.

[3] GEORGEA. ANASTASSIOU, Frontiers in time scales and inequalities, Series on Concrete and Appli-cable Mathematics, vol. 17, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. [4] KHALIDMAHMOODAWAN, JOSIPPECARIˇ C AND´ MIHAELARIBICIˇC´PENAVA, Companion

inequal-ities to Ostrowski-Gr¨uss type inequality and applications, Turkish J. Math. 39 (2015), no. 2, 228–234, DOI 10.3906/mat-1404-27.

[5] JOSIPABARIC´, RABIABIBI, MARTINBOHNER, AMMARANOSHEEN ANDJOSIPPECARIˇ C´, Jensen inequalities on time scales, Monographs in Inequalities, vol. 9, Element, Zagreb, 2015, Theory and applications.

(15)

[6] MARTINBOHNER ANDTHOMASMATTHEWS, The Gr¨uss inequality on time scales, Commun. Math.

Anal. 3 (2007), no. 1, 1–8.

[7] MARTINBOHNER ANDTHOMASMATTHEWS, Ostrowski inequalities on time scales, JIPAM. J. In-equal. Pure Appl. Math. 9 (2008), no. 1, Article 6, 8.

[8] MARTINBOHNER ANDALLANPETERSON, Dynamic equations on time scales, Birkh¨auser Boston,

Inc., Boston, MA, 2001, An introduction with applications.

[9] MARTIN BOHNER AND ALLAN PETERSON, Advances in dynamic equations on time scales, Birkh¨auser Boston, Inc., Boston, MA, 2003.

[10] S. S. DRAGOMIR ANDN. S. BARNETT, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, J. Indian Math. Soc. (N.S.) 66 (1999), no. 1–4, 237–245. [11] STEFANHILGER, Analysis on measure chains – a unified approach to continuous and discrete

calcu-lus, Results Math. 18 (1990), no. 1–2, 18–56, DOI 10.1007/BF03323153.

[12] VICTORKAC ANDPOKMANCHEUNG, Quantum calculus, Universitext, Springer-Verlag, New York, 2002.

[13] WENJUNLIU, Some weighted integral inequalities with a parameter and applications, Acta Appl.

Math. 109 (2010), no. 2, 389–400, DOI 10.1007/s10440-008-9323-2.

[14] WENJUNLIU, QUOC˜ ANHNGO ANDˆ WENBINGCHEN, Ostrowski type inequalities on time scales for double integrals, Acta Appl. Math. 110 (2010), no. 1, 477–497, DOI 10.1007/s10440-009-9456-y. [15] WENJUNLIU, QUOC˜ ANHNGO ANDˆ WENBINGCHEN, On new Ostrowski type inequalities for

double integrals on time scales, Dynam. Systems Appl. 19 (2010), no. 1, 189–198.

[16] WENJUNLIU, ADNANTUNA ANDYONGJIANG, On weighted Ostrowski type, trapezoid type, Gr¨uss type and Ostrowski-Gr¨uss like inequalities on time scales, Appl. Anal. 93 (2014), no. 3, 551–571, DOI 10.1080/00036811.2013.786045.

[17] WENJUNLIU, ADNANTUNA ANDYONGJIANG, New weighted Ostrowski and Ostrowski-Gr¨uss type inequalities on time scales, An. S¸tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.) 60 (2014), no. 1, 57–76, DOI 10.2478/aicu-2013-0002.

[18] DOROTAMOZYRSKA, EWAPAWŁUSZEWICZ ANDDELFIMF. M. TORRES, Inequalities and ma-jorisations for the Riemann-Stieltjes integral on time scales, Math. Inequal. Appl. 14 (2011), no. 2, 281–293, DOI 10.7153/mia-14-23.

[19] EZER. NWAEZE, A new weighted Ostrowski type inequality on arbitrary time scale, J. King Saud

Univ. Sci. 29 (2017), no. 2, 230–234, DOI 10.1016/j.jksus.2016.09.006.

[20] UMUTMUTLU ¨OZKAN ANDH ¨USEYINYILDIRIM, Gr¨uss type inequalities for double integrals on time scales, Comput. Math. Appl. 57 (2009), no. 3, 436–444, DOI 10.1016/j.camwa.2008.11.006. [21] UMUTMUTLU ¨OZKAN ANDH ¨USEYINYILDIRIM, Ostrowski type inequality for double integrals on

time scales, Acta Appl. Math. 110 (2010), no. 1, 283–288, DOI 10.1007/s10440-008-9407-z. [22] GAOPENGXU ANDZHONGBOFANG, A new Ostrowski type inequality on time scales, J. Math.

Inequal. 10 (2016), no. 3, 751–760.

(Received December 23, 2016) Seth Kermausuor Department of Mathematics and Statistics Auburn University Auburn, AL 36849, USA e-mail:skk0002@auburn.edu Eze R. Nwaeze Department of Mathematics Tuskegee University Tuskegee, AL 36088, USA e-mail:enwaeze@mytu.tuskegee.edu Delfim F. M. Torres CIDMA, Department of Mathematics University of Aveiro 3810-193 Aveiro, Portugal e-mail:delfim@ua.pt

Journal of Mathematical Inequalities

www.ele-math.com jmi@ele-math.com

Referências

Documentos relacionados

Given the lack of information and limited access to adequate health services, husbands claimed an appropriate treatment for their wives, which could lead to improvements in

Al-rich glass compositions exhibited high glass stability as seen from XRD results (Fig. 11a and b) and with B substitution the glasses showed an increasing tendency to devitrify

O Projecto eLit.pt consiste em não ser apenas mais um diagnóstico baseado num minucioso inquérito por questionário que se estendeu a uma amostra ampla de

Em relação a vivencia com ações que consideram segurança do paciente 5 acadêmicos (83,3%) informam que foi entre 4 e 10 semestre e apenas 1(16,7%) relata ter obtido conhecimento

Neste capítulo são apresentados os resultados dos ensaios de tração, simulações em ABAQUS ® e análise analítica. Para poder interpretar os resultados obtidos dos ensaios

Conhecer a prevalência pontual de indicações de internação no período pós-operatório, além do tempo de internação preconizado após cada tipo de procedimento, forneceria às

O envelhecimento e suas consequências não podem ser evitados, contudo, podem acontecer de forma tranquila e saudável, desde que as mulheres em fase climatérica