• Nenhum resultado encontrado

Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects

N/A
N/A
Protected

Academic year: 2021

Share "Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Expression

of

cry1Ab

gene

from

a

novel

Bacillus

thuringiensis

strain

SY49-1

active

on

pest

insects

Ugur

Azizoglu

a,∗

,

Abdurrahman

Ayvaz

b

,

Semih

Yılmaz

c

,

Salih

Karabörklü

d

,

Rıdvan

Temizgul

b

aErciyesUniversity,DepartmentofCropandAnimalProduction,Kayseri,Turkey bErciyesUniversity,DepartmentofBiology,Kayseri,Turkey

cErciyesUniversity,DepartmentofAgriculturalBiotechnology,Kayseri,Turkey dDüzceUniversity,DepartmentofFieldCrops,Düzce,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5June2015 Accepted24November2015 Availableonline20April2016 AssociateEditor:LucySeldin

Keywords: BtSY49-1 Genecloning RecombinantCry1Ab Insecticidalactivity

a

b

s

t

r

a

c

t

Inthisstudy,thecry1AbgeneofpreviouslycharacterizedandLepidoptera-,Diptera-,and Coleoptera-activeBacillusthuringiensisSY49-1strainwascloned,expressedandindividually testedonEphestiakuehniella(Lepidoptera:Pyralidae)andPlodiainterpunctella(Lepidoptera: Pyralidae)larvae.pET-cry1Abplasmidswereconstructedbyligatingthecry1AbintopET28a (+)expressionvector.ConstructedplasmidsweretransferredtoanEscherichiacoliBL21(DE3) strainrenderedcompetentwithCaCl2.Isopropyl␤-d-1-thiogalactopyranosidewasusedto

inducetheexpressionofcry1AbinE.coliBL21(DE3),andconsequently,∼130kDaofCry1Ab wasobtained.BioassayresultsindicatedthatrecombinantCry1Abatadoseof1000␮gg−1 caused40%and64%mortalityonP.interpunctellaandE.kuehniellalarvae,respectively. How-ever,themortalityratesofBtSY49-1strains’spore–crystalmixtureatthesamedosewere observedtobe70%onP.interpunctellaand90%onE.kuehniellalarvae.Theresultsindicated thatcry1Abmaybeconsideredasagoodcandidateintransgeniccropproductionandasan alternativebiocontrolagentincontrollingstoredproductmoths.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Bacillus thuringiensis (Bt) is a Gram-positive aerobic or fac-ultativeaerobicspore-formingentomopathogenicbacterium thatcaneasilybeisolatedfromavarietyofenvironmental sources.1Ithasspecifictoxicityagainsttargetinsectsandis safetonon-targetorganisms.Cry1toxinsarethemost com-moncrystalproteinscharacterizedsofarinBtstrainsandhave

Correspondingauthor.

E-mails:azizogluugur@hotmail.com,azizoglu@erciyes.edu.tr(U.Azizoglu).

specific insecticidal activity against lepidopteran insects.2 They form typical bipyramidal parasporal inclusions with 130kDamolecularweight.3Biotechnologicaldevelopmentsin agriculturehavecaused scientiststoseek newsolutionsto insectpestproblems.Transgenictechnology,involvingawide range ofpesticidal genes from Bt,dominates the scenario of agriculturalbiotechnology. The improvementof broader spectrumbiopesticidesusingnovelBtstrainsagainsttarget insectsisanimportantaspectforimprovingtheirpersistence

http://dx.doi.org/10.1016/j.bjm.2016.04.011

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

onplants.ThepyralidmothsEphestiakuehniella(Lepidoptera: Pyralidae)andPlodiainterpunctella(Lepidoptera:Pyralidae)are global pests, particularly of stored grains, legumes, dried fruits,nuts,dates,and cocoabeans,andtheyare themost commonlyreportedpestsofstoredgrains.Larvaecancause extensivedamagetocropsandavarietyofprocessedfoods. Thepresenceofliveinsectsandinsectpartscanresultinthe depreciationofthegrainwhensold.Chemicalinsecticidesare commonlyusedincontrollingtheseimportantpestinsects worldwide.However,duetothe risksofchemicalpest con-troltotheenvironmentandhumanhealth,thecloningand expressionofcrygeneswithactivitytolepidopteranpestsis animportantissueconcerningspecies-specificcontrol.Inthe currentstudy,weamplifiedandclonedthecry1Abgeneofa novelBtSY49-1strain.4Thestrainhadinsecticidalactivityto avarietyoflepidopteran,dipteranandcoleopteranpests,and wedesiredtoimprovetheefficiencythroughtransformingthe

cry1AbgeneintoE.coliBL21(DE3).Expressionofthecry1Ab

geneand itsinsecticidal activity againstthe serious stored productpestsE. kuehniellaandP.interpunctellawere investi-gated.Theresultswillreveal useful informationforstored product pestcontrol by providing Cry proteinsfrom novel strains.

Materials

and

methods

Strainsandplasmids

The Bt SY49-1 was isolated from a soil sample collected fromAdana, Turkeyin2008usingsodiumacetateenriched medium.5 Thestrains B.thuringiensisSY49-1,Escherichia coli DH5␣ (kindlysupplied byMiddleEast Technical University, METU,MolecularBiologyLaboratory),cloningvector pGEMT-Easy,expressionvectorpET28a(+)andE.coliBL21(DE3)were usedinexperimentalprocedures.BtandE.coliwerecultured inLuriaBertani(LB,10g/LTriptone,5g/Lyeastextract,5g/L NaCl)mediumat30◦Cand37◦C,respectively.

Electronmicroscopy

Forelectronmicroscopy,aBtSY49-1spore–crystalmixturewas suspendedindH2Oonamicroscopeslideandfixedafterair dryingatroomtemperature.Thesamplewassputter-coated with 10nm Au/Pd using a SC7620 Mini-sputter coaterand viewedusingascanningelectronmicroscope(LEO440)at20kV beamcurrent.

Insectcultures

The larvae of E. kuehniella were rearedon a diet contain-ingamixtureofwheatflour, wheatbranand glycerol,and theIndian mealmothP. interpunctellalarvaewere obtained from naturally infested dried apricot in Kayseri province. The larvae of P. interpunctella were maintained continu-ously on a dietcontaining 10% glycerol, 50% driedapricot and 40% wheatflour–wheat bran mixture. Throughoutthe experiments, insect cultures were maintained at constant temperature (27±1◦C), photoperiod (14L:10D) and relative humidity(60±5%).6,7

Amplificationofcry1AbgenefromBtSY49-1

TotalDNAofBtSY49-1wasextractedaccordingtothemethod ofBravoetal.8 andusedastemplateforpolymerasechain reactions (PCR). The cry1Ab gene was amplified using the primerpairsF-5-GGATCCATGGATAACAATCCGAAC ATC-‘3;R-5-GTCGACTTATTCCTCCATAAGAAGTAA-3.9BamHI andSalIrestrictionenzymerecognitionsequenceswereadded tothe5endoftheforwardandreverseprimers,respectively. PCRmixescontainedthereagentsatafinalconcentrationof 2.3mMMgCl2,1×Taqbuffer,0.2mMdNTPmix,0.3pmolof eachprimer,0.5UMaxTaqDNApolymerase(Vivantis,PL2201), and30–100ngtemplateDNA.ThePCRamplificationwas per-formedunderthefollowingconditions:Initialdenaturationat 95◦Cfor5min,followedby30cyclesat94◦Cfor1min,52◦Cfor 1min,72◦Cfor3.5min,andafinalextensionstepat72◦Cfor 10min.9Adeninewasaddedtothe3endofthePCRproducts afteramplificationfortheTAcloningprocess.

Transferofcry1AbgeneintopGEM-TEasycloningvector

Toconstructthe pGEM-cry1Ab,PCRproducts(∼3.5kb) were purified and ligated into pGEM-TEasy vector. Theligation procedure was conducted according to the manufacturer’s protocol(Promega,vectorsystemI),andthenligatewas trans-formedintoCaCl2-renderedcompetentE.coliDH5␣.

Expressionofcry1AbgeneinE.coli

BamHIandSalI-treatedcry1AbPCRampliconandpET28a(+) vectorwereligatedaccordingtothemanufacturer’sprotocol (pETmanualsystem).ThepET-cry1AbwastransferredintoE. coliBL21(DE3)cellsrenderedcompetentwithCaCl2.The posi-tivecloneswereselectedusingthePCRmethodandincubated at37◦CuntilreachingOD600=0.5–1in100mLofLBmedium containing 30␮g/mL kanamycin. The50mL ofculture was induced by1mMIPTG for4hand followedbycentrifuging at4◦Cand5000rpmfor5min.Thepelletwassolubilizedin 12mLof20mMTris–HCl(pH7.5)andcentrifugedasdescribed above.Theremainingpelletwassolubilizedin5mLof20mM Tris–Cl (pH 7.5) containing 50␮Llysozyme (10mg/mL) and incubatedfor15minat30◦C.Thecellswerethensonicated for1mintoreleaseproteinsfromlysate.Subsequently,itwas centrifugedat4◦Cand14,000rpmfor10min,andthepellet wasresuspendedin2mLof20mMTris–HCl(pH7.5)for SDS-PAGEanalysis.Thesameprocedurewasappliedforisolating theproteinsfromE.coliBL21(DE3)andBtSY49-1.Total pro-teinquantitationwasdeterminedaccordingtotheBradford10 method.

Cry1Abproteinquantification

TheSDS-PAGE imageofthe approximately 130kDaCry1Ab band was used for determining the quantities. Cry pro-tein concentrations were calculated by the following for-mula: Cry protein concentration (␮g/mL)=(␮g/mL total protein)×(proportionofCryproteintototalprotein).11 The proportion of Cry protein to total proteinwas determined

(3)

usingtheBioradChemiDoc MPImagingSystemImageLab version5.1(Biorad).

InsecticidalactivityofCry1Ab

LyophilizedsamplesofBtSY49-1,E.colicarryingpET-cry1Ab, andplasmid-freeE.coliBL21(DE3)wereappliedto10 third-instarlarvaeofP.interpunctellaand E.kuehniellaatdoses of 10,25,50,100,250,500and1000␮gg−1suppliedinthediet. BioassayexperimentsonP.interpunctellaandE.kuehniellawere performedaccordingtothemethodofObeidatetal.12 Experi-mentswerecarriedoutasthreereplicates.Thedatafromthe experimentsweresubjectedtoanalysisofvariance(ANOVA), andmeanswereseparatedatthe5%significancelevelbyusing theTukeyHSDposthoctest.LC50 wereestimatedbyprobit analysis.13

Results

Amplificationofcry1Abgene

ThetotalDNAoftheBtSY49-1strainwasscreenedbythePCR methodusingthecry1Ab-specificprimerpairsforamplifying thefull-lengthgeneregion(Fig.1).

Spore–crystalmixtureandelectronmicroscopy

BtSY49-1wasincubated inT3sporulationmediumat30◦C for4daystoobtainaspore–crystalmixture.Investigationsof themixtureindicatedthatbipyramidalcrystalswere compat-iblewiththepresenceofcry1geneproducts.Spherical,cubic andirregularlyshapedcrystalswerealsoobservedviaelectron micrograph(Fig.2).

Cry1AbgeneTAcloning

PCR product corresponding to the open reading frame of

cry1Ab gene (∼3.5kb) was amplified and inserted into the pGEM-TEasyvectorsystemtopreservethegeneforfurther use. Theresulting combination was transferred into E. coli

DH5␣.Subsequently,pGEM-cry1Ab from a positive cloneof

Marker

3.5kb

10kb 6 4 3 2 1

Fig.1–cry1Abgeneamplicon,Marker(Fermentas,SM 0331).

I C

Sp

B

MAG = 50.00 KX Detecter = SE1 Date: 17 Dec 2009 1μm

EHT = 20.00 kV

S

Fig.2–Spore–crystalmorphologyofBtSY49-1strain.B, bipyramidal;C,cubic;S,spherical;I,irregularlyshaped spherical;Sp,spore.

E.coliDH5␣wasdigestedwithEcoRItovalidatetheligation (Fig.3).

Expressionofcry1AbinE.coliBL21(DE3)

Thecry1Ab geneexcisedwithBamHI andSalIwas inserted into expressionvector pET28a(+)forobtainingpET-cry1Ab. The resulting pET-cry1Ab was transformed into the E. coli

BL21(DE3)strain,andpositivecloneswerevalidatedbycolony PCR (Fig. 4).A positiveclone, E.coli BL21 (DE3)pET-cry1Ab, was cultured in kanamycin containing LB medium until OD600=0.5–1 was achieved and subsequently induced with IPTG.Theexpressionofrecombinantproductswasanalyzed bySDS-PAGE,verifyingthepresenceofa130kDaproteinband (Fig.5).

Cry1Abquantification

Theproteinconcentrationwascalculatedaccordingtothe fol-lowingformula:Cry1Abconcentration(␮g/mL)=(␮g/mLtotal protein)×(%proportionofCry1Abtototalprotein).Here,the totalproteinwas7.63␮g/mL,theproportionofCry1Abtototal

Marker 10kb 6.515 kb pGEM-Tcry1Ab 3.5 kb cry1Ab 3.015 kb pGEM-T 6 3.5 3 2

Fig.3–ValidationofrecombinantpGEM-cry1Abby restrictiondigestionwithEcoRI,Marker(Fermentas,SM 0331).

(4)

10kb

Marker

3.5 3

1

Fig.4–Validationofcry1Abgeneinpositiveclonesusing colonyPCR,Marker(Fermentas,SM0331).

proteinwas2.58␮g/mL,andtheproportionofCry1Abtototal proteinwas33.82%.

ToxicityofpET-cry1Ab,BtSY49-1andplasmid-freeE.coli BL21(DE3)

TheLC50 valuesofrecombinantCry1Abon third-instar lar-vaeofE.kuehniellaandP.interpunctellawerefoundtobe685.67 and 1320.84␮gg−1, respectively. Thetoxicity ofthe source strainSY49-1washighercomparedwithrecombinantprotein (LC50=365.17␮gg−1 forE.kuehniellaand582.179␮gg−1 forP.

interpunctella).Plasmid-freeE.coliBL21(DE3)didnotexert sig-nificantactivityonbothpestlarvae.Themortalityratesare suppliedinFigs.6and7.(Fig.6;(A)F=7.710;df=7;P≤0.0001;

(B) F=22.136; df=7; P≤0.0001; (C) F=0.635; df=7; P=0.721; Fig.7;(A)F=4.082;df=4;P≤0.037;(B)F=8.799;df=4;P≤0.003; (C)F=0.474;df=4;P=0.754).

Discussion

Bt SY49-1 is a novel strain, and the toxicity of its wet-tablespore–crystalpowderwaspreviouslydeterminedagainst insectpestsfromdifferentorders.4E.kuehniellaandP.

inter-punctellaaretwotroublesomepestsposingseriousproblems instoredproductsworldwide.Inthepresentstudy,thecry1Ab

gene(∼3.5kb)ofapreviouslycharacterizedBtSY49-1strain wasusedthoroughcloningandexpressioninE.coliBL21(DE3). Itiswell knownthat cry1Ageneshavespecificinsecticidal activityagainstlepidopteranpests.14,15 BtSY49-1producesa 130–140kDaCry1bandcorrespondingtothebipyramidal crys-talstructure(Fig.2).Cry1Ab(∼130kDa)wasoverexpressedin IPTG-inducedE.coliBL21(DE3),anditsbioactivitywastested on E. kuehniella and P. interpunctella. The results indicated thatrecombinantCry1Abexhibitedconsiderablemortalityon pestlarvae.However,increasingdosesofCry1Abfrom50to 500␮gg−1 had littleadditional toxicityon the larvaewhen comparedwiththespore–crystalmixtureofsourceorganism. SimilartrendswerereportedwiththerecombinantCry3Aaon

Hypothenemushampei.16Zhangetal.17alsoreportedthatthe activityofrecombinantcry8Ab1haslowertoxicitycompared withthesourceorganism,suggestingthatthisphenomenon mayoriginatefromlessCry8Ab1expressioninthehost organ-ismandmorethanonetypeofdifferentlysizedcrystalsbeing expressedinwild-typeBt.Comparativelylowertoxicitywas

M M 6 5 4 3 2 1 200 kDa 150 kDa 150 kDa ∼130 kDa ∼130 kDa 120 kDa 120 kDa 100 kDa 100 kDa 85 kDa 85 kDa 70 kDa 70 kDa 60 kDa 60 kDa 50 kDa 50 kDa 7

Fig.5–SDS-PAGEanalysisofcry1AbgeneexpressedinE.coliBL21(DE3).M;Marker(FermentasSM0661),Lane1: IPTG-inducedE.coliBL21(DE3)pET-cry1Ab;lane2:E.coliBL21(DE3)pET-cry1Ab;lane3:IPTG-inducedE.coliBL21(DE3) pET-cry1Ab;lane4:E.coliBL21(DE3)pET-cry1Ab;lane5:E.coliBL21(DE3);lane6:IPTG-inducedE.coliBL21(DE3)IPTG;lane7: B.thuringiensisSY49-1.

(5)

100

A

B

C

90 80 70 60 50 P ercent mor tality 40 30 20 ab Control 10μg/g 25μg/g 50μg/g Concentration 100μg/g 250μg/g 500μg/g 1000μg/g Control 10μg/g 25μg/g 50μg/g 100μg/g250μg/g 500μg/g1000μg/g ab a abc abc pET-cry1Ab bc bc a ab bc c c c Bt SY49-1 dc e c 10 0 100 90 80 70 60 50 P e rcent mor tality 40 30 20 10 0 a a a a a E. coli BL21(DE3) a a a 100 90 80 70 60 50 P ercent mor tality 40 30 20 Control 10μg/g 25μg/g 50μg/g Concentration Concentration 100μg/g 250μg/g 500μg/g 1000μg/g 10 0

Fig.6–ToxicityonE.kuehniellalarvae.(A)TpET-cry1Ab;(B)BtSY49-1spore–crystalmixture;(C)E.coliBL21(DE3)total protein. 100

A

C

B

pET-cry1Ab Bt SY49-1 90 80 70 60 50 40 P ercent mor tality 30 20 10 0 100 E. coli BL21(DE3) 90 80 70 60 50 40 P ercent mor tality 30 20 10 0 100 90 80 70 60 50 40 P ercent mor tality 30 20 10 0 Control a a a a ab a a a a ab ab ab ab ab ab a a a a b bc bc c b 10μg/g 25μg/g 50μg/g Concentration Concentration 100μg/g250μg/g500μg/g1000μg/g Control 10μg/g 25μg/g 50μg/g Concentration 100μg/g250μg/g500μg/g1000μg/g Control 10μg/g 25μg/g 50μg/g 100μg/g250μg/g500μg/g1000μg/g

Fig.7–ToxicityonP.interpunctellalarvae.(A)pET-cry1Ab;(B)BtSY49-1spore–crystalmixture;(C)E.coliBL21(DE3)total protein.

(6)

alsoreportedbysomeotherresearchersonE.kuehniellausing Cry1Aa,Cry1Ac,andCry2Aa18andonChironomustepperiusing Cry11AandCry4B.19Ontheotherhand,Parketal.20reported similartoxicitytotheparentstrainagainstCulexmosquitoes withCry11BfromB.thuringiensissubsp.,jegathesan.Similarly,

BtSY49-1harborscry1,cry2,cry4,cry5andcry9genes,andits higheractivitymaypossiblyresultfromthecombinedactivity ofthesegene-correspondingproducts.Therefore,thisstudy wasintendedtodeterminetheeffectivenessofCry1Ab, inde-pendentofothergenesencodinginsecticidalproteins.

In the present study, the individual toxicity of Cry1Ab (expressedinE.coli)wasevaluatedonE.kuehniellaandP. inter-punctellatoavoidpotentialsynergisticinteractions between sporesandcrystals.21Asfarasweknow,thisisthefirstreport evaluatingthe toxicityofE. coliBL21(DE3)pET-cry1Ab onE. kuehniellaandP.interpunctella.Significantdifferenceswerenot observedwithrespecttotoxicitybetweenE.coliBL21(DE3)and waterycontrol.TheindividualtoxicityofrecombinantCry1Ab onthethird-instarlarvaeofthesetwostoredproductpests waspreciselyestimated.

Inconclusion,thecry1AbgeneoftheBtSY49-1strainwas successfullycloned,expressedandtestedonE.kuehniellaand

P.interpuctellalarvae.Theresultsindicatedthatcry1Abmaybe consideredasagoodsourceintransgeniccropproductionand asanalternativebiocontrolagentincontrollingstoredproduct moths.

Ethical

statement

Theauthorsdeclarethattheexperimentscompliedwiththe currentlawsofthecountryinwhichtheywereperformed.

Conflict

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

TheauthorsthankDr.MikailAkbulutandZehraBüs¸raAtciyurt fortheirvaluableassistance.SpecialthankstoMETU Molecu-larBiologyLaboratoryforsupplyingE.coliDH5␣.Thisproject wasfundedbythe ErciyesUniversityScientificProjectUnit under the codes of FBD11-3634 and ÖNAP-3638 and also fundedbyBilim,SanayiveTeknolojiBakanlı ˘gıTürkiye (TGSD-0802).

r

e

f

e

r

e

n

c

e

s

1. FedericiBA.Bacillusthuringiensisinbiologicalcontrol.In: BellowsTS,GordhG,FisherTW,eds.Handbookofbiological control.NewYork,SanDiego:AcademicPress;1999[Chapter 21].

2. NarimanAH.PCRdetectionofcrygenesinlocalBacillus thuringiensisisolates.AJBAS.2007;1:461–466.

3. WasanoN,SaitohH,MaedaM,OhgushiA,MizukiE,OhbaM. Cloningandcharacterizationofanovelgenecry9Ec1 encodinglepidopteran-specificparasporalinclusionprotein

fromaBacillusthuringiensisserovargalleriaestrain.CanJ Microbiol.2005;51:988–995.

4.YılmazS,AyvazA,AkbulutM,AzizogluU,KarabörklüS.A NovelBacillusthuringiensisstrainanditspathogenicity againstthreeimportantpestinsects.JStoredProdRes. 2012;51:33–40.

5.TraversRS,MartinPAW,ReichelderferCF.Selectiveprocess forefficientisolationofsoilBacillussp.ApplEnvironMicrobiol. 1987;53:1263–1266.

6.AyvazA,AlbayrakS,TuncbilekAS.Inheritedsterilityin MediterraneanflourmothEphestiakuehniellaZeller

(Lepidoptera:Pyralidae):effectofgammaradiationdoseson insectfecundityfertilityanddevelopmentalperiod.JStored ProdRes.2007;43:234–239.

7.AyvazA,AlbayrakS,KaraborkluS.Gammaradiation sensitivityoftheeggs,larvaeandpupaeofIndianmeal mothPlodiainterpunctella(Hübner)(Lepidoptera:Pyralidae). PestManagSci.2008;64:505–512.

8.BravoA,SarabiaS,LopezL,etal.Characterizationofcry genesinaMexicanBacillusthuringiensisstraincollection. ApplEnvironMicrobiol.1998;64:4965–4972.

9.StobdanT,KaurS,SinghA.Cloningandnucleotidesequence ofanovelcrygenefromBacillusthuringiensis.BiotechnolLett. 2004;26:1153–1156.

10.BradfordMM.Rapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe principleofprotein-dyebinding.AnalBiochem.

1976;72:248–254.

11.LiH,BouwerG.Evaluationofthesynergisticactivitiesof BacillusthuringiensisCryproteinsagainstHelicoverpaarmigera (Lepidoptera:Noctuidae).JInvertebrPathol.2014;12:7–13. 12.ObeidatM,HassawiD,GhabeishI.Characterizationof

BacillusthuringiensisstrainsfromJordanandtheirtoxicityto theLepidoptera,EphestiakuehniellaZeller.AfrJBiotechnol. 2004;3:622–626.

13.SPSSVersion10.Illinois:SPSSInc;2001.

14.BravoA,GillSS,SoberonM.ModeofactionofBacillus thuringiensisCryandCyttoxinsandtheirpotentialforinsect control.Toxicon.2007;49:423–435.

15.DarsiS,PrakashGD,UdayasursiyanV.Cloningand characterizationoftruncatedcry1Abgenefromanew indigenousisolateofBacillusthuringiensis.BiotechnolLett. 2010;32:1311–1315.

16.López-PazosSA,GómezJEC,Cry1BSAC.Cry3Aareactive againstHypothenemushampeiFerrari(Coleoptera:Scolytidae). JInvertebrPathol.2009;101:242–245.

17.ZhangY,ZhengaG,TanbJ,LiC,ChengaL.Cloningand characterizationofanovelcry8Ab1genefromBacillus thuringiensisstrainB-JJXwithspecifictoxicitytoScarabaeid (Coleoptera:Scarabaeidae)larvae.MicrobiolRes.

2013;168:512–517.

18.TounsiS,DammakM,RebaîA,JaouaS.Responseoflarval Ephestiauehniella(Lepidoptera:Pyralidae)toindividual Bacillusthuringiensiskurstakitoxinsandtoxinmixtures.Biol Control.2005;35:27–33.

19.HughesPA,StevensMM,ParkHW,FedericiBA,DennisES, AkhurstR.ResponseoflarvalChironomustepperi

(Diptera:Chironomidae)toindividualBacillusthuringiensis var.israelensistoxinsandtoxinmixtures.JInvertebrPathol. 2005;88:34–39.

20.ParkHW,BideshiDK,FedericiBA.Recombinantstrainof BacillusthuringiensisproducingCyt1A,Cry11B,andthe Bacillussphaericusbinarytoxin.ApplEnvironMicrobiol. 2003;69:1331–1334.

21.JohnsonDE,OppertB,McGaugheyWH.Sporecoatprotein synergizesBacillusthuringiensiscrystaltoxicityfortheIndian mealMoth(Plodiainterpunctella).CurrMicrobiol.

Referências

Documentos relacionados

The effect of reaction temperature on the activity of recombinant PS-35 lipase was inferred by performing the enzyme assay at different temperatures (20 °C-60 °C).. Thermostability

Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene ( feh ).. Liu Hongming 1 , Lou Xu

Characterization of insecticidal crystal protein cry gene of Bacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypes cry

Toxicity of Bacillus thuringiensis strains against the primary rice insect pests, Spodoptera frugiperda and

Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insects pests. Prediction of insectidical activity of Bacillus

Industriais Minerais não metálicos Produtos Florestais Químicos e Petroquímicos Serviços e Distribuição Tecnologias e Inovação Têxtil Veículos e Componentes Outros S etor es d

não-especialistas sobre a importância da Serra do Gandarela e suas nascentes para a RMBH, uma vez que a área é alvo de in- teresse da segunda maior mineradora do mundo, o MPSG

israelensis has been used to control the Aedes aegypti ( Diptera: Culicidae ) mosquito larvae, the vector of virus diseases such as dengue, Chikungunya and Zika fever, which