• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
7
0
0

Texto

(1)

Neolassial Ion Transport in the Edge

of Axially-Symmetri Arbitrary Cross-Setion

Tokamak with Plasma Subsoni Toroidal Flows

J.H.F. Severo, V.S. Tsypin, I.C. Nasimento,R.M.O. Galv~ao,

M. Tendler 1

, and A. N. Fagundes

Institute ofPhysis,UniversityofS~aoPaulo,

Rua doMat~ao,TravessaR,187, 05508-900S~aoPaulo,Brasil

1

TheAlfvenLaboratory, EURATOM-NulearFusionResearh,

RoyalInstituteof Tehnology,10044 Stokholm,Sweden

Reeivedon26June,2001

Generalmetris oflarge aspet ratiotokamaks is usedinthe paper. Generalexpressions for the

neolassialpoloidalplasmarotationV

i

andradialionheatux

Ti

areobtained.Theirdependene

onthesquaredMahnumber=U 2

i =

2

s

isanalyzed(hereUiistheiontoroidalveloityandsis

thesoundveloity,respetively). Someinterestingpeuliaritiesofthisdependeneareemphasized.

I Introdution

Thetheoretialandexperimentalstudyofthe

neolas-sial iontransportin edgetokamak plasmasare

nowa-daysof renewedinterest. 1 4

Inpartiular, these

stud-ies are important in the so-alled H-regimes in large

toroidal failities, haraterized by sharp gradients in

the radialprolesof marosopiplasmaquantities in

theregionofthetransportbarriers. 1;2

Plasmasofsmall

tokamaks,whih play animportant role in

investigat-ingdierentphysialphenomenainfusionresearh,are

mainly in L-regime. Nevertheless, some problems

re-gardingtheneolassialiontransportinthesemahines

are not yet well understood and additionaleorts are

needed. 3;4

Oneoftheseproblemsisaddressedinthis

pa-per, namelythe neolassial iontransport in the edge

of an axisymmetri plasma olumn of arbitrary

ross-setion and with subsoni toroidal ows. These ows

anbeinduedbyparallelneutralbeaminjetionorby

radio frequenywaves.

II Starting equations

The main neolassialquantities observed

experimen-tallyare the ion radialheat ux and the ion poloidal

veloity. 1;2

Untilnowthereisnosatisfatorytheoretial

explanationforthedampingrate

oftoroidalrotation,

whihisusuallysupposedtobeapproximatelyequalto

theenergyonnementtime

E ,

E .

5

WefollowRefs. 6and7,wherethemagnetisurfae

averagedionradialheatuxforollisionalplasmaswas

rstobtained. We use thetoroidal oordinates r;;,

wherer isthemagnetisurfaelabel,and and are

poloidal and toroidal angles, respetively, assume

ax-ial symmetry, i.e., = = 0, large aspet ratio, and

smooth prolesof themarosopi plasma quantities.

Themagnetisurfaeaverage

h:::i= Z

2

0 ( :::)

p

gd Z

2

0 p

gd (1)

oftheradialontravariantomponentq r

i

oftheionheat

ux(seeRef. [8℄),

q r

i =

2p

i

i

M

i !

2

i g

11 T

i

r +g

12

e

T

i

!

5

2 p

i g

33 B

M

i !

i B

p

g

e

T

i

; (2)

leadsto

Ti =hq

r

i i=

2

M

i

p

i

i g

11

! 2

T

i

r

5

2

e

i

g

33 B

Z

2

d p

i

B 2

e

T

i

,

Z

2

p

(2)

Here, T

i

is the ion temperature, e

T

i =T

i hT

i iis the

osillatorypart(perturbation)of theiontemperature,

p

i =nT

i

, n=h ni+en isthe plasma densityand ne is

theosillatorypartofit, !

i =e

i B=M

i

istheion

y-lotronfrequeny,B andB

arethemagnitudeandthe

-ontravariantomponentofthemagnetieldB,

re-spetively,and g 11

and g 12

aretheontravariant

om-ponents of the metri tensor bg , whose determinant is

denoted g.

In obtaining Eq. (3), we used also the expressions

fortheontravariantomponentsofthemagnetiled

B=f0; 0

=2 p

g;

0

=2 p

gg; (4)

whereandarepoloidalandtoroidalmagnetiled

uxes,respetively,and

( g

33 =

p

g)==0: (5)

The last equation follows from the ondition j r

0, where j r

is the r-ontravariant omponent of the

plasmaurrentj. Theinequality e

A=A hAi hAi

was also employed, where A stands for the plasma

marosopiquantities.

Wesee from Eq. (3)that, in order to nd

Ti , we

needtoalulateenand e

T

i

. Theequationfor e

T

i follows

fromtheionheattransport equation 8

T

i V

i n~

+

B

B q

ik

+rq

i? +

3M

e n

e

M

i ~

T

i

=0; (6)

whereV

i

isthe-ontravariantomponentoftheionveloityV

i ,and

q

ik

= 3:91 nT

i B

M

i

i B

T

i

; q

i? =

5

2 nT

i

e

i B

2

[BrT

i

℄: (7)

PerturbationsoftheeletrontemperaturearenegletedinEq. (6)(seeexplanationsafterEq. (18)). Tondneone

anemploytheosillatorypartoftheparallelomponentoftheplasmaone-uidmomentum equation

3

2

k

lnB+

p+

k

+M

i n

B

B

d

i V

i

dt

=0; (8)

wherep=p

i +p

e =n(T

i +T

e

)is theplasmapressureand

k

istheparallelionvisosity, 9;10

and

d

i V

i

dt =

V

i

t +(V

i r)V

i :

Hereweusedalsothewell-knownapproximateexpression(see,e.g.,Ref. 3)

r= 3

2

[hrh+( hr)h℄

k

+h(hr)

k 1

3 r

k

;

where is the ion visosity tensor. The veloity omponent V

i

an be found from the poloidal average of the

parallelomponentofthemomentum equation(8)

Z

2

0 d

M

i n

B

B

d

i V

i

dt 3

2

k lnB

=0: (9)

Theparallelionvisosity

k

,enteringEqs. (8)and(9),isdenedby 3;4;9;10

k =

2

3 p

i

i

(0:96 0:59); (10)

where

=3

V

i

ln

p

gn 2=3

B

+ B

2

B 2

V

i g

22

+V

Ti

ln

B

n

; (11)

= 3

0:34V

i

lnn+V

Ti

1:36

lnB 0:84

lnn

; (12)

and

V

Ti =

e h B 2

i D

[BrT

i ℄

E

=

e g

33

p

ghB 2

i

B

T

i

r

(3)

Thus,wehaveEq. (3)todeterminetheradialheat

ux

Ti

, andEq. (9) tond the-ontravariant

om-ponent of the plasmaveloity V

i

. To alulate them

weshould solveEqs. (6),(8), and(9).

III Solution of the perturbed

equations

WendfromEq. (8)

B

B

d

i V

i

dt =

1

2 U

2

i lng

33

(14)

and, onsequently,

pe+

k

= h pi

2 lng

33

; (15)

where=M

i U

2

i =(T

i +T

e

)isthesquaredMah

num-ber,pe=en(T

i +T

e )+n

e

T

i

. ToobtainEq. (14),weused

theovariantdierentiationrules

r

i V

k

= V

k

x i

+ k

im V

m

(16)

andimposed thatthemetritensoromponentsg

12 =

g

21

areperiodialfuntions oftheangle .

UsingEqs. (6)and(7),weobtaintheseond order

dierentialequationfortheperturbediontemperature

e

T

i ,

2

e

T

i

2

2:17b r

M

e

M

i e

T

i

=f(); (17)

where

f()= 0:51bT

i

i

5

2 V

Ti V

i

lnn

5V

Ti lnB

; (18)

d

b = B 2

= 2

i B

2

is the ollisionality parameter, and

i =

p

2T

i =M

i =

i

is the ion mean free path. The

order of the parameter B 2

=B 2

for large aspet ratio

tokamaksisapproximatelyq 2

R 2

, whereq isthesafety

fator and R is the torus major radius. Thus we

ap-proximately have b = q 2

R 2

= 2

i

. For the ollisional

plasma the parameter b > 1. We onsider the range

1<b . p

M

i =M

e

in this paper. In this aseonean

omitperturbationsoftheeletrontemperatureinEqs.

(6)and(17). Fortherange1<b.M

i =M

e

,these

per-turbationsshouldbetakenintoaount(see,e.g.,Ref.

3).

As far as the funtion f() and, onsequently, e

T

i

are periodialin andmoreover,proportionaltosin

fortheirularross-setiontokamak 3

andtosinand

sin2forelliptialross-setiontokamak, 4

thesolution

ofEq. (17)hastheform

e

T

i =

1

X

s=1 e

T

is

sins; (19)

where

e

T

is =

Z

2

0

f()sin sd

[(s 2

+2:17b p

M

e =M

i )℄

: (20)

Comparison ofEq. (15)withEqs. (17)-(20) shows

that,tozeroapproximation,oneanuse

lnn

2 lng

33

: (21)

Thisexpressionanbesubstitutedinto Eqs. (3),(11),

(12)and(18). Thesurfaeaveragedparallelomponent

ofthemomentumequation(9),takingintoaountEq.

(8),anbetransformedintotheform

Z

2

0 d

e

k

3

2 lnB

2 lng

33

hni e

T

i

2 lng

33

(4)

Usingalsotheidentity B 2 =g 22 B 2 +g 33 B 2 ; (23) weget lnB 1 2 1 q 2 R 2 g 22 lng 33 : (24)

Thusweanexpresseveryperturbedvalueviathe

os-illatorypartsofthemetriomponentsg

22 and g

33 .

IV Ion uxes

Let us simplify expressions forperturbed valuesusing

Eqs. (21)and (24). TheFourieromponent e

T

is of the

perturbediontemperature e

T

i

hastheform

e T is = 1:3bT i i d s ( b) h V Ti 1+ 2 + 5 V i i Z 2 0 sins lng 33 d V Ti q 2 R 2 Z 2 0 sins g 22 d ; (25) whered s (b)=s

2 +2:17b p M e =M i

. Theparallel visosity

k

,Eqs. (10)-(12),anbeexpressedintheform

k = 0:96p i i V i

( 1+0:46) lng 33 1 q 2 R 2 g 22 + (26) +1:83V Ti

( 1+0:83) lng 33 1 q 2 R 2 g 22 :

Equation(22)anbetransformedinto

Z 2 0 d k 3 2 + lng 33 3 2q 2 R 2 g 22

+h ni 1 X s=1 e T is Z 2 0

dsins lng

33

=0: (27)

Substituting Eqs. (25)and(26)intoEq. (27),onendsthepoloidalveloityV

i

(tobeomparedwithRef. 12),

V i = 1:83V Ti f 2

(;b;A;D)=f

1

( ;b;A;D); (28)

where

f

1

(;b;A;D)= 1+ 2 3

(1+0:46)A

33 +A

22

(2+1:13)A

23 +0:36 2 bD 33 ; (29) f 2

(;b;A;D)= 1+ 2 3

(1+0:83)A

33 +A

22

(30)

(2+1:5)A

23 0:48b h 1+ 2 D 33 D 23 i ; A 33 = Z 2 0 d lng 33 2 ; (31) A 22 = 1 q 4 R 4 Z 2 0 d g 22 2 ; (32) A 23 = 1 q 2 R 2 Z 2 0 d lng 33 g 22 ; (33) D 33 = 1 X s=1 1 d s (b) Z 2 0

dsins lng 33 2 ; (34) D 23 = 1 q 2 R 2 1 X s=1 1 d s (b) Z 2 0

dsins lng 33 Z 2 0

dsins g

22

: (35)

Equation(3)forthesurfaeaveragedionheatuxanberewrittenasfollows

(5)

Substitution ofEqs. (19),(25),(21),and(24)intoEq. (36)resultsin

Ti =hq

r

i i=

2p

i

i

M

i !

2

i T

i

r

g 11

1+0:8q 2

g 2

33

1+

2

2

D

33

(2+)D

23 +D

22

(37)

0:37

1+

2

D

33 D

23

f

2

(;b;A;D)=f

1

(;b;A;D) i.

g 11

h p

gi Z

2

0 p

gd

;

where

D

22 =

1

q 4

R 4

1

X

s=1 1

d

s (b)

Z

2

0

dsins g

22

2

: (38)

d

V Estimates

Let usanalyzethe expressionsforthe ionpoloidal

ve-loity Eq. (28) and the ion heat ux Eq. (37) in a

general ase. WhenthesquaredMah number

van-ishes,=0,oneobtainsfrom Eq. (28)

V

i

= 1:83V

Ti

; (39)

whih agrees with results of Refs. 11, 3, and 2.

Equations (28) and (39) also onrm the

Hazel-tine theorem, 13

whih says that the so-alled residual

plasmapoloidal rotationin tokamaks depends onlyon

the ion temperature gradient and not on gradientsof

othermarosopiplasmaparameters. Estimatesshow

thattheparametersA

23 andD

23

arenegative,(A

23 <0

and D

23

<0). Hene, theparameter f

1

( ;b;A;D)is

positive, f

1

(;b;A;D) > 0, i.e., the denominator in

Eqs. (28) and (37) is positive and has no roots as a

funtion of . A remarkable property of the poloidal

veloity V

i

is the hange of sign at avalue

0 of the

parameter. This resultsfrom thefat of takinginto

aount inertial fores in the starting equations.

As-sumingthatthepoloidalveloityhangessignat<1

(seein detailRef. 11),wendfromEq. (30)

0

2:1(A

33 +A

22 2A

23 )=[b(D

33 D

23

)℄: (40)

Fromtheapproximateequation,

V

i

0:88V

Ti

b(D

33 D

23 )

(A

33 +A

22 2A

23

+0:36 2

bD

33 )

; (41)

onendstheritialquantity

k ,

k 1:67

r

A

33 +A

22 2A

23

bD

33

; (42)

orrespondingtothemaximumofthepoloidalveloity

V

i(max ) ,

V

i(max )

0:73V

Ti p

b(D

33 D

23 )

p

D

33 (A

33 +A

22 2A

23 )

: (43)

For>

k

, the poloidal veloity V

i

dereases slowly

withthegrowthof.

Analysis of Eq. (37) showsthat themagneti

sur-fae averagedradialion heat ux

Ti

isan inreasing

funtion of theparameter :The fators that

hara-terize the non-irularity of the plasma ross-setion,

suhaselliptiity, triangularity,reduetheroleof

neo-lassialeetsin

Ti

forallvaluesoftheparameter.

Theseresultsoinidewiththepreviousstudiesofthis

problem,fullledforelliptialandirularross-setion

tokamaks, 3;4

andwedemonstratethemhere.

VI Elliptial tokamak

Intheaseoftheelliptialtokamak wendfrom Eqs.

(28)

U

i =G

u (;b)U

Ti

; (44)

whereU

i =V

i ,U

Ti

=( 1=M

i !

i )T

i

=,= p

l

1 l

2 ,

l

1 and l

2

are the semiminor and semimajor axes of a

tokamakross-setion,respetively,

G

u

(;b)= f

2 (;b)

f

1 (;b)

; (45)

f

1

(;b)=d(b)

1+ 2

3

( 1+0:19)+0:18 2

b; (46)

f

2

(;b)=d(b)

1+ 2

( 1:83+1:52) 0:88b

1+

(6)

d(b)=1+2:2b p

M

e =M

i

. ObtainingEq. (44),the

pa-rameter

A= l

1

R q

l 2

2

l 2

1 1

(48)

wasassumedtobesmall, A1.

UsingEq. (37),wederivethemagnetisurfae

av-erageoftheradialionheatuxintheShafranovform, 6

Ti =

2nT

i

i

M

i !

2

i T

i

l

2

1 +l

2

2

2l

1 l

2

1+3:2q 2

l 2

1

(l 2

1 +l

2

2 )

G

T (;b)

; (49)

where

G

T

(;b)=

1+

2

1+ 2

3

f

3 ()

f

1 (;b)

; (50)

f

3 ()=

1+

2

( 1+0:19)+

5

(1:83+1:52): (51)

d

Equations(44)and(49)oinideswiththeproper

equa-tionsofRef. 4. AsfarastheoeÆientl 2

1 = l

2

1 +l

2

2

in

Eq. (49)islessthan1,l 2

1 = l

2

1 +l

2

2

<1,theroleof

neo-lassialeets inthe radialion heatux dereases in

nonirularross-setiontokamaksin omparisonwith

irularross-setionones.

ThequantitiesG

u

(;b)andG

T

(;b)areplottedin

Figs. 1 and 2, respetively. One an see that

fun-tion G

u

(;b) (Fig. 1) hanges sign at

0

2d(b)=b.

Fortheollisional parameterb p

M

i =M

e

, the

quan-tity is equalto

0

0:1. Themaximumof funtion

G

u

(;b) is ahieved when b

m

50,

m

1, and is

G

u (

m ;b

m

) 3. It followsfrom Fig.2 that the

neo-lassial ontribution in the radialion heat ux, as a

funtionof ,isdroppingwithinreasingb.

Figure 1. The dependene of the funtionGu(;b) on

fordierentmagnitudesofthe parameterb: b

1

=10(solid

urve)andb2=50(dashedurve).

Figure 2. The dependeneof the funtionGT(;b) on

for dierentmagnitudes oftheparameterb: b

1

=10(solid

urve)andb2=50(dashedurve).

VII Conlusions

Generalexpressionsforneolassialpoloidalplasma

ro-tation V

i

and radial ion heat ux

Ti

for an

axially-symmetri arbitrary ross-setion tokamak edge with

plasma subsoni toroidal ows are obtained in the

presentpaper. TheirdependeneonthesquaredMah

number is analyzed. It is shown that there is a

re-markablepropertyofthepoloidalveloityV

i

tohange

signat avalue=

0

, whih resultsfrom takinginto

aountinertialforesinthestartingequations. There

also existsaritialvalueof,

k

,whihorresponds

to themaximum of the poloidal veloityV

i(max) . For

>

k

, thepoloidal veloityV

i

isa dereasing

fun-tion of . Analysis of the magneti surfaeaveraged

radial ion heat ux

Ti

shows that this ux is an

in-reasingfuntion of theparameter: Thenonirular

(7)

neo-lassial eets in

Ti

for any value of the parameter

. These resultsonrm previousstudiesofthis

prob-lem.

Aknowledgments

Thisworkwassupported bytheResearh Support

Foundationof the Stateof S~ao Paulo(FAPESP),

Na-tional Counil of Sienti and Tehnologial

Devel-opment (CNPq), and Exellene Researh Programs

(PRONEX) RMOG 50/70grant from the Ministryof

Siene andTehnology,Brazil.

Referenes

[1℄ A.Rogister,Phys.Rev.Lett.81, 3663(1998).

[2℄ H. A. Claassen, H. Gerhauser, A. Rogister, and C.

Yarim,Phys.Plasmas7, 3699(2000).

[3℄ V. S.Tsypin, D. Kh. Morozov, J.J. E. Herrera, J. J.

Martinell,M. Tendler,I. F.Potapenko,A. S.deAssis,

and C. A. de Azevedo. Plasma Phys. Control. Fusion

39,1681(1997).

[4℄ V. S. Tsypin, C. A. de Azevedo, and A. S. de Assis,

PhysisLettersA.219,282(1996).

[5℄ K. Brau, M. Bitter, R. J. Goldston, D. Manos, K.

MGuire, and S. Sukewer, Nul. Fusion 23, 1643

(1983).

[6℄ V.D.Shafranov,Sov.Atom.Energy19,1008(1965).

[7℄ V.D.Shafranov,J.W.Connor,andC.J.Watson,Sov.

J.PlasmaPhys.2,99(1976).

[8℄ S.I. Braginskii, in Reviews of Plasma Physis, edited

by M. A. Leontovih(ConsultantsBureau, New York,

1965),Vol. 1,p.205.

[9℄ A.B. Mikhailovskiiand V. S.Tsypin,Plasma Physis

13,785(1971).

[10℄ A.B.MikhailovskiiandV.S.Tsypin,BeitragePlasma

Physik24,335(1984).

[11℄ A.B.MikhailovskiiandV.S.Tsypin,Sov.Phys.JETP

56,75(1982).

[12℄ B.N.Kuvshinov,Sov.J.PlasmaPhys.16,227(1990).

Imagem

Figure 1. The dependene of the funtion Gu(; b) on

Referências

Documentos relacionados

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

An interesting example of this kind of visually led narrative strategy can also be found in a museum on the other side of the world in the city of Portland Oregon. The pair of

If, on the contrary, our teaching becomes a political positioning on a certain content and not the event that has been recorded – evidently even with partiality, since the

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of

financial, and material resources; (2) the participation and collaboration of international organizations and other external actors in Plan activities; (3) regional and

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Dentre essas variáveis destaca-se o “Arcabouço Jurídico-Adminis- trativo da Gestão Pública” que pode passar a exercer um nível de influência relevante em função de definir