• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
9
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Analysis

of

flavonoids

in

Rubus

erythrocladus

and

Morus

nigra

leaves

extracts

by

liquid

chromatography

and

capillary

electrophoresis

Luciana

R.

Tallini

a

,

Graziele

P.R.

Pedrazza

a

,

Sérgio

A.

de

L.

Bordignon

b

,

Ana

C.O.

Costa

c

,

Martin

Steppe

d

,

Alexandre

Fuentefria

e

,

José

A.S.

Zuanazzi

a,∗

aDepartamentodeProduc¸ãodeMatériaPrima,FaculdadedeFarmácia,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

bCentroUniversitárioLaSalle,Canoas,RS,Brazil

cDepartamentodeCiênciaeTecnologiadeAlimentos,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

dDepartamentodeProduc¸ãoeControledeMedicamentos,FaculdadedeFarmácia,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

eDepartamentodeAnálises,FaculdadedeFarmácia,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15January2015 Accepted30April2015 Availableonline17June2015

Keywords:

HPLC-UV UPLC-DAD/MS CE-DAD

Rubuserythrocladus

Morusnigra

Flavonoids

a

b

s

t

r

a

c

t

Thisstudyuseshighperformanceliquidchromatographyandcapillaryelectrophoresisasanalyticaltools toevaluateflavonoidsinhydrolyzedleavesextractsofRubuserythrocladusMart.,Rosaceae,andMorus nigraL.,Moraceae.Forphytochemicalanalysis,theextractswerepreparedbyacidhydrolysisand ultra-sonicbathandanalyzedbyhighperformanceliquidchromatographyusinganultravioletdetectorand bycapillaryelectrophoresisequippedwithadiode-arraydetector.Quercetinandkaempferolwere iden-tifiedintheseextracts.Theanalyticalmethodsdevelopedwerevalidatedandapplied.Quercetinand kaempferolwerequantifiedinR.erythrocladus,with848.43±66.68␮gg−1 and304.35±17.29␮gg−1, respectively,byHPLC-UVand quercetin,836.37±149.43␮gg−1,byCE-DAD.In M.nigrathe quan-tifications of quercetin and kaempferol were 2323.90±145.35␮gg−1 and 1446.36±59.00␮gg−1, respectively,byHPLC-UVand,2552.82±275.30␮gg−1and1188.67±99.21␮gg−1,respectively,by CE-DAD.Theextractswerealsoanalyzedbyultra-performanceliquidchromatographycoupledwitha diode-arraydetectorandmassspectrometer(MS),UPLC-DAD/MS.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

ThefruitsofRubus(Rosaceae)andMorus(Moraceae)havebeen extensivelystudiedaroundtheworldbecauseoftheirbeneficial effectsonhealth.Rubus,popularlyknownasthegenusof rasp-berriesandblackberries,iswidelydistributedaroundtheworld, bothaswildandcultivatedspecies(Deightonetal.,2000).Morus isknownasthegenusof mulberry,and isfoundfrom temper-ateregionstosubtropicalregionsofthePlanet(Gundogduetal., 2011).InBrazil,plantsbelongingtothegenusMorusarelistedby thegovernmentasinterestingtoresearchbecauseoftheirusein folkmedicine,andtheirpotentialforuseasphytotherapics(Portal daSaúde,2013).However,RubusandMorusareoftenmistakenin thedifferentiation,duetothesimilarityoftheirfruits.Also,there isalotofinformationaboutthefruitsofthesespecies,butlittle informationabouttheirleaves.

Correspondingauthor.

E-mail:zuanazzi@ufrgs.br(J.A.S.Zuanazzi).

Studies have shown that Rubus leavesdemonstrate antioxi-dant (Venskutoniset al., 2007;Martini etal., 2009), anticancer (Durgo et al., 2012), gastrointestinal (Rojas-Vera et al., 2002), antiangiogenic(Liuetal.,2006),antithrombotic(Hanetal.,2012), hypoglycemic (Jouad et al., 2002), antimicrobial (Panizzi et al., 2002;ThiemandGoslinska,2004;Martinietal.,2009;Ostrosky et al., 2011) and anxiolytic activities (Nogueira et al., 1998; NogueiraandVassilieff,2000).FortheleavesofMorus,thereare studies reporting antioxidant(Katsube et al., 2010; Choiet al., 2013), anticancer(Dat etal.,2010; Skupienet al.,2008), hypo-glycemic(Volpatoetal.,2011;Chungetal.,2013),anti-obesity(Oh etal.,2009;Tsudukietal.,2013),antimicrobial(Omidiranetal., 2012)andvasodilationactivities(Xiaetal.,2008).

Flavonoids derived from quercetin and/or kaempferol were reportedinextractsofRubusleavesanalyzedbyTLC( Tzouwara-Karayanniand Philianos,1982),HPLC(Venskutonisetal.,2007; Martinietal.,2009;Durgoetal.,2012;GudejandTomczyk,2004) andNMR(Panizzietal.,2002;Hanetal.,2012;Gudej,2003).There arenostudiesaboutanalysisofRubusleavesbyCE,andthespecies erythrocladushasneverbeenstudiedbefore.InMorusleaves, sec-ondarymetabolitesderivedfromquercetinand/orkaempferolhave

http://dx.doi.org/10.1016/j.bjp.2015.04.003

(2)

beenidentifiedbyHPLC(Katsubeetal.,2010;Thabtietal.,2012; Choietal.,2013),andbyNMR(Datetal.,2010;Katsubeetal.,2010), andtherearetwostudiesonthechemicalcompositionofMorus albabyCE(Suntornsuketal.,2003;Chuetal.,2006).

Highperformanceliquidchromatographyisaclassicmethod usedfortheseparationandquantificationofsecondarymetabolites inplantextractsbutsometimesitcanbeanexpensive analyti-caltool(MerkenandBeecher,2000).Capillaryelectrophoresisis characterizedbyhighseparationefficiencyandgoodcompromise betweenanalysistimeandsatisfactorycharacterizationof pheno-liccompoundsinplants.Thelowoperationalcostandthesmall residuegenerationmakethis techniqueanattractiveoption for thedevelopmentofanalyticalmethodsforphytochemicalanalysis (Carrasco-Pancorboetal.,2006).

TheaimofthisstudywastodevelopHPLC-UVandCE-DAD ana-lyticalmethods for theevaluation ofquercetin and kaempferol inRubus erythrocladus Mart.and MorusnigraL.leavesextracts. Theresultswerestatisticallyanalyzedusingvalidationparameters andthemethodswereappliedtodeterminetheamountofthese flavonoidsinthesesamples.

Experimental

Samples

LeavesofRubuserythrocladusMart.,Rosaceae,werecollectedat Embrapa–TemperateClimate(Pelotas,Brazil)andleavesofMorus nigraL.,Moraceae,werecollectedinPortoAlegre(Brazil).Vouchers havebeendepositedintheHerbarium–UFRGS,FederalUniversity ofRioGrandedoSul(179856and176765,respectively).The sam-plesweredriedatroomtemperaturefortwoweeksandkeptinthe dark.

Chemicalsandmaterials

Quercetin (purity≥98%) and kaempferol (purity≥97%)were obtainedfromSigma(USA)andmethylparabenfromFluka(USA). HPLC-grade acetonitrile and methanol were purchased from Merck (Germany). Throughout the study, deionized and ultra-purewaterwereused.Allotherchemicalswereanalyticalgrade. DichloromethaneandhydrochloricacidwereobtainedfromSynth (Brazil),trifluoroaceticacidfromVetec(Brazil),andethylacetate, sodiumhydroxideandsodiumtetraboratedecahydratefromMerck (Germany).

HPLCconditions

HPLCanalysiswereperformedonaWatersAlliance2695(USA) chromatographusingaUVdetector(UV/VISWaters2487,USA)and aC18reversed-phasecolumn(Phenomenex,150×4.6mm,4␮m) withguard-column(C18). TheEmpower softwarewasused for thedataacquisition.Aphotodiodearraydetector(DAD)(UV/VIS Waters996,USA)wasalsousedtoevaluatethespecificity.

Flavonoidswereelutedusingagradientsystem.Mobilephase Aconsistedofwaterwith0.01%(v/v)oftrifluoroaceticacidandB consistedofacetonitrilewith0.08%(v/v)oftrifluoroaceticacid.The gradientprofilewas:0min50%ofB,0–2min60%ofB,2–4min80% Band4–7min95%B.Theflow-ratewas0.6mlmin−1anddetection

wasat370nm.

UPLCconditions

AnUltraPerformanceLiquidChromatography(WatersAcquity UPLC, USA) equipped with a diode array detector (DAD) cou-pledwitheletrosprayionizationinthepositiveionmode(ESI(+)) quadrupoletime-of-flight(Q-Tof)massspectrometry(MS)(MS Q-TofMicro-Micromass)wasused.Theseparationofthecompounds

wasperformedonaC18reversephasecolumn(AcquityUPLCbeh, 50.0×2.1mm, 1.7␮m). The software program Mass Lynx v.4.1 wasusedfortheanalysisanddataacquisitionandtheprogram AcquityUPLCColumnsCalculatorv.1.1.1wasusedtoadjustthe HPLCmethodtotheUPLCmethod.

MobilephaseAconsistedofwaterwith0.1%(v/v)offormicacid andacetonitrileBwith0.1%(v/v)offormicacid.Thegradientwas 0min50%ofB,0–0.09min60%ofB,0.09–0.38min80%ofBand 0.38–0.80min95%ofB.Columntemperaturewasmaintainedat 25◦C,flowratewas0.294mlmin−1,injectionvolumewas1.0l

anddetectionwasbetween200and400nm.

CEconditions

TheCEassays wereconducted ina capillary electrophoresis system(Agilent Technologies, model 7100, Palo Alto,CA, USA) equippedwithadiodearraydetector,temperature-controldevice (maintainedat25◦C)anddataacquisitionandanalysissoftware suppliedbythemanufacturer(HPChemStation®).Beforethefirst

run,thecapillarycolumnwassequentiallyrinsedwith1moll−1

NaOH(30min)andwater(30min).Betweenruns,thecapillarywas flushedfor1minwithbackgroundelectrolyte(BGE).Atthe begin-ningofeachdaythecapillarywasconditionedbyflushingwith 1moll−1 NaOH(20min),followedbya20minflushwith

deion-izedwaterandanelectrolytesolution(20min).Betweenruns,the capillarywasreconditionedwith1moll−1NaOH(2min),deionized

water(1min)andelectrolytesolution(2min).Attheendofeach workingday,thecapillarywasrinsedwith1moll−1NaOH(10min)

andwater(10min).

Separations were conducted in an uncoated fused-silica capillary 48.5cm in length (40cm effective length×50␮m I.D.×375␮mO.D.).DirectUVdetectionwassetat210nm,andthe temperaturewasmaintainedat25◦C.Thestandardsandsamples wereintroducedtothecapillarywithahydrodynamicpressureof 50mbar,for3s.Theseparationvoltageappliedwas30kVunder normalpolarity.TheoptimizedBGEusedintheproposedmethod wascomprisedof20mmoll−1(pH9.2)and10%(v/v)acetonitrile,

andmethylparabenwasusedasinternalstandard,dilutedtoobtain afinalconcentrationof45.46␮gml−1.

Standardpreparationandcalibrationcurves

Thestandardstocksolutionswerepreparedbydissolving1mg ofeachcompoundin1mlofmethanol.Thesesolutionswerestored in dark glass bottles at 4◦C. Working standard solutions were freshly prepared by dissolving a suitable amountof theabove solutions with methanol before injection. Analytical curves for bothquercetinandkaempferolwereprepared,withninepoints between1and100␮gml−1fortheHPLCanalysisandsevenpoints between15and150␮gml−1withincrementsofmethylparaben, 45.46␮gml−1,fortheCEanalysis.

Samplepreparationofextracts

(3)

1.00 0.00

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 0.02 0.04 0.06 0.08 0.10 0.12

2.00 3.00 4.00 5.00 6.00 7.00 Minutes

A

Q

K

Q

K

B

AU

AU

8.00 9.00 10.00 11.00 12.00

1.00 2.00 3.00 4.00 5.00 6.00 7.00 Minutes

8.00 9.00 10.00 11.00 12.00

Fig.1. ChromatogramsofRubuserythrocladus(A)andMorusnigra(B)hydrolyzedleafextractsbyHPLC-UV,370nm.Q=quercetinandK=kaempferol.

Validation

TheHPLCandCEmethodswerevalidatedforthequantitative analysisofquercetinandkaempferolpresentinR.erythrocladusand M.nigraleaves,inaccordancewiththeInternationalConferenceon Harmonizationguidelines,usingtheparametersoflinearity, speci-ficity,precision,accuracy(recoverytest),limitofdetection,limit ofquantificationandrobustness(ICH,2005).ForvalidationinCE, wealwaysusedaninternalstandard(IS)–methylparaben–togive greatercertaintytotheresults.

Specificity was determined by checking the peak purity of the quercetin and kaempferol peaks, using a photodiode-array detector by HPLC and CE. Linearity was analyzed using three standardcurves obtainedonthreedifferentdaysat nine differ-entconcentrationsofquercetinandkaempferol(1–100␮gml−1) by HPLC and seven different concentrations of quercetin and kaempferol(15–150␮gml−1)byCE.Forelectrophoresisanalysis, 45.46␮gml−1 ofmethylparabenwasaddedinallthecalibration curvepoints,asinternalstandard.Linearitywasevaluatedby cal-culatingtheregressionlineusingtheleastsquaresmethod.

Precision was performed in two different levels: intra-day precision and inter-day precision. The intra-day precision was determinedafteranalysesofthree solutionsprepared at differ-entconcentrations,intriplicate,injectedinoneday.Theinter-day precisionwasstudiedby analyzing a solutionof quercetinand

kaempferol, preparedin triplicate,over three consecutivedays. Theaccuracy(assayrecovery)ofthemethodwasassessedby ana-lyzingsamplesofR.erythrocladusandM.nigra,byHPLCandCE, respectively–thesampleswerespikedwithknownamountsof quercetinandkaempferolstandardsolutionsatthreedifferent con-centrations:20,40and60␮gml−1ofquercetinandkaempferolfor chromatographyanalysisand30,60and90␮gml−1ofquercetin andkaempferolforelectrophoresisanalysis.Accuracywas deter-minedbythemeanconcentrationrecovered,andtheresultswere expressedasrecoverypercentage.

Detection(LOD)andquantitation(LOQ)limitswerecalculated directlyfromthestandardcurve.LODwascalculatedbythe equa-tion3.3/S,whileforLOQ,theequation10/Swasused,where

istheSDofyinterceptsofregressionlinesandSistheslopeofthe standardcurve.

Robustnesswasavailablefromtheinjectionofaquercetinand kaempferolsolutionbynormalconditionsandbyvaryingthe fol-lowinganalyticalparameters:chromatographiccolumnbatch,pH ofthemobilephase andflowrateforHPLCandtemperatureof cassette,injectiontimeandorganicsolventofelectrolyteforCE.

Resultsanddiscussion

(4)

1 0

5 10 15 20 25 30

25

20

15

10

5

0 mAU

mAU

A

B

2 3 4 5 6 7 Min

1 2 3 4 5 6 7 Min

K Q

K Q IS

EOF + #

EOF + # IS

Fig.2.ElecthropherogramsofRubuserythrocladus(A)andMorusnigra(B)hydrolyzedleavesextractsbyCE-DAD,200nm.EOF+#=electroosmoticflow+unidentifiedpeak, IS=internalstandard,K=kaempferolandQ=quercetin.

Table1

Linearequation,linearity,limitofdetection(LOD)andquantification(LOQ),intra-dayandinter-dayprecision(valuesexpressedinRSD%)andrecoveryofquercetinand kaempferolbyHPLC-UVandCE-DAD.

Flavonoid Linearequation R2 LOD(gml−1) LOQ(gml−1) Precisionintraday Precisioninterday Meanrecovery(%)±RSD%

HPLC Quercetin y=83082x+42,829 0.9996 0.9519 2.8844 0.30 1.69 95.35±2.88 Kaempferol y=69225x+56,605 0.9995 1.0519 3.1876 0.23 2.02 95.76±2.77 CE Quercetin y=0.0176x+0.0276 0.9979 5.3043 16.0737 2.48 7.76 104.56±1.77 Kaempferol y=0.0203x+0.005 0.9987 4.1887 12.6931 3.68 8.44 104.31±1.66

Table2

DifferentparametersandresultsofrobustnessofquercetinandkaempferolinHPLC-UVandCE-DADmethods.Valuesexpressedinmean(%)±RSD%.

HPLCparameter Quercetin Kaempferol CEParameter Quercetin Kaempferol

Flow0.55mlmin−1 109.40±0.31 109.40±0.45 25.5

C 97.63±0.26 106.27±0.07 Flow0.65mlmin−1 92.35±0.26 92.38±0.02 24.5C 98.39

±0.63 106.37±0.71 0.005%TFA 95.89±7.70 93.50±11.58 2s 95.76±1.87 107.73±0.14 0.015%TFA 101.57±0.13 100.14±0.39 4s 97.94±0.25 103.19±4.12 0.04%TFA 102.96±0.61 100.89±0.69 5.0% 99.30±3.71 98.73±2.41 0.12%TFA 104.90±0.16 104.28±0.05 15.0% 98.77±1.43 104.76±0.16

(5)

Table3

QuantificationofquercetinandkaempferolinhydrolyzedleavesextractsofRubuserythrocladusandM.nigrabyHPLC-UVandCE-DAD.Valuesexpressedas␮gg−1ofdried

plant(D.P.).

Flavonoid R.erythrocladusMean(␮gg−1)±RSD% M.nigraMean(␮gg−1)±RSD%

HPLC Quercetin 848.43±10.48 2323.90±7.28

Kaempferol 304.35±6.83 1446.36±6.72

CE Quercetin 836.37±9.36 2552.82±7.96

Kaempferol N.Q. 1188.67±9.20

N.Q.=notquantified.

1.9e+1 1.8e+1

1.7e+1

1.6e+1

1.5e+1

1.4e+1 1.3e+1

1.2e+1

1.1e+1

1.0e+1 9.0

AU

8.0

7.0

6.0

5.0 4.0

3.0 2.0

1.0

5.0e+1 4.75e+1 4.5e+1

4.25e+1 4.0e+1

3.75e+1 3.5e+1

3.25e+1 3.0e+1

2.75e+1 2.5e+1

2.25e+1 2.0e+1 1.75e+1 1.5e+1 1.25e+1 1.0e+1

AU

7.5 5.0 2.5 0.0

0.00 0.100.200.30 0.400.50 0.600.700.800.90 1.001.101.201.30 1.401.50 1.601.701.801.902.00 Time

0.0

0.000.100.200.300.400.500.60 0.700.800.901.001.101.201.30 1.401.501.601.701.801.902.00 Time 1.56

1.13 0.89

0.69 0.58

K

0.69

K Q

0.58

Q

A

B

0.85 0.64 0.40

0.47

1.56 0.40

0.47

(6)

100

0

50 100 200 300 400 303.0503

A

209.8139

254.8139

209.8139 287.0564

265.8138

365.8138 370.8138

500 550 600650 700750 800850 9009501000 m/z 450

350 250 150

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000 m/z

%

100

0

B

%

Fig.4. MassandUVspectraofquercetin(A)andkaempferol(B)ofRubuserythrocladushydrolyzedleafextractsbyUPLC-DAD/MS.

chromatography (Fig. 1) and electrophoresis (Fig. 2). The hydrolyzationprocessgivesusclearerchromatogramsthancrude extract and the identification of quercetin and kaempferol in hydrolyzedleavesextractssuggeststhepresenceofquercetinand kaempferolderivativecompoundsintheseleavestoo.

HPLC methods are developed based on the polarity of the molecules.ThisdiffersfromtheCEmethodology,inwhich both flavonoidswereionizedin theelectrolyte usedinthis work,so thattheseparationofquercetinandkaempferolwasdetermined bytheirmolecularweight.Firstweobservedtheelectromigration ofkaempferol(MW=286.24)andthenweobservedthe electromi-grationofquercetin(MW=302.2).

ThepHofthebufferwillinfluencethedegreeofionizationof thesolutes,andhence,theirelectrophoreticmobilities.Giventhat thepKa of quercetinis 7.76and the pKa of kaempferol is7.89

(Tungjaietal.,2008),sodiumtetraborate(pH9.2)waschosenas theelectrolytesystemtoinitiatetheoptimizationprocedure.At

thispH,theelectroosmoticflowisusuallygreaterthanthe elec-trophoreticvelocitiesoftheanions,soquercetinandkaempferol (negatively charged), which are attracted to the positive elec-trode,are carriedtowardthecathode.In thiscase,anionselute ininversesequence totheircharge-to-sizeratios. Initialresults haveshownthatinsufficientresolutionoccurredwithelectrolyte systemcontainingonly tetraborate, sotheuseof anadditional modifierwasrequired.Adramaticimprovementcanbeobtained inselectivity,resolution,andseparationefficiencywhenorganic solvents,suchasmethanol,ethanolandacetonitrileormixtures thereof,areaddedtotheelectrolyte(Baker,1995).The acetoni-trileconcentrationwasstudiedovertherangeof0–15%forafixed amountofsodiumtetraborate,and10%(v/v)wasselectedbecause itrepresentedacompromisebetweenresolutionandanalysistime. Theseparation ofquercetin,kaempferol andI.S. methylparaben under investigation at the optimized conditions is shown in

(7)

50

303.0512

209.8139

255.8139 370.8138

100

0

%

AU

A

287.0557

209.8139

265.8138

366.8138 100

0

%

AU

B

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/Z

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/Z

Fig.5.MassandUVspectraofquercetin(A)andkaempferol(B)ofMorusnigrahydrolyzedleafextractsbyUPLC-DAD/MS.

Methodsvalidation

Alltheparameterstestedinthevalidationmethodsforthe quan-tificationofquercetinandkaempferolinhydrolyzedleafextracts ofR.erythrocladusandM.nigrashowedsatisfactoryresults,with RSD ofless than 15% (Tables 1 and 2).The purityof the chro-matographic and electrophoretic peaks obtained for quercetin andkaempferolwasevaluatedusingaDADdetector.Theresults showedthatothercompoundsdidnotco-elute/migratewiththe standards.

Sampleanalysis

ItwaspossibletoapplythedevelopedmethodsinRubusand Morussamples(Table3).ByCE,kaempferolcouldnotbe quanti-fiedinR.erythrocladus.Thisresultisduetothelowersensitivity ofthistechnique,asshowninTable1.TheCEsensitivityisrelated tothecapillarydetectionwindow,capillarydiameterandlightUV

dispersion(Li,1996).Lessdilutedsamplescouldhaveprovided bet-terresults.Applyingtheanalyticaltoolt-studentitwasobserved thatnosignificantdifferenceswereobservedinthequantitiesof theseflavonoidsbetweenthetwoformsofanalyses–HPLCandCE (p>0.05)–Table3.

(8)

Bothanalyticaltechniquesprovedtobefastandreliable.The HPLC methodcould beapplied as a form of quality control of quercetinand kaempferol inhydrolyzed leafextractsof R. ery-throcladusandM.nigra.EvenwiththelowersensitivityoftheCE method,it ispossibletoobservehigherefficiencyofseparation peaks(Fig.2).Thehighversatility,thelowvolumeofreagentsand sample,andthegoodresultsobtainedforquercetinandkaempferol quantification by CEsuggest that this analytical tool could be appliedasacomplementarytechnicforthequalitycontrolofthese compoundsinnaturalproducts.

Botanicalandchemicalanalysesofplantsareveryimportantfor theidentificationandqualitycontrolofmedicinalplants(Brazilian Pharmacopoeia,2010).ByUPLC-DAD/MS,adifferencewas iden-tifiedbetweenthechemicalqualitativeprofilesoftheRubusand Morusspecies(Fig.3).

Allpeakswerefragmented,butonlyquercetinandkaempferol (at0.58 and 0.69s, respectively)were identified in hydrolyzed leafextracts of R. erythrocladus and M. nigra by UPLC-DAD/MS (Figs.4and5,respectively).

ThepresenceofkaempferolandquercetininRubusandMorus chromatograms,andsmallunidentifiedpeaksinthechromatogram forR.erythrocladus(Fig.3)byUPLC-DAD/MSsuggestthattheRubus leafextractmaybemorecomplexthantheMorusleafextract.

Conclusions

It was possible to determine the flavonoids present in hydrolyzedleavesextractsofR.erythrocladusandM.nigraandit wasshowedtwofastandreliablemethodstoquantifyquercetin andkaempferolintheseextracts,HPLC-UVandCE-DAD.Thesetwo methodswerevalidatedandcouldbeappliedtothequality con-troloftheseextracts.Moreover,we reportchemical differences betweentheMorusandRubusleavesstudiedbyUPLC-DAD/MSand wealsocontributewithnewinformationabouttheMorusgenus fortheBraziliangovernment.

Authors’contributions

LRTcontributedin samplepreparation, chromatography and electrophoresisanalysis,analysisofdataanddraftof thepaper. GPRPcontributedinsamplepreparationandchromatography anal-ysis.ACOCandMScontributedinelectrophoresisanalysisanddraft ofthepaper.SALBcontributedtoplantscollections.AFandJASZ designedthestudy,leadandadvisedthelaboratoryworkand per-formedtheanalysisofthedataanddraftedthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

WewouldliketothankCAPES,CNPq,PPGCF-UFRGSandDra. Maria do Carmo Bassols Raseira (Embrapa). JASZ acknowledge CNPqforresearcherfellowship.

References

Baker,D.R.,1995.CapillaryElectrophoresis.Wiley,NewYork.

BrazilianPharmacopoeia,2010vol.I.,5thed.Anvisa,Brazil,546p.

Carrasco-Pancorbo,A.,Gómez-Caravaca,A.M.,Cerretani,L.,Bendini,A., Segura-Carretero,A.,Fernández-Gutiérrez,A.,2006.Asimpleandrapidelectrophoretic methodtocharacterizesimplephenols,lignans,complexphenols,phenolic acids,andflavonoidsinextra-virginoliveoil.J.Sep.Sci.29,2221–2233.

Choi,J.,Kang,H.J.,Kim,S.Z.,Kwon,T.O.,Jeong,S.-I.,Jamg,S.-I.,2013.Antioxidant effectofastragalinisolatedfromtheleavesofM.albaL.againstfree radical-inducedoxidativehemolysisofhumanredbloodcells.Arch.PharmacalRes.36, 912–917.

Chu,Q.,Lin,M.,Tian,X.,Ye,J.,2006.Studyoncapillaryelectrophoresis-amperometric detection profilesof differentparts of M. albaL. J. Chromatogr. A1116, 286–290.

Chung,H.I., Kim, J.,Kim, J.Y., Kwon,O., 2013. Acuteintake ofmulberry leaf aqueousextractaffectspostprandialglucoseresponseaftermaltoseloading: randomizeddouble-blindplacebo controlledpilotstudy.J.Funct.Foods5, 1502–1506.

Dat,N.T.,Binh,P.T.X.,Quynh,L.T.P.,Ninh,C.V.,Houng,H.T.,Lee,J.J.,2010.Cytotoxic prenylatedflavonoidsfromM.alba.Fitoterapia81,1224–1227.

Deighton,N.,Brennan,R.,Finn,C.,Davies,H.V.,2000.Antioxidantpropertiesof domesticatedandwildRubusspecies.J.Sci.FoodAgric.80,1307–1313.

Durgo,K.,Belscak-Cvitanovic,A.,Stancic,A.,Franekic,J.,Komes,D.,2012.The bioac-tivepotentialofredraspberry(R.idaeusL.)leavesinexhibitingcytotoxicand cytoprotectiveactivityonhumanlaryngealcarcinomaandcolon adenocarci-noma.J.Med.Food15,258–268.

Gudej,Y.,2003.KaempferolandquercetinglycosidesfromR.idaeusL.leaves.Acta Pol.Pharm.60,313–316.

Gudej,J.,Tomczyk,M.,2004.Determinationofflavonoids,tanninsandellagicacid inleavesfromRubusL.Species.Arch.PharmacalRes.27,1114–1119.

Gundogdu,M.,Muradoglu,F.,GaziogluSensoy,R.I.,Yilmaz,H.,2011.Determination offruitchemicalpropertiesofM.nigraL.,M.albaL.andM.rubraL.byHPLC.Sci. Hortic.132,37–41.

Han,N.,Gu,Y.,Ye,C.,Cao,Y.,Lie,Z.,Yin,J.,2012.Antithromboticactivityoffractions andcomponentsobtainedfromraspberryleaves(R.chingii).FoodChem.132, 181–185.

ICH,2005.Harmonizedtripartiteguideline:validationofanalyticalprocedures:text andmethodologyQ2(R1).

Jouad,H.,Maghrani,M.,Eddouks,M.,2002.HypoglycaemiceffectofR.fructicosisL. andGlobulariaalypumL.innormalandstreptozotocin-induceddiabeticrats.J. Ethnopharmacol.8,351–356.

Katsube,T.,Imawaka,N.,Kawano,Y.,Yamazaki,Y.,Shiwaku,K.,Yamane,Y.,2010.

Antioxidantflavonolglycosidesinmulberry(M.albaL.)leavesisolatedbasedon LDLantioxidantactivity.FoodChem.97,25–31.

Li,S.F.Y.,1996.CapillaryElectrophoresis:Principles,PracticeandApplications. Jour-nalofChromatographyLibrary,Netherlands.

Liu,Z.,Schwimer,J.,Liu,D.,Lewis,J.,Greenway,F.,York,D.A.,Woltering,E.A.,2006.

GallicacidispartiallyresponsiblefortheantiangiogenicactivitiesofRubusleaf extract.Phytother.Res.20,806–813.

Martini,S.,D’addario,C.,Colacevich,A.,Focardi,S.,Borghini,F.,Santucci,A.,Figura, N.,Rossi,C.,2009.AntimicrobialactivityagainstHelicobacterpyloristrainsand antioxidantpropertiesofblackberryleaves(R.ulmifolius)andisolated com-pounds.Int.J.Antimicrob.Agents34,50–59.

Merken,H.M.,Beecher, G.R.,2000. Measurementof foodflavonoids by high-performance liquid chromatography: a review. J. Agric. Food Chem. 48, 577–585.

Nogueira,E.,Rosa,G.J.M.,Haraguchi,M.,Vassilieff,V.S.,1998.AnxiolyticeffectofR. brasilensisinratsandmice.J.Ethnopharmacol.61,111–117.

Nogueira,E.,Vassilieff,V.S.,2000.Hypnotic,anticonvulsantandmusclerelaxant effectsofR.brasiliensis.InvolvementofGABAA-system.J.Ethnopharmacol.70, 275–280.

Oh,K.-S.,Ryu,S.Y.,Lee,S.,Seo,H.W.,Oh,B.K.,Kim,Y.S.,Lee,B.H.,2009.Melanin con-centratinghormone-1receptorantagonismandanti-obesityeffectsofethanolic extractfromM.albaleavesindiet-inducedobesemice.J.Ethnopharmacol.122, 216–220.

Omidiran,M.O.,Baiyewu,R.A.,Ademola,I.T.,Faforede,O.C.,2012.Phytochemical analysis,nutritionalcompositionandantimicrobialactivitiesofwhitemulberry (M.alba).Pak.J.Nutr.11,456–460.

Ostrosky,E.A.,Marcondes,E.M.C.,Nishikawa,S.,de,O.,Lopes,P.S.,Varca,G.H.C., Pinto,T.,de,J.A.,Consiglieri,T.O.,Baby,A.R.,Velasco,M.V.R.,Kaneko,T.M.,2011.

R.rosaefoliusextractasanaturalpreservativecandidateintopicalformulations. AAPSPharmSciTech12,732–737.

Panizzi,L.,Caponi,C.,Catalano,S.,Cioni,P.L.,Morelli,I.,2002.Invitroantimicrobial activityofextractsandisolatedconstituentsofR.ulmifolius.J.Ethnopharmacol. 79,165–168.

Portal da Saúde. http://portalsaude.saude.gov.br/index.php/cidadao/principal/ agencia-saude/noticias-anterioresagencia-saude/3487- (accessed October 2013).

Rojas-Vera,J.,Patel,A.V.,Dacke,C.G.,2002.Relaxantactivityofraspberry(R.idaeus) leafextractinguinea-pigileuminvitro.Phytother.Res.16,665–668.

Skupien, K., Kostrzewa-Nowak, D., Oszmianski, J., Tarasiuk, J., 2008. In Vitro antileukaemicactivityofextractsfromchokeberry(Aroniamelanocarpa[Michx] Elliott)andMulberry(M.albaL.)leavesagainstsensitiveandmultidrugresistant HL60cells.Phytother.Res.22,689–694.

Suntornsuk,L.,Kasemssok,S.,Wongyai,S.,2003.Quantitativeanalysisofaglycone quercetininmulberryleaves(M.albaL.)bycapillaryzoneelectrophoresis. Elec-trophoresis24,1236–1241.

Thabti,I.,Elfalleh,W.,Hannachi,H.,Ferchichi,A.,Campos,M.,da,G.,2012. Identi-ficationandquantificationofphenolicacidsandflavonolglycosidesintunisian MorusspeciesbyHPLC-DADandHPLC–MS.J.Funct.Foods.4,367–374.

Thiem,B.,Goslinska,O.,2004.AntimicrobialactivityofR.chamaemorusleaves. Fitoterapia75,94–95.

Tsuduki,T.,Kikuchi,I.,Kimura,T.,Nakagawa,K.,Miyazawa,T.,2013.Intakeof mul-berry1-deoxynojirimycinpreventsdiet-inducedobesitythroughincreasesin adiponectininmice.FoodChem.139,16–23.

(9)

thepredominantspeciesofflavonoidsinphysiologicalbuffer:determinationof solubility,lipophilicityandanticancerefficacy.OpenDrugDeliv.J.2,10–19.

Tzouwara-Karayanni, S.M., Philianos, S.M., 1982. Isolation of quercetin and kaempferolfromR.ulmifoliusandtheirfluorometricassay.Microchem.J.27, 144–161.

Venskutonis,P.R.,Dvaranauskaite,A.,Labokas,J.,2007.Radicalscavenging activ-ityandcompositionofraspberry(R.idaeus)leavesfromdifferentlocationsin Lithuania.Fitoterapia78,162–165.

Volpato,G.T.,Calderon,I.M.P.,Sinzato,S.,Campos,K.E.,Rudge,M.V.C.,Damasceno, D.C.,2011.EffectofM.nigraaqueousextracttreatmentonthematernal–fetal outcome,oxidativestressstatusandlipidprofileofstreptozotocin-induced dia-beticrats.J.Ethnopharmacol.138,691–696.

Imagem

Fig. 1. Chromatograms of Rubus erythrocladus (A) and Morus nigra (B) hydrolyzed leaf extracts by HPLC-UV, 370 nm
Fig. 2. Electhropherograms of Rubus erythrocladus (A) and Morus nigra (B) hydrolyzed leaves extracts by CE-DAD, 200 nm
Fig. 3. Chromatograms of Rubus erythrocladus (A) and Morus nigra (B) hydrolyzed leaf extracts by UPLC-DAD/MS, 200–400 nm
Fig. 4. Mass and UV spectra of quercetin (A) and kaempferol (B) of Rubus erythrocladus hydrolyzed leaf extracts by UPLC-DAD/MS.
+2

Referências

Documentos relacionados

This manuscript describes the development and validation of an ultra-fast, efficient, and high through- put analytical method based on ultra-high performance liquid

This study aimed to investigate the influence of leaf age on methylxanthine and total phe- nolic contents by High Performance Liquid Chromatography and Ultraviolet Spectroscopy, as

The objective of this study was to develop, validate and compare spectrophotometric (UV and colorimetric) and high- performance liquid chromatography (HPLC) methods, for

This study sought to validate a high performance liquid chromatography (HPLC) method to determine the concentration of the pesticide glyphosate in groundwater

This article presents an analytical comparison of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) methods for residual caffeine quantification

The aim of this study was to develop and validate a simple analytical method using high performance liquid chromatography with refractive index detection (HPLC-RI) to determinate

Este trabalho buscou despertar no cidadão de Lavras (MG) a consciência ambiental através da implantação de uma trilha interpretativa no Centro de

Desta forma, foi escolhido para o presente estudo o Centro Psicogeriátrico Nossa Senhora de Fátima (CPNSF) do Instituto das Irmãs Hospitaleiras do Sagrado