• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número1"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

The

influence

of

leaf

age

on

methylxanthines,

total

phenolic

content,

and

free

radical

scavenging

capacity

of

Ilex

paraguariensis

aqueous

extracts

Carlos

H.

Blum-Silva

a

,

Vitor

C.

Chaves

a

,

Eloir

P.

Schenkel

a

,

Geraldo

C.

Coelho

b

,

Flávio

H.

Reginatto

a,∗

aLaboratóriodeFarmacognosia,ProgramadePós-graduac¸ãoemFarmácia,UniversidadeFederaldeSantaCatarina,UFSC,CampusUniversitário,Florianópolis,SC,Brazil bPró-ReitoriadeExtensãoeCultura,UniversidadeFederaldaFronteiraSul,CampusChapecó,SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25April2014 Accepted29January2015 Availableonline12February2015

Keywords:

Mate

Methylxanthines Phenolics Ageing Scavenging

a

b

s

t

r

a

c

t

Yerba-mate(IlexparaguariensisA.St.Hil.,Aquifoliaceae)isaSouthAmericannativespeciesthatiswidely usedforitsindustrialpotentialinthepreparationofdrinks,teasandcosmetics.Itspropertiesaredirectly relatedtothepresenceofitschemicalconstituents,suchassaponins,methylxanthinesandphenolic compounds.Thisstudyaimedtoinvestigatetheinfluenceofleafageonmethylxanthineandtotal phe-noliccontentsbyHighPerformanceLiquidChromatographyandUltravioletSpectroscopy,aswellason freeradicalscavengingcapacity,ofaqueousextractsofI.paraguariensisleaves.Theresultsshowedgreat variabilityinallthemetabolitesmeasured.Leafageingsignificantlyincreasedthemethylxanthine con-tentandtotalphenoliccontentoftheextracts.Freeradicalscavengingcapacitywasalsosignificantly affected(p<0.05)byleafage.Apositivecorrelationwasobserved,betweentheantioxidantactivityand totalphenoliccontent.

©2014SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

IlexparaguariensisA.St.Hil.,Aquifoliaceae,isaSouthAmerican

nativeperennialtreethatispopularlyknownas“yerba-mate”or

“mate”.Itisoneofthemostpopularandwidely-consumed

bever-agesinsouthernBrazil,Argentina,Paraguay,andUruguay,where

itisusedasadecoctionorinfusion.Mateisusedforitscentral

ner-voussystemstimulantproperties,whichareduetothepresence

ofthemethylxanthinescaffeineandtheobromine(Blumenthaland

Brinckmann,2000;Dermarderosian,2001;Filipetal.,1998).

Addi-tionally,yerba-mateisalsoconsideredafunctionalfood,because

ofitsnutritionaland medicinalproperties,suchas

hypocholes-terolemic,hepatoprotective,diuretic, andantioxidantproperties

(Bixbyetal.,2005;Filipetal.,2000;GugliucciandStahl,1995;Heck andDeMejia,2007;Rivellietal.,2007;Valergaetal.,2012),which

can protect against the harmfuleffect of free radicals, thereby

increasingthedefensesystemoftheorganism.It canalsohelp

preventatherosclerosisandcoronaryheartdisease(HeckandDe

Mejia,2007;Mirandaetal.,2008;PuangpraphantanddeMejia, 2009;Boaventuraetal.,2012).

Correspondingauthor.

E-mail:freginatto@pq.cnpq.br(F.H.Reginatto).

These health benefits have been attributed to phenolic

compounds, which are major constituents of I. paraguariensis

(Heck and De Mejia, 2007). The main polyphenols present in

“mate”arecaffeoylderivatives(chlorogenic,3,5-dicaffeoylquinic,

4,5-dicaffeoylquinic and 3,4-dicaffeoylquinic acids), and caffeic

acid.Moreover,yerba-matealsocontainshighmethylxanthines,

saponins,andaminorcontentofflavonoids,suchasquercetin,rutin

andkaempferol(DeSouzaetal.,2011;Coelhoetal.,2010;Filipetal.,

2001;Reginattoetal.,1999;Gosmannetal.,1995).

Itiswidelyknowninnaturalproductchemistrythatthegrowth

conditionsplayaroleintheproductionofphytochemicalsinthe

plant(Gobbo-NetoandLopes,2007;Meyeretal.,2006).Inregardto

ageoftheleaves,therehavebeenfewreportsshowingitsinfluence

onmetabolitecontent.SuchasEsmelindroetal.(2004)showed

thatyoungleavesofI.paraguariensiscontainahighproduction

ofmethylxanthines,andDartoraetal.(2011)reportedno

signif-icantdifferencesbetweenphenolicandmethylxanthinecontents

inleavesat1and6monthsofgrowth.Inaddition,thesereports

suggestthatintrapopulationgeneticconditions,suchasageofthe

leaves, playanimportantrole inthedistributionofthese

com-poundsinI.paraguariensis.Finally,knowledgeaboutthischemical

compositionisimportantforourunderstandingofthechangesin

potentialbiologicalactivitiesofI.paraguariensis.Thepresentwork

thereforeassessestheinfluenceofleafageonthephytochemical

http://dx.doi.org/10.1016/j.bjp.2015.01.002

(2)

compositionofI.paraguariensis,andonitsfreeradicalscavenging activity.

Materialsandmethods

Plantmaterial

Theleavesof11treesofI.paraguariensisA.St.Hil.,

Aquifoli-aceae,fromanativepopulationwerecollectedatChapecó,inthe

StateofSantaCatarina,Brazil(27◦0848′′S;523701′′W).Theplant

sampleswerecultivated undernatural sunlightconditions. The

plantmaterial(RSPF11074)washarvestedinOctober2010andthe

leaveswereseparatedaccordingtoage,asdefinedby

embranch-ment;leavesatonemonth(firsttothirdleafpairsfromthebranch

tips),attwomonths(forthtoeighthleafpairs)andatsixmonths

(ninthtofifteenthleafpairs).Allthesampleswereimmediately

frozen,lyophilized,crushedseparately,andstoredat−20◦Cuntil

tested.

Extraction

Theextractsofeachsamplewerepreparedbyaqueousinfusion.

Briefly,fivegramsofeachdriedleafsamplewasmixedwith100ml

ofdistilledwater(90±2◦C)for20min.Theextractswerefiltered,

thevolumesadjustedto100mlwithwater,andthesamplesfrozen.

HPLC-DADanalysisofmethylxanthines

Thequantitativeanalysesofcaffeineandtheobromineinthe

extractswerecarriedoutinaPerkinElmerSeries200High

Perfor-manceLiquidChromatography(HPLC)equippedwithaDiodeArray

Detector(DAD),quaternarypump,onlinedegasserand

autosam-pler. Chromera® Workstation software was used for the data

acquisition.Theinjectionvolumewas20␮landthebaseline

res-olution was obtained at room temperature (24±2◦C). For the

methylxanthineanalysis,separationwasperformedonaPerkin

ElmerBrownleeChoiceC8 column(150mm×4.6mmi.d.;5␮m)

and a mixture of methanol/ammonium hydroxide 0.2% (20:80

v/v)asthemobilephase,withconstantflowrateat0.9mlmin−1.

Themobile phase wasprepared daily and degassed by

sonica-tionbefore use. The chromatograms wererecorded at 280nm,

whiletheUVspectraweremonitoredoverarangeof200–450nm.

Peakswere characterizedbycomparingtheretention time and

UV spectra with the reference standards, and by co-injection

oftheauthentic samples.Thestandardsolutionswereprepared

in differentranges: 0.625–400␮gml−1 for the caffeine

(Sigma-Aldrich®

)and 0.3125–75␮gml−1 for thetheobromine (Fluka®).

Theextractswere analyzedat a concentrationof 2.00mgml−1.

Quantificationofcaffeineandtheobrominewasperformedusing

seven-point regression curves(r2>0.999). Theregression

equa-tionswere“y=16478x+11339”forcaffeineand“y=26525x+1930”

forthetheobromine.Allanalyseswereperformedintriplicate,and

thepeakaverageareasweremeasured.Theresultswereexpressed

asmilligramsofcompoundpergofextract(mgcompoundg−1E).

Totalphenoliccontent

The determination of total phenolic content (TPC)was

per-formed as described by Medina (2011a,b) based on the direct

interactions of polyphenols with Fast Blue BB diazonium salt

(Sigma-Aldrich®). Seven chlorogenic acid (Fluka®) calibration

standard points (r2=0.999) wereprepared within the range of

10–150␮gml−1 indistilled waterand1.0mlofeachwas

trans-ferredtoaborosilicatetube.A0.1mlaliquotof0.1%FastBlueBB

reagentwasaddedtoallthechlorogenicacidstandardtubes,mixed

for1min,andthen0.1ml5%NaOHwasadded.Thereactionwas

allowedtocompleteatroomtemperature(24±2◦C)for90min

andtheopticaldensitywasmeasuredat420nm.TheTPCoftheI.

paraguariensisextractsweredeterminedasdescribedabove,except

thateachsamplewasanalyzedwithablankcontainingonlythe

sample,tomeasurenaturalnon-phenolicinterferencesat420nm.

Theresultswereexpressedasmilligramsofchlorogenicacid

equiv-alentspergofextract(mgCAg−1E).

Freeradicalscavengingcapacity

Thefreeradicalscavengingcapacitywasdeterminedas

pre-viously described Brandwilliams et al. (1995). Briefly, 0.1ml of

eachsampleextractatfourdifferentconcentrationswasaddedto

3.9mlofa methanolicsolutionof2,2-diphenyl-1-picrylhydrazyl

[DPPH (60␮M)]. The absorbances were measured at 515nm

(Lambda25UV/Vis,PerkinElmer®).Thepercentageofremaining

DPPH (Sigma-Aldrich®)was calculated and plotted against the

sample concentration, in order to obtainthe EC50, which was

definedastheamountof antioxidantnecessarytodecreasethe

initialDPPHconcentrationby50%.Chlorogenicacidwasusedas

positivecontrol.

ValidationofHPLC-DADanalysisofmethylxanthines

TheanalyticalprocedureswerevalidatedaccordingtoCassand

Degani(2001)andtheICHguidelines(ICH).Thevalidated

param-eterswerespecificity,linearity,accuracy,precision(repeatability

andintermediateprecision),limitofquantification(LOQ)andlimit

ofopticaldetection(LOD).

Dataanalysis

Datawereexpressedasmeanvalues±S.E.M.fromthree

inde-pendent measurements. For the determination of EC50 values,

linear regressionsof concentration–response curves wereused.

DifferencesbetweentreatmentswerecomparedbyANOVA

analy-sisofvariancefollowedbyTukey’stestadopting˛=0.05.

Resultsanddiscussion

ValidationofHPLC-DADanalysisofmethylxanthines

The analytical curves of both authentic standards showed

good linearity (r2>0.999). Linear regression equation for the

calibration curve were “y=16482x+10373” for caffeine and

“y=26495x+2422.7”fortheobromine(Fig.1).

Theobservedvaluesofvalidationparametersaresummarized

inTable1.

TheHPLC-DADquantificationsshowedgoodlinearrelationships

betweenpeakareaandconcentration(r2>0.999)forallstandard

solutionsinbothmethods.Thelimitofquantification(LOQ)and

limitofdetection(LOD)weredefinedbyrelativestandard

devia-tion(RSD<5%)andbyasignal:noiseratioof3:1,respectively.The

precisionwasdeterminedbyrepeatability(intra-dayassay)and

intermediateprecision(inter-dayassay)(CassandDegani,2001;

ICH,2005).Theintra-dayassaywasperformedbytriplicate

anal-ysisofthreedifferentconcentrations ofstandard solutions,and

expressedasrelativestandarddeviation.Goodrepeatabilitywas

obtainedfromlower, mediumandhigher concentrationsofthe

curve,withanRSD≤3.96%forallstandardanalyses.Theinter-day

assaywasdeterminedbytheanalysisofamediumconcentrationin

thecurve,threetimesaday,onthreedifferentdays.Asin

repeat-ability,theintermediateprecisionRSDvaluedidnotexceedthe

limitsrecommendedintheliterature(CassandDegani,2001;ICH,

2005).Inrelationtoaccuracy,goodrecoverywasobservedinthe

(3)

8 - 106

6 - 106

4 - 106

2 - 106

0

0 100

A

200 300

Standard concentration (µg. ml–1)

P

eak area

B

P

eak area

400

2.5 - 106

2 - 106

1 - 106

0.5 - 106

0

20

0 40 60

Standard concentration (µg. ml–1)

80 1.5 - 106

Fig.1. CLAE-DADcalibrationcurvesforcaffeine(A)andtheobromine(B).

Table1

ValidatedanalyticalparametersfortheHPLC-DADquantificationofcaffeineandtheobromineinaqueousinfusionsofIlexparaguariensis.

Compound Precisiona Accuracyb(recovery) LOQc(gml−1) LODc(gml−1)

Repeatability Intermediateprecision

Mean(␮gml−1) R.S.D.(%) Mean(gml−1) R.S.D.(%) Mean(%) R.S.D.(%)

Caffeine

0.625 3.96

100.00 1.52 99.8 1.74 0.10

100.00 0.97 0.625

400.00 1.35

Theobromine

0.3125 4.08

15.00 0.87 101.3 1.33 0.10

15.00 1.26 0.3125

75.00 1.85

aLimit:R.S.D.<5%.

bRecoverywasdeterminedbyinjectionofspikedsamples,intriplicate,withstandardsolution. c LOQ=limitofquantification;LOD=limitofdetection.

Methylxanthinescontent

In the chromatographic analysis of methylxanthines,

theo-bromineandcaffeinepresentedretentiontimesof3.1and9.1min,

respectively.Fig.2showsthemethylxanthinechromatogramof

aqueousextractfromI.paraguariensisleavesofsample2.

Theoph-yllinewasnotdetectedinanysampleanalyzed,afindingthatis

corroboratedbyseveralstudiesintheliterature(Athaydeetal.,

2000;CliffordandRamirez-Martinez,1990;Coelho etal.,2007; Filipetal.,1998;Reginattoetal.,1999).

The data analysis showed that there is great variability in

caffeineandtheobrominecontentsinthispopulationofI.

paraguar-iensis.Thisisclearlyshowedbythevariationincontentsshownin

Table2.

Athayde et al. (2007) also observed significant differences

in methylxanthine content among yerba-mate plants within

thesame population, aswellas betweendifferentpopulations.

In some cases, the caffeine content detected by the authors,

within the same plant population, was more than 100 times

higher.

The statisticalanalysis (Table 3)showedthat leaf agehasa

significantinfluenceoncaffeine,theobromineandtotal

methylx-anthine contents of the extracts(p<0.05). Analyzing themean

caffeinecontentofthetotalsetofsamples,itisevidentthatthere

isatendencyfortotalcaffeineandmethylxanthineproductionto

decreaseovertime.Theobrominedoesnotfollowexactlythesame

pattern,ashigherlevelswerefoundintheleavesatoneandtwo

months.

0 50 100 150 200 250 350

300 400

0 1

2 - A: 280: 10: 400: 10: 1

2 3

1

2

225 250 275 300 325 350 375 0

0.25 0.5 0.75 1.75 1.5

1

4 5 6 7 8 9 10

Time (min)

Absorbance (mA

U)

(4)

Table2

VariationincontentsofmethylxanthinesandtotalphenolicsinaqueousextractsofIlexparaguariensisleaves.

Ageofleaves Extentof variation

Caffeine* Theobromine* Methylxanthines* Total phenolics**

1month Minimum

Maximum

46.46± 0.15 133.98± 0.41

3.07± 0.01 24.93± 0.14

50.86± 0.16 137.05 ± 0.42

230.97 ± 7.78 437.81 ± 15.49

2months Minimum

Maximum

38.76± 0.24 90.50±0.12

5.80± 0.13 30.88±0.13

44.73± 0.26 101.80±0.17

172.32 ± 3.95 391.66±0.99

6months Minimum

Maximum

5.68±0.08 81.57±0.18

0.26±0.01 14.25±0.06

6.20±0.09 84.49±0.19

75.27±5.54 257.22±3.43 * Caffeine,theobromineandtotalmethylxanthinescontentsweredeterminedbyCLAE-DADandthedataaremean±S.D.valuesexpressedasmgcompound/gextract (n=11).

** TotalphenoliccontentwasdeterminedbytheFastBlueBBmethodandthedataaremean± S.D.valuesexpressedasmgchlorogenicacid/gextract(n=11).

Thehighercaffeinelevelsinrelationtotheobrominecouldbe

explainedbythebiosynthesispathwayofthesecompounds.

Theo-bromineis the direct precursor of caffeinebiosynthesis by the

methylationofxanthosinebyS-adenosylmethionine(SAM)action

(Katoetal.,2000;Ogawaetal.,2001;Uefujietal.,2003).Although

thisinformationhasbeenobtainedfromcoffee(Coffeaarabica)and

tea(Camellia sinensis), theavailableevidence indicatesthatthe

pathwayisessentiallythesameinotherpurinealkaloid-forming

plants,suchasI.paraguariensis(Ashihara,1993).

Caffeinecatabolismusuallybeginswithitsconversionto

the-ophylline.TheophyllineisdegradedtoCO2farmorerapidlythan

caffeine,indicatingthattheconversionofcaffeinetotheophylline

isthemajorrate-limitingstepofcaffeinecatabolismandthe

rea-sonwhycaffeineaccumulatesinhighconcentrationsintissuesof

C.sinensisandC.arabica(Ashiharaetal.,1996;Itoetal.,1997).

Thereisonlyonepublishedreport,inwhichthepurine

alka-loidbiosynthesisofmatebydifferentagedleaveswasinvestigated.

Youngleaves,butnotmaturedark-greenleaves,incorporatedeach

precursorintotheobromineandcaffeine,andnosignificant

degra-dationofcaffeinewasdetectedbyAshihara(1993).Theseresults

areinagreementwiththedecreaseincaffeinelevelswithageing

detectedbyourresearch.

The influence of age and plant development on secondary

metabolitecontents,andtherelativeproportionsofthese

chem-icalcomponents,hasbeendemonstrated byseveralauthorsfor

differentplantspecies(BowersandStamp,1993;Doanetal.,2004;

Hendriksetal.,1997;Höftetal.,1998).Hartmann(1996)statesthat

youngtissuesgenerallyhavehigherratesofmetabolites’

biosyn-thesis.Althoughtheinfluenceofleafagehasbeendescribedfor

otherspecies,thereisnogeneralconclusionapplicabletoallplant

species.Also, thereareinsufficientstudiesonthis subjectforI.

paraguariensis.Notwithstanding,someauthorshavedemonstrated

theinfluenceofleafageonmate.Mazzafera(1994)foundhigher

caffeinecontentsinyoungerleaves,andEsmelindroetal.(2004)

foundasignificantlyhighercontentofcaffeineandtheobrominein

leavesatsixmonthsthaninolderleaves.Recently,Dartoraetal.

(2011)evaluated themethylxanthinecontent in I.

paraguarien-sissamplesunderdifferentgrowthconditions,treatmentandage.

Theirresultsdidnotshowsignificantdifferencesinmethylxanthine

contentinleavesbetweenoneandsixmonths.Somestudieswith

yerba-mateintheliteraturehaveevaluatedtheinfluenceof

har-vesttimeonmethylxanthinecontent.Schubertetal.(2006)found

highermethylxanthinecontentinthespringandearlysummer.

SimilarresultswereobtainedbyCoelhoetal.(2001)analyzing

sam-plesofI.paraguariensiscollectedintheStateofParaná,Brazil,in

twodifferentperiods.CoelhoandMariath(1996)foundthatthe

mainsproutinginI.paraguariensisoccursinlateSeptemberand

October, andin someplants, sproutingcanalso occurbetween

FebruaryandMarch.TheresultsobtainedbyAthaydeetal.(2000),

Coelhoetal.(2001)andSchubertetal.(2006)canbeexplained

partlybytheageoftheleaves,sinceexperimentalresultsindicate

thatthebiosynthesisofcaffeineinIlexonlyoccursinyoungleaves

(Ashihara,1993).Thus,thehighmethylxanthinecontents

identi-fiedinthesummercanbeattributedtothedevelopmentofthe

youngleaves,whiletheresultsforlatefallandwintermay

indi-cateolder,morematureleaveswithlowbiosyntheticactivity.The

data(Table3)presentedinourstudyconfirmthistheory,since

thecaffeineandtotalmethylxanthinecontentsshoweda

signifi-cantdecreasewithageingoftheleaves.Thus,theageofleavesmay

affectthecharacteristicsoftherawmaterialandtherefore,their

processedproducts.

Totalphenoliccontent

Theobtainedresultsshowedahighconcentrationof

pheno-lic compoundsinthesamplesof yerba-mate, corroboratingthe

numerous literaturedata that reporthigh levelsof these

com-pounds,mainlycaffeoylquinicderivatives.Filipetal.(2001)found

higher levels of these phenolic compounds in I. paraguariensis,

whencomparedtotheothersevenIlexspecies,detectinga

con-centration of 9.6%phenol derivatives ondry extract and 0.06%

flavonoids.MarquesandFarah(2009)describedthatyerba-mate

contains,onaverage,55%caffeoylquinicderivativesingreenleaves

and73%intoastedleaves.Additionally,Bracescoetal.(2003)found

thatphenoliccompoundsarethreetimeshigherthanthecontent

ofthesecompoundsingreentea.Whenevaluatingthemeanofall

thesamples(Table3),itwasnotedthatthereisadecreaseinthe

productionofphenoliccompoundsovertime,sincethecontents

arehigherinleavesatonemonth,intermediateattwomonthsand

loweratsixmonths.Thus,theageoftheleaveshasasignificant

influenceinTPC.However,Dartoraetal.(2011)revealedno

signif-icantdifferencesinlevelsofphenoliccompoundscomparingleaves

atoneandsixmonths.

Table3

Leafageeffectsonthequantitativecontentsofcaffeine,theobromine,methylxanthinesandtotalphenolicsintheaqueousextractsofIlexparaguariensisleaves.

Ageofleaves Caffeine Theobromine Methylxanthines Totalphenolics

1month 75.63± 16.24a 9.22± 3.11a 84.85± 27.49a 286.7± 46.1a

2months 60.19± 13.4a,b 12.4± 4.19a,b 72.6± 20.14a,b 252.6± 50.85a,b

6months 31.94± 14.6c 4.95± 2.85a,c 36.89± 16.52c 166.6± 35.13c

(5)

0 50

a

a, b

c

100 150 200

1 2 6

Leaf age (months)

EC

50

(gg DPPH

–1

)

Fig.3. LeafageeffectsonthefreeradicalscavengingcapacityofIlexparaguariensis

aqueousextracts.TheEC50weredeterminedbytheDPPHmethodandthevalues

aremean ± S.D.expressedasgextract/gDPPH(n=11).Differentlettersindicate significantdifferences(ANOVAandTukey’sposttest,p<0.05).

Table4

Correlationanalysis.

Correlation r2value pvalue

TPC*×EC

50**(allsamples)a 0.2720 0.0019

TPC*×EC

50**(byleafagegroups)b 0.9246 0.0022

Caffeine***×EC

50**(allsamples)a 0.2728 0.0018

Caffeine***×EC

50**(byleafagegroups)b 0.8885 0.0048

Caffeine***× TPC*(allsamples)a 0.1978 0.0095

Caffeine***× TPC*(byleafagegroups)b 0.9529 0.0008 aCorrelationofallsamplesindividuallyconsidered.

bCorrelationofthemeanofeachleafagegroup.

*TotalphenoliccontentwasdeterminedbytheFastBlueBBmethod.

**Thefree radicalscavenging capacity(EC50)of Ilex paraguariensisaqueous extractswasdeterminedbytheDPPHmethod.

***CaffeinecontentwasdeterminedbyCLAE-DAD.Moredetails:seeSection “Mate-rialsandmethods”.

Freeradicalscavengingcapacity

Itwasobservedthatleafagesignificantlyaffectstheabilityto

scavengefreeradicals,andthereisasignificantdecreaseinthis

capacityovertime(Fig.3).Itispossibletoobserveaninverse

cor-relationbetweenTPCandEC50values(Table4),becausethehigher

theconcentrationofphenoliccompounds,thelowertheamountof

extractrequiredtoreducetheDPPH.

The potent antioxidant activity of yerba-mate extracts has

beendemonstratedbyseveralauthors,aswellastheircorrelation

withphenoliccompounds.Usingdifferentfreeradicalgenerators,

Schinellaet al. (2000)concluded that theaqueous extract of I. paragariensiswasabletoinhibitlipidperoxidationinenzymatic

andnonenzymaticratlivermicrosomesinadose-dependent

man-ner.Theextractexhibitedradicalscavengingpropertiesinrelation

tothesuperoxideanionandDPPHradical.UsingthesameDPPH

methodology,Bixbyetal.(2005)foundadirectpositivecorrelation

betweenantioxidantactivityandphenolic compounds,withthe

highestactivitybeingobtainedfortheaqueousextractsof

yerba-matecomparedtogreenteaandblacktea(C.sinensis(L.)Kuntze),

marcela(Achyroclinesatureioides(Lam.) DC.)and sometypesof

redandwhitewines.Grujicetal.(2012)alsofoundacorrelation

betweentheDPPHfreeradicalscavengingactivityandthetotal

phenoliccompoundsofmatetea.Likewise,Bassanietal.(2014)

showedthatthetotalcontentofphenoliccompoundswas

signifi-cantlycorrelatedwiththefreeradicalscavengingactivitytowards

DPPHradicals.

Anesinietal.(2012)demonstrated thatchlorogenicand

caf-feicacidsandtheflavonoidrutinpresentinaqueousextractsofI.

paraguariensissamplescontributedirectlytotheantioxidant

activ-itydetected,bypreventinglipidperoxidation. Oxidation oflow

density lipoprotein(LDL)inducedby freeradicals, forexample,

playsanimportantroleinatherosclerosis.Inthiscontext,

aque-ousextractsofI.paraguariensishavedemonstratedtheabilityto

inhibitLDL oxidation,thereby inhibitinglipidperoxidation, and

hencetheoxidationofDNA(Bracescoetal.,2011;Gugliucci,1996;

GugliucciandStahl,1995).Anesinietal.(2012)alsofoundthatthe

methylxanthinecaffeinehasnofreeradicalscavengingactivity,and

induceslipidperoxidationoflinoleicacid,actingasapro-oxidant

compound.

AlthoughDPPHfreeradicalscavengingcapacityofisolated

caf-feinewasnottestedinourstudy,ourdatarevealedasignificantand

directcorrelationbetweenthedetectedcaffeineandthe

antiox-idant activities (Table 4).This correlation can be explained by

TPC,whichisdirectlycorrelatedwiththecaffeinecontents.

There-fore,the detectedactivityis probably associated withphenolic

compoundsandnotwithcaffeine.Thepreventionoflipid

peroxi-dation,inwhichcaffeineisidentifiedasapro-oxidantcompound,

remainsunexplained inourwork,sincetheantioxidantactivity

hasnotbeenevaluatedbytheferricthiocyanatemethod,butby

theDPPHmethod.Thus,we cannotsaywhatistherole of

caf-feinepresentinthesamplesevaluatedinthepreventionoflipid

peroxidation.

Fromthepoint ofviewofchemical ecology,it isinteresting

to evaluatethe individuals in their entirety, in order to better

understandhowplantsindividually respondtothesefactors.In

thisapproach,asignificantcorrelationisobservedinTable4,but

withalowcoefficientoflinearcorrelation.Ontheotherhand,from

thepharmaceuticalandindustrialpointofview,itisnecessaryto

haveanapproachthattakesintoaccounttheconsistencyofthe

raw plantmaterialtobeusedin thepreparation offood

prod-ucts,intermediatepharmaceuticalformsandcosmeticsproperties.

Therefore,whenplantsaregroupedbyleafage,thiscorrelationis

showntobeaseffectiveasthepreviousapproach,butmorelinear

(Table4).

Insummary,leafageshowedasignificantinfluenceon

methylx-anthinesandtotalphenoliccontentsoftheevaluatedextracts,with

adecreaseinthesecontentsovertime.Additionally,thefree

radi-calscavengingcapacitywasalsosignificantlyaffectedbyleafage,

withadirectpositivecorrelationbetweenantioxidantactivityand

totalphenoliccontent.

Authors’contributions

C.H.B.S.(PhDstudent)helpedintherunningofthelaboratory

work,analysisofthedata,anddraftedthepaper.G.C.C.contributed

to thecollection of plants sample and their identification,and

analysisofthedata.F.H.R.andE.P.S. designedthestudy,

super-visedthelaboratorywork,andcontributedtocriticalreadingof

themanuscript.Alltheauthorshavereadthefinalmanuscriptand

approvedthesubmission.

Conflictofinterest

Theauthorsdeclarenoconflictofinterest.

Acknowledgments

We thank CNPq and FAPESC for their financial support

(FAPESC/CNPq–PRONEM2771/2012).Theauthorsarealso

grate-fultoCNPqandCAPESfortheirresearchfellowships,andtoProf.

(6)

References

Anesini,C.,Turner,S.,Cogoi,L.,Filip,R.,2012.Studyoftheparticipationofcaffeine andpolyphenolsontheoverallantioxidantactivityofmate(Ilexparaguariensis). LWT–FoodSci.Technol.45,299–304.

Ashihara,H.,1993.Purinemetabolismandthebiosynthesisofcaffeineinmaté leaves.Phytochemistry33,1427–1430.

Ashihara,H.,Monteiro,A.M.,Moritz,T.,Gillies,F.M.,Crozier,A.,1996.Catabolism ofcaffeineandrelatedpurinealkaloidsinleavesofCoffeaarabicaL.Planta198, 334–339.

Athayde,M.L.,Coelho,G.C.,Schenkel,E.P.,2000.Caffeineandtheobrominein epicu-ticularwaxofIlexparaguariensisA.St.Hil.Phytochemistry55,853–857. Athayde,M.L.,Coelho,G.C.,Schenkel,E.P.,2007.Populationaldiversityon

methylx-anthinescontentofmate(IlexparaguariensisA.St.Hil.,Aquifoliaceae).Lat.Am. J.Pharm.26,275–279.

Bassani,D.C.,Nunes,D.S.,Granato,D.,2014.Optimizationofphenolicsandflavonoids extractionconditionsandantioxidantactivityofroastedyerba-mateleaves(Ilex paraguariensisA.St.Hil.,Aquifoliaceae)usingresponsesurfacemethodology. AnaisAcad.Bras.Cienc.86,923–934.

Bixby,M.,Spieler,L.,Menini,T.,Gugliucci,A.,2005.Ilexparaguariensisextractsare potentinhibitorsofnitrosativestress:acomparativestudywithgreenteaand winesusingaproteinnitrationmodelandmammaliancellcytotoxicity.LifeSci. 77,345–358.

Blumenthal,M.,Goldberg,A.,Brinckmann,J.,2000.HerbalMedicine:Expanded ComissionandMonographs.AmericanBotanicalCouncil.

Boaventura,B.C.B.,Di Pietro,P.F.,Stefanuto,A.,Klein,G.A.,deMorais,E.C.,de Andrade,F.,Wazlawik,E.,daSilva,E.L.,2012.Associationofmatetea(Ilex paraguariensis)intakeanddietaryinterventionandeffectsonoxidativestress biomarkersofdyslipidemicsubjects.Nutrition28,657–664.

Bowers,M.D.,Stamp,N.E.,1993.Effectsofplantage,genotypeandherbivoryon Plantagoperformanceandchemistry.Ecology74,1778–1791.

Bracesco,N.,Dell,M.,Rocha,A.,Behtash,S.,Menini,T.,Gugliucci,A.,Nunes,E.,2003. AntioxidantactivityofabotanicalextractpreparationofIlexparaguariensis: pre-ventionofDNAdouble-strandbreaksinSaccharomycescerevisiaeandhuman low-densitylipoproteinoxidation.J.Alt.Complement.Med.9,379–387. Bracesco,N.,Sanchez,A.G.,Contreras,V.,Menini,T.,Gugliucci,A.,2011.Recent

advancesonIlexparaguariensisresearch:minireview.J.Ethnopharmacol.136, 378–384.

Brandwilliams,W.,Cuvelier,M.E.,Berset,C.,1995.Useofafree-radicalmethodto evaluateantioxidantactivity.FoodSci.Technol.Leb.28,25–30.

Cass,Q.B.,Degani,A.L.G.,2001.DesenvolvimentodemétodosporHPLC: fundamen-tos,estratégiasevalidac¸ão.EdUFSCar,SãoCarlos.

Clifford,M.N.,Ramirez-Martinez,J.R.,1990.Chlorogenicacidsandpurinealkaloids contentsofMaté(Ilexparaguariensis)leafandbeverage.FoodChem.35,13–21. Coelho,G.C.,Mariath,J.E.A.,1996.InflorescencesmorphologyofIlexL.

(Aquifoli-aceae)speciesfromRioGrandedoSul,Brazil.FeddesRepert.107,19–30. Coelho,G.C.,Athayde,M.L.,Schenkel,E.P.,2001.MethylxanthinesofIlex

paraguar-iensisA.St.Hil.var.vestitaLoes.andvar.paraguariensis.Braz.J.Pharm.Sci.37, 153–158.

Coelho,G.C.,Rachwal,M.F.G.,Dedecek,R.A.,Curcio,G.R.,Nietsche,K.,Schenkel,E.P., 2007.EffectoflightintensityonmethylxanthinecontentsofIlexparaguariensis A.St.Hil.Biochem.Syst.Ecol.35,75–80.

Coelho,G.C.,Gnoatto, S.B.,Bassani,V.L.,Schenkel,E.P.,2010. Quantificationof saponinsinextractivesolutionofmateleaves(IlexparaguariensisA.St.Hil.). J.Med.Food13,439–443.

Dartora,N.,deSouza,L.M.,Santana,A.P.,Iacomini,M.,Valduga,A.T.,Gorin,P.A.J., Sas-saki,G.L.,2011.UPLC-PDA-MSevaluationofbioactivecompoundsfromleaves ofIlexparaguariensiswithdifferentgrowthconditions,treatmentsandageing. FoodChem.129,1453–1461.

DeSouza,L.M.,Dartora,N.,Scoparo,C.T.,Cipriani,T.R.,Gorin,P.A.J.,Iacomini,M., Sassaki,G.L.,2011.Comprehensiveanalysisofmaté(Ilexparaguariensis) com-pounds:developmentofchemicalstrategiesformatesaponinanalysisbymass spectrometry.J.Chromatogr.A1218,7307–7315.

Dermarderosian,A.,2001.TheReviewofNaturalProducts.Facts&Comparisons,St. Louis.

Doan,A.T.,Ervin,G.,Felton,G.,2004.Temporaleffectsonjasmonateinductionof anti-herbivoredefenseinPhysalisangulata:seasonalandontogeneticgradients. Biochem.Syst.Ecol.32,117–126.

Esmelindro,A.A.,Girardi,J.D.,Mossi,A.,Jacques,R.A.,Dariva,C.,2004.Influenceof agronomicvariablesonthecompositionofmatetealeaves(Ilexparaguariensis) extractsobtainedfromCO2extractionat30◦Cand175bar.J.Agric.FoodChem. 52,1990–1995.

Filip,R.,Lopez,P.,Coussio,J.,Ferraro,G.,1998.Matesubstitutesoradulterants:study ofxanthinecontent.Phytother.Res.12,129–131.

Filip,R.,Lotito,S.B.,Ferraro,G.,Fraga,C.G.,2000.AntioxidantactivityofIlex paraguar-iensisandrelatedspecies.Nutr.Res.20,1437–1446.

Filip,R.,López,P.,Giberti,G.,Coussio,J.,Ferraro,G.,2001.Phenoliccompoundsin sevenSouthAmericanIlexspecies.Fitoterapia72,774–778.

Gobbo-Neto,L.,Lopes,N.P.,2007.Plantasmedicinais:fatoresdeinfluênciano con-teúdodemetabólitossecundários.Quím.Nova30,374–381.

Gosmann, G.,Guillaume, D., Taketa, A.T.C., Schenkel, E.P., 1995. Triterpenoid saponinsfromIlexparaguariensis.J.Nat.Prod.58,438–441.

Grujic,N.,Lepojevic,Z.,Srdjenovic,B.,Vladic,J.,Sudji,J.,2012.Effectsofdifferent extractionmethodsandconditionsonthephenoliccompositionofmatetea extracts.Molecules17,2518–2528.

Gugliucci,A.,1996.AntioxidanteffectsofIlexparaguariensis:inductionofdecreased oxidabilityofhumanLDLinvivo.Biochem.Biophys.Res.Commun.224,338–344. Gugliucci,A.,Stahl,A.J.C.,1995.Lowdensitylipoproteinoxidationisinhibitedby

extractsofIlexparaguariensis.Biochem.Mol.Biol.Int.35,47–56.

Hartmann,T.,1996.Diversityandvariabilityofplantsecondarymetabolism:a mechanisticview.Entomol.Exp.Appl.80,177–188.

Heck,C.I.,DeMejia,E.G.,2007.Yerbamatetea(Ilexparaguariensis):acomprehensive reviewonchemistry,healthimplications,andtechnologicalconsiderations.J. FoodSci.72,R138–R151.

Hendriks,H.,AndersonWildeboer,Y.,Engels,G.,Bos,R.,Woerdenbag,H.J.,1997.The contentofparthenolideanditsyieldperplantduringthegrowthofTanacetum parthenium.PlantaMed.63,356–359.

Höft,M.,Verpoorte,R.,Beck,E.,1998.LeafalkaloidcontentsofTabernaemontana pachysiphonasinfluencedbyendogenousandenvironmentalfactorsinthe naturalhabitat.PlantaMed.64,148–152.

ICH,I.C.o.H.,2005.ValidationofAnalyticalProcedures:TextandMethodology– Q2(R1).ICH,I.C.o.H.,London.

Ito,E.,Crozier,A.,Ashihara,H.,1997.Theophyllinemetabolisminhigherplants.BBA –Gen.Subj.1336,323–330.

Kato,M.,Mizuno,K.,Crozier,A.,Fujimura,T.,Ashihara,H.,2000.Plantbiotechnology: caffeinesynthasegenefromtealeaves.Nature406,956–957.

Marques,V.,Farah,A.,2009.Chlorogenicacidsandrelatedcompoundsinmedicinal plantsandinfusions.FoodChem.113,1370–1376.

Mazzafera,P.,1994.Caffeine,theobromineandtheophyllinedistributioninIlex paraguariensis.Rev.Bras.Fisiol.Veg.6,149–151.

Medina,M.B.,2011a.Determinationofthetotalphenolicsinjuicesandsuperfruits byanovelchemicalmethod.J.Funct.Foods3,79–87.

Medina,M.B.,2011b.Simpleandrapidmethodfortheanalysisofphenolic com-poundsinbeveragesandgrains.J.Agric.FoodChem.59,1565–1571. Meyer,S.,Cerovic,Z.G.,Goulas,Y.,Montpied,P.,Demotes-Mainard,S.,Bidel,L.P.R.,

Moya,I.,Dreyer,E.,2006.Relationshipsbetweenopticallyassessed polyphe-nolsandchlorophyllcontents,andleafmassperarearatioinwoodyplants:a signatureofthecarbon–nitrogenbalancewithinleaves?PlantCellEnviron.29, 1338–1348.

Miranda,D.D.C.,Arc¸ari,D.P.,Pedrazzoli,J.,Carvalho,P.d.O.,Cerutti,S.M.,Bastos, D.H.M.,Ribeiro,M.L.,2008.Protectiveeffectsofmatetea(Ilexparaguariensis)on H2O2-inducedDNAdamageandDNArepairinmice.Mutagenesis23,261–265. Ogawa,M.,Herai,Y.,Koizumi,N.,Kusano,T.,Sano,H.,2001.7-Methylxanthine methyltransferaseofcoffeeplants:geneisolationandenzymaticproperties.J. Biol.Chem.276,8213–8218.

Puangpraphant,S.,deMejia,E.G.,2009.Saponinsinyerbamatetea(Ilex paraguar-iensis A.St. Hil) and quercetinsynergistically inhibit iNOSand COX-2in lipopolysaccharide-inducedmacrophagesthroughNF␬Bpathways.J. Agric. FoodChem.57,8873–8883.

Reginatto,F.H.,Athayde,M.L.,Gosmann,G.,Schenkel,E.P.,1999.Methylxanthines accumulationinIlexspecies–caffeineandtheobromineinerva-mate(Ilex paraguariensis)andotherIlexspecies.J.Braz.Chem.Soc.10,443–446. Rivelli,D.P.,Silva,V.V.d.,Ropke,C.D.,Miranda,D.V.,Almeida,R.L.,Sawada,T.C.H.,

Barros,S.B.d.M.,2007.Simultaneousdeterminationofchlorogenicacid,caffeic acidandcaffeineinhydroalcoholicandaqueousextractsofIlex paraguarien-sisbyHPLCandcorrelationwithantioxidantcapacityoftheextractsbyDPPH· reduction.Rev.Bras.Cienc.Farm.43,215–222.

Schinella,G.R.,Troiani,G.,Davila,V.,deBuschiazzo,P.M.,Tournier,H.A.,2000. AntioxidanteffectsofanaqueousextractofIlexparaguariensis.Biochem. Bio-phys.Res.Commun.269,357–360.

Schubert,A.,Zanin,F.F.,Pereira,D.F.,Athayde,M.L.,2006.Variac¸ãoanualde metilx-antinastotaisemamostrasdeIlexparaguariensisA.St.Hil.(erva-mate)emIjuí eSantaMaria.EstadodoRioGrandedoSul.Quím.Nova29,1233–1236. Uefuji,H.,Ogita,S.,Yamaguchi,Y.,Koizumi,N.,Sano,H.,2003.Molecularcloningand

functionalcharacterizationofthreedistinctN-methyltransferasesinvolvedin thecaffeinebiosyntheticpathwayincoffeeplants.PlantPhysiol.132,372–380. Valerga,J.,Reta,M.,Lanari,M.C.,2012.Polyphenolinputtotheantioxidantactivity

Imagem

Fig. 2. CLAE-DAD chromatogram of the sample 2 of I. paraguariensis leaves aqueous extract (2.0 mg ml −1 ) with detection at 280 nm
Fig. 3. Leaf age effects on the free radical scavenging capacity of Ilex paraguariensis aqueous extracts

Referências

Documentos relacionados

This study aimed at identifying molecular abnormalities that might explain the laboratorial profile obtained using electrophoresis and high performance liquid chromatography in a

This study sought to validate a high performance liquid chromatography (HPLC) method to determine the concentration of the pesticide glyphosate in groundwater

The aim of this study was to develop and validate a simple analytical method using high performance liquid chromatography with refractive index detection (HPLC-RI) to determinate

This manuscript describes the development and validation of an ultra-fast, efficient, and high through- put analytical method based on ultra-high performance liquid

Segundo Rindisbacher, são referidos na obra três momentos de epifania olfactiva: o momento em que diz uma das primeiras palavras depois de percepcionar o cheiro de madeira na casa

de diagnóstico do diabetes, tempo de tratamento, medicamentos prescritos pelo médico utilizados para o diabetes, meio de aquisição da medicação, presença de efeito

When analyzing the exposure variables and the report of the regular use of oral health ser- vices, considering the elderly who mentioned only the use of regular oral health

The objective of this study was to develop, validate and compare spectrophotometric (UV and colorimetric) and high- performance liquid chromatography (HPLC) methods, for