• Nenhum resultado encontrado

Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples

N/A
N/A
Protected

Academic year: 2021

Share "Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Rubber

gloves

biodegradation

by

a

consortium,

mixed

culture

and

pure

culture

isolated

from

soil

samples

Chairat

Nawong,

Kamontam

Umsakul

,

Natthawan

Sermwittayawong

PrinceofSongklaUniversity,FacultyofScience,DepartmentofMicrobiology,Songkhla,Thailand

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9March2017 Accepted10July2017

Availableonline3February2018 AssociateEditor:VâniaMelo

Keywords: Degradation Naturalrubber Rubberglove Rhodococcus

a

b

s

t

r

a

c

t

Anincreasingproductionofnaturalrubber(NR)productshasledtomajorchallengesin wastemanagement.Inthisstudy,thedegradationofrubberlatexglovesinamineralsalt medium(MSM)usingabacterialconsortium,amixedcultureoftheselectedbacteriaanda pureculturewerestudied.Thehighest18%weightlossoftherubberglovesweredetected afterincubatedwiththemixedculture.Theincreasedviablecellcountsoverincubation timeindicatedthatcellsusedrubberglovesassolecarbonsourceleadingtothe degra-dationofthepolymer.ThegrowthbehaviorofNR-degradingbacteriaonthelatexgloves surfacewasinvestigatedusingthescanningelectronmicroscope(SEM).Theoccurrence ofthealdehydegroupsinthedegradationproductswasobservedbyFourierTransform InfraredSpectroscopyanalysis.RhodococcuspyridinivoransstrainF5gavethehighestweight lossofrubberglovesamongtheisolatedstrainandposseslatexclearingproteinencoded bylcpgene.Themixedcultureoftheselectedstrainsshowedthepotentialindegrading rubberwithin30daysandisconsideredtobeusedefficientlyforrubberproduct degrada-tion.ThisisthefirstreporttodemonstrateastrongabilitytodegraderubberbyRhodococcus pyridinivorans.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

NaturalRubber (NR)isabiopolymerthatisproduced from someplantspecies. Thekey compositionofnaturalrubber latexiscis-1,4-poly(isoprene) thatconsistsofisopreneas a

Correspondingauthor.

E-mail:Kamontam.u@psu.ac.th(K.Umsakul).

monomer. In nature, polyisoprenecanbe divided into two groups, e.g. cis-poly(isoprene) and trans-poly(isoprene). The majorsourceofnaturalrubberwasproducedfromtheHevea brasiliensis.However,notonlyHeveabrasiliensisbutalsomany plantscanproducelatexsuchasFicuselastica,Ficusnitidaand Euphorbia pulcherrima.1 Thelatex from theHevea brasiliensis contains apolymerofcis-1,4-poly(isoprene)unitsandupto 90%ofthedryweightofthelatexiscis-1,4-poly(isoprene)and lessthan10%arenon-rubberconstituentssuchasproteinand carbohydrates.2,3

https://doi.org/10.1016/j.bjm.2017.07.006

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Global naturalrubber productionincreasedabout 79.4% from 6.8millionmetric tonsin2000to12.2 millionmetric tonsin2013.4 NaturalRubber isutilizeddailyinnumerous applicationssuchasagriculture,transportation,andvarious farmingequipment,inaddition, itisthemajorcomponent inrubbertires.3However,billionsofdiscardedtiresare cur-rentlystockpiledaroundtheworldandtheseareincreasing exponentially and causing important environmental prob-lems.Atpresent,mostrubberwasteiseliminatedbyeither burnedorusedaslandfillsbutthisprocess cancause seri-ous pollution.5 Biodegradation of rubber wastes has been muchofinterest.Rolesofmicrobesindegradationprocessare releasingofextracellularenzymestocleavepolymerchains into smallmoleculesand theseproductsareabsorbed into the cell for use as carbon and energy source. Final pro-cess, CO2, H2O and other metabolic products are released

and they can be used by other living organisms. There-fore, the biodegradation is an alternative way to degrade the rubber waste and could overcome the environmental problems.6–9

However,microbialdegradationofpolyisoprenerubberisa veryslowprocessthattakingmonthsorevenyears.Microbial degradationofcis-1,4-poly(isoprene)rubberiscurrentlybeing intensivelyinvestigated.Rubber-degradingorganismscanbe classifiedintotwodifferentgroups;thefirstgroupis rubber-degradingorganismsproducingclearzonesonnaturalrubber latexagarplates.Membersofthesegroupsgenerallybelong tothemycelium-formingactinomycetessuchasActinoplanes, Streptomyces, Micromonospora and Rhodococcus.10–12 In con-trast, the second group of rubber-degrading organisms is themicroorganisms, whichdonotproduceanyclearzone, therefore, they require the direct contact with the rubber substrates.Theexamplesofthisgrouparenocardioform, acti-nomycetes,i.e.Gordonia sp.,Mycobacterium sp.and Nocardia

sp.10,13–15

Lcp(latex-clearingprotein)encodedbylcpgenehasbeen consideredasakeyenzymeinNRdegradationby clearing-zone-forming gram-positive bacteria. While RoxA (rubber oxygenase) is a key enzyme in NR degradation found in the gram-negative bacterium Xanthomonas sp. strain 35Y. RoxA controlled by roxA gene is an extracellular protein secretedbythis strainduringgrowth onNR.Purified RoxA degradedcis-1,4-poly(isoprene) byoxidative cleavageatthe doublebonds,yielding 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al as the main cleavage product; other minor cleavage products differed only in the number of repetitive iso-preneunits. Invitro experiments also revealed occurrence of two 18 O atoms in the reduced degradation product 12-hydroxy-4,8-dimethyltrideca-4,8-diene-1-ol, thereby dis-closingadioxygenasemechanism.16–18

Mosteffortsonthestudy ofrubberbiodegradation have beendirectedtousingsinglebacterialstrainwhichstillgave poorresults.Itwashypothesizedthatthesynergistic inter-actionamongvariousmicroorganismsshouldacceleratethe rubberdegradationprocess.Sointhisstudy,thedegradation ofrubberlatexglovesinamineralsaltmedium(MSM)bya consortium,amixedcultureoftheselected bacteriaand a pureculturewerecompared.Theweightloss,scanning elec-tronmicroscopy(SEM)oftherubberglovesubstrateandviable cellcountsweredetermined.

Materials

and

methods

Isolationofrubberdegradingmicroorganismsfromsoil

samplesbyenrichmentculturetechnique

The rubber-degrading microorganisms were isolated from soilsamplescollected fromrubbercontaminatedgroundin Songkhlaprovince,Thailand.Soilsamplesweremixedwith pieces ofnatural rubber(NR) glove(0.5×0.5cm) incubated insterilemineralsaltmedium(MSM)at30◦C,150rpm. Min-eralsaltmediumiscomposedof(g/L):Na2HPO49.0,KH2PO4

1.5, (NH4)2NO3 1.0, MgSO4 0.2, CaCl2 0.02,and Fe (III) NH4

0.0012.ThemediumwasadjustedtoaninitialpHof7.0before sterilization.19 Afteramonthofincubation,0.5mLofthose culturebrothsweretransferredintoMSMwithlatexand fur-therincubatedunderthesameconditionsasdescribedabove foranothermonthtoencouragethegrowthofrubber degrad-ingbacteria.Thedevelopedculturebrothwasthenassigned asthenaturalsoilconsortium.Therubberdegradingbacteria werealsoscreenedandisolatedfromthenaturalsoil consor-tiumusingNRlatexagarplates.

ScreeningofNR-degradingbacteria

Thedegradationoftherubberglovesbytheselectedstrains was investigatedthrough plate assay. Latex overlay plates werepreparedbyspreading5mLofsolubilizedlatex concen-trateasathinfilmonMSMagarplatesandthenlefttodry. Alltestedstrainsthatgrewwellonthelatexoverlayagarwere pickedforfurtherstudy.

Rubberglovedegradationinvestigationoftheindividual

testedbacteria,themixedculture,andthenaturalsoil

consortium

Latexglovepieceswerewashedoncewithdistilledwaterprior todryinginanovenat60◦Cuntilobtainedaconstantweight beforebeingusedasacarbonsource.Threeexperimentswere designedtotestthemicrobialactivitiesfordegradingrubber gloves.Thefirstexperimentwastestingeachindividual iso-lated strain.Thesecondexperimentwastesting themixed culturesofhigheffectiveisolatedstrains(mixedcultures)and thethirdexperimenttestedthemixedculturesofallisolated strain(consortium).EachculturewasincubatedinMSM sup-plementedwithdriedlatexglovepieces(0.6%,w/v)asasole carbonsourceat30◦C,150rpmfor4weeks.Eachexperiment was performed in triplicate. The inoculated MSM without anylatexglovepiecesandtheuninoculatedMSMwithlatex glovepieceswereusedasbioticand abioticcontrol experi-ments,respectively.Viablecell countsofeach culturewere determined throughoutthe incubationtime.Theweightof latexgloveswere measuredbefore(W1)and after degrada-tion(W2).Weightlosswascalculatedusingequation:Weight loss=[(W1−W2)/W1]×100.

Scanningelectronmicroscope(SEM)

The surfaces of the NR glove film pieces were analyzed by scanning electron microscopy (SEM) to investigate the

(3)

appearancechangesafterthedegradation.Thesampleswere washed withsterilized distilled waterand then were fixed with2% glutaraldehydein 0.1M phosphate-bufferedsaline (PBS;pH7.3).Afterthat,thesampleswerewashedwithPBS anddehydratedingradedethanol(50%,60%,70%,80%,and 90% and absolute ethanol). The dehydrated samples were subjectedtocriticalpointdryingwithliquidCO2 according

tothestandardprocedure.Thesampleswerethenmounted onaluminumspecimenstubsbyusingelectrically conduc-tivecarbon (PLANO,Wetzlar, Germany) and coated with a goldlayer.Micrographswererecordedusingscanningelectron microscope(SEM-JSM5800LV;JEOLLtd.,Tokyo,Japan).

FourierTransformInfrared(FTIR)spectroscopy

TheFTIR (VERTEX70;Bruker,Germany) analysis wasdone todetectthe degradationofNRlatexgloveon thebasisof changesinthefunctionalgroups.Thecorrelationof absorp-tionbandsinthespectrumofanunknowncompoundwith theknownabsorptionfrequencieswasanalyzed.Thepolymer piecesweremixedwithKBrandmadeintoapellet,whichwas fixedtotheFTIRsampleplate.Spectraweretakenintriplicate at400–4000wavenumberscm−1foreachsample.

16SRNAgeneanalysis

Thegenomic DNAofisolate F5was extracted usingPower SoilDNAisolationkit(MOBIOLaboratories,aQIAGEN Com-pany,USA).Molecular geneticidentificationwasperformed byamplificationof16S rRNA genewith bacterialuniversal primers27F(5-AGAGTTTGATCCTGGCTCAG-3)and 1492R (5-CGGCTACCTTGTTACGACTT-3).20ThePCRreactionwascarried outinafinalvolumeof50␮Lcontaining10mMTris–HCl(pH 8.3),50mMKCl,1.5mMMgCl2,eachdNTPataconcentration

of0.2mM,1.25IUofTaqpolymerase,eachprimerata con-centrationof0.2mMand1␮LoftheDNAtemplate.PCRwas performedaccordingtothefollowingprogram:2min denatur-ationat95◦C,followedby30cyclesof1mindenaturationat 95◦C;1minannealingat55◦C;1minextensionat72◦C;and afinalextensionstepof10minat72◦C.ThePCRproductwas thenanalyzedandpurifiedusinganagaroseGelDNA Purifi-cation Kit (E.Z.N.A. Gel Extraction Kit; Omegabiotek, USA). The16SrDNAgenewassequenced.Aphylogenetictreewas constructedbymeansofMEGA,version7.0,usinga neighbor-joiningalgorithm,andtheJukes-Cantordistanceestimation methodwithbootstrapanalysesfor1000replicateswas per-formed.

Amplificationofthelcpgene

The coding region of lcp from Rhodococcus

pyri-dinivorans was amplified by using the primers

lcpF (5-ATAATCCGAGCAGGCGCGA-3) and lcpR

(5-TCGGGGATCTCGATGCTGA-3).PCRreactioncontained10mM Tris–HCl(pH 8.3),50mMKCl, 1.5mMMgCl2, each dNTP at

aconcentrationof0.2mM, 1.25IU ofTaqpolymerase, each primer ata concentrationof 0.2mM, and 1␮L ofthe DNA template. PCR was performed according to the following program:2mindenaturationat95◦C,followedby30cyclesof 1mindenaturationat95◦C;1minannealing at55◦C;1min

extension at72◦C;and a finalextension stepof 10minat 72◦C.

CO2emissiontest

Biodegradation oflatex glove was alsodetermined by CO2

emissiontest.ThereleasedCO2duringthecultivationofcells

inMSMinwhichcontainedrubberglovesasthesolecarbon sourcewastrappedinasolutionof1NBa(OH)2andwas

quan-tifiedbytitratingoftheremainingBa(OH)2with0.1NHCl.21

Results

Isolationofrubber-degradingmicroorganismsfromsoil

samples

Inordertoenrichthegrowthofrubberdegradingbacteria,soil samplewasincubatedwithrubberglovepiecesforamonth. Thedevelopedculturewhichwasassignedasanaturalsoil consortiumwasgrownonNRagartoisolaterubber degrad-ingbacteria.ConsortiumPPdemonstratedthebestdegrading ability causing the rubberweight lossup to 59%. Unfortu-nately,thedegradationabilityofconsortiumPPwasun-stable causingtherubberweightlossvariedfrom30%to59%. There-fore weattempt toconstructastablebacterial community byisolatingrubber-degradingbacteriafromthisconsortium, tenbacterialisolates,F1toF10,obtainedfromanaturalsoil consortiumwerecapableofgrowingonMSMagar contain-ing NR asthe sole carbonsource.Isolate F5was identified asGram-positiveandotherswereGram-negativebacteria.All tenisolatesdidnotproduceclearingzonearoundthecolonies indicatedthattheycoulddegradethelatexconcentratebya directcontactwiththerubbersubstrate.3Thedegradationof rubberglovesweretestedusingeachisolatedstraincompared withthemixedculturesoftop5effectivestrains(F1,F2,F5, F6,F7)andtheconsortiumofall10bacterialisolates(F1–F10).

Weightlossoflatexglovepieces

Theweightlossoflatexglovepiecesafterone-month incu-bation wasaround0.5–9%whenusingindividualcultureof F1–F10andamong10isolates,F5gavethebestweightlossof 9.36%(Fig.1).Thehighestweightlossof18.82%wasobtained fromthemixedcultureoftop5effectivestrains(F1,F2,F5,F6, F7),while18.38%wasobtainedfromtheconsortium(F1–F10) comparedtoonly0.2%oftheabioticcontrol(Fig.1).

Viablecellcounts

Theincreasedviablecellcountsthroughtheendofthe incu-bationtimeinalltestedbacterialgroupsindicatedthatthe bacteriahadtheabilitytodegradenaturalrubberandused rubberglovesasthesolecarbonsource(Fig.2).Inspiteofthe adhesivegrowthbehavior,anincreaseinthenumberofcells suspendedinthemediumduringcultivationoccurred.The bacterialpopulationofthemixedculturesshowedthebiggest increase from 1.2×108CFU/mL to 6.2×109CFU/mL after 1

monthincubationwithrubbergloves,the bacterial popula-tionintheconsortiumhadincreasedfrom1.2×108CFU/mL

(4)

25 20 15 10 5 0 % W e ight loss F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Consor tium Mix ed culture

Abiotic controlBiot ic c

ontrol

Figure1–Percentageoflatexgloveweightlossafter incubationwithindividualisolates,theconsortium,and themixedcultureat30◦Cfor30dayscomparedtothe abioticcontrol. 1.00E+10 1.00E+09 1.00E+08 1.00E+06 1.00E+05 1.00E+04

Viable cell week 0 Viable cell week 4 1.00E+03 1.00E+02 1.00E+01 1.00E+00 Consor tium Mix ed culture Pure culture Abi otic cult ure Biotic c ultu re CFU/mL 1.00E+07

Figure2–Viablecellcountsafterincubationofthe

consortium,themixedcultureandthepurecultureF5with rubberglovesinmineralsaltmedium(MSM)at30◦Cfor30 days.

to4.0×109CFU/mLwhilethepurecultureshowedthe

small-est bacterial population increase from 1.2×108CFU/mL to

1.5×109CFU/mL.Theproductionofbiomassfromrubberalso

impliesthepresenceofoxidativedegradationofrubber poly-mer.

SEM

ThebiodegradationofrubbergloveswasalsoobservedbySEM. After4weeksofincubationwiththeconsortium,mixed cul-tureandF5,thesurfacesofrubbergloveswerecoveredwith bacterialcolonizationcomparedtocontrol(Fig.3a–d). Signif-icantchanges wereirregular crashes,surfaceerosions,and holesinvariable sizesonthe surfaceoflatexglovepieces. Interestingly,isolate F5 (Fig. 3d) cells embedded and colo-nizedintotherubbermatrix.Theadhesivegrowthattachment ofconsortiumandmixedcultureonrubbersurfacescanbe detectedasearlyas7daysofincubationwhilewhenusing singlestrainofF5,bacterialcolonizationoccurredonlyafter 10daysofincubation.

FourierTransformInfraredspectroscopytest

FTIRanalysisoftherubberglovepiecesafterincubatedwith F5showedvariousspectrachangescomparedtothecontrol (Fig.4).Inthetransmittanceareacorrespondingtothecis-1,4 doublebondsinthepolyisoprenechain,arelativedecrease ofthe( CH2)bandat833cm−1 wasobservedforthetested

samplecomparedtothatoftheabioticcontrol.TheFTIRpeak decreasedat1423cm−1inlatexglovepiecestreatedwith iso-lateF-5culture,indicatingthebreakoffunctionalgroupslike C C,methyl and esterbonds. Moreoveranincrease inthe intensity ofthepeak at1634cm−1 showedthe presenceof aldehydes (C O) groupsinthe case oftestpiecesas com-paredtocontrol.TheseindicatedthatF5usedlatexglovesas acarbonsourceduringcultivation.

Molecularidentificationusing16SrRNAgenesequence

comparison

Thesequencingresultof1.470kbnucleotidesof16SrRNAgene ofstrainF5 wasaligned andcomparedwithother bacteria availableintheNCBIGenBank.Thephylogeneticanalysisof the16SrRNAsequenceshowedthatthestrainF5belongsto genusRhodococcussp.having99%similaritieswithRhodococcus pyridinivoransandwassubmittedtoGenBankunderaccession numberKX791436(Fig.5).

Molecularidentificationandphylogeneticanalysisusing

lcpgenesequencecomparison

ThePCRproductoflcpgenewassequencedretrieving1.293kb nucleotides.Thesequenceswerethenalignedandcompared tothedatabaseoftheNCBIGenBank.Thephylogenetic anal-ysisofthelcpsequencesshowedthat99%similaritieswith anlcpgenefromRhodococcuspyridinivorans.Thepresenceof lcpgeneconfirmedthebiodegradationprocessinthisspecies. Furtherinvestigationisrequiredtoconfirmthereaction mech-anismofthisenzyme.

CO2emissiontest

TheCO2 evolvedfrom thebiodegradationwasmeasuredto

comparetheabilitytodegraderubberglovesoftested bacte-ria.Themixedculturereleased14.67%CO2,9.78%fromthe

consortiumand4.89%fromthepurecultureF5(Fig.6).The highestCO2releasewasrelatedtothehighestweightlossof

latexgloveexperimentandconfirmedthebest degradation occurredwhenthemixedculturewasincubatedwithrubber gloves.

Discussions

Thepresenceofrubberwastescurrentlyresultsin environ-mentalpollution.Theabilityofmicroorganisms todegrade rubberwasteshasreceivedconsiderableattention.Recently differentkindsofenvironmentalpollutantswerereportedto beeffectivelydegradedbymicrobialconsortia.23–27The syn-ergetic interaction of microorganisms in this study points out analternative approachtoperformrubberdegradation.

(5)

Figure3–Scanningelectronmicrographsofthelatexglovepiecesafterincubatedwithconsortium(b),mixedculture(c), andpurecultureF5(d),for30daysat30◦Ccomparedtotheabioticcontrol(a).

40 50 60 70 80 90 100 0 1000 2000 3000 4000 Tr a n s m itt an c e ( % ) Wave number (cm-1) abiotic control F5 833 1423 1634

Figure4–FTIRspectraoflatexglovepiecesafterincubation withF5inmineralsaltmediumfor1month.Abioticcontrol (thickblackline),sampletreatedwithF5(dotline).

Itwasclearlyshownthatusingmixedcultureandthe con-sortiumresultedinbetterdegradation.Theobviouschanges inrubberappearanceswereobservedandthecolorofrubber piecesbecameorange(Fig.7).However,thedecreaseofrubber degradingpropertyoftheconsortiumaftersuccessive trans-ferinNRmediumwasobserved.Theinstabilityofdegrading abilitymight duetothelossofanybacterialpopulation in theconsortiumduringtransfer.Therubberdegrading prop-ertycouldbere-storedagainafterare-cultivationwithalong incubationtimewhichallowsmicroorganismstoadapt.The efficiencyofconsortiumdegradedrubberglovesinbroth

cul-turewasshownbyweightlossandthedeteriorationofrubber pieces;itmightbeduetothebreakdownoflongesterbonds intolowmolecularweightfragmentsbyoneorganism mak-ingaccesseasierforsomeenzymesproducedbytheother.The rateofrubberdegradationwashighincaseoftreatmentwith microbialconsortiumascomparedtotheindividualstrains. Ourresultsareinconformitywiththosepreviouslyreported andshowthatthesignificantchangesinsurfacemorphology occurduetothemicrobialdegradabilityoftreatedpolymers. Adirectcontactviaabiofilmandtheembeddingofcellsinto rubberglovesmaybeapossiblemechanism, asareportof Gordoniaandsomeotheractinomycetessuggests.19

The FTIR-ATR spectroscopy was applied to detect the changes inthefunctional groupsofthe polymer. TheFTIR spectra of the NR latex gloves recorded in the transmis-sionandATRmodecorrespondedtothecis-1,4doublebonds in the polyisoprene chains in the region of 700–900cm−1. Thedecreased spectraof cis-1,4 doublebonds,methyl and esterbondsinthepolyisoprenechains,andtheappearance of ketone and aldehyde groups from FTIR analysis indi-catedthatanoxidativeattackatthedoublebondsmightbe the firstmetabolicstepsofthe biodegradationprocess.28–30 Aftermicrobialtreatment,FTIRanalysisoftherubbergloves indicatedsomereductionofthemolecularsizesandthe for-mationofnewpeakswiththebreakdownofsomebonds.The increasedspectraofC Ostretchingat1634cm−1,indicated that someofthe unsaturatedbonds(C C) inthe NRwere possiblyconvertedtoC O.

(6)

99

Rhodococcus pyridinivorans (NR 121768.1)

Rhodococcus pyridinivorans strain PDB9 (NR 025033.1)

Strain F5 (KX791436)

Gordonia alkanivorans strain 3-8 (KJ571037.1)

Nocardia brasiliensis ATCC 700358 strain HUJEG-1 (NR 074743.1)

Xanthomonas campestris strain ATCC 33913 (NR 074936.1)

100

77

0.020

Figure5–PhylogenetictreeofstrainF5amongtheneighboringspecies.Thephylogenetictreewasconstructedbythe methodofneighborjoining,basedonpairwisecomparisonsof16SrRNAsequenceswithbootstrapanalysesfor1000 replicates. 0 2 4 6 8 10 12 14 16 18

consortium mixed culture pure culture abiotic control

%C

O2

Figure6–PercentageofCO2evolvedduringtheincubation oftheconsortium,themixedcultureandthepureculture F5withrubberglovesat30◦Cfor30dayscomparedtothe abioticcontrol.

Theprimarydegradationreactionofcis-1,4-isopreneisan initial exposure the rubber to bacterial enzymes that can oxidizesomedoublebondsandbreakthelongchain hydrocar-bonlinkagestoproducesmallermoredegradablemolecules. These enzymes are either excreted by clear zone forming rubber degrading bacteria or attached to the bacterial cell wallsinthegroupofbacteria requiredirectgrowth onthe rubber surface.31,32 Tsuchii and his team determined the

degradationproductsofvulcanizedandnon-vulcanized rub-ber using Nocardia sp. 835A.22 The authors concluded that naturalrubberisdegradedbyanoxygenasereaction,andmay alsoinvolvethescissionofisopreneattheunsaturated dou-blebond,leadingtotheformationofaldehydesorketonesat eachendofthesplitisoprenechains.

Tsuchii andTakeda alsodescribed the rubberdegrading activityintheculturemediumusingXanthomonassp.strain 35Ybyattemptingtocleaverubberwithcrudeenzyme,and pointedoutthatthecleavagereactionwasenzyme-catalyzed process.28 Thisevidencerevealed thattheenzymereaction couldbeconsideredtobeatwo-stepreaction.Inthefirststep, thehighmolecularweightrubberpolymerwasdegradedand converted to mediummolecular weight(MW) hydrocarbon intermediates. Theextracellular crudeenzyme from strain 35Yhad ahigh substratespecificityforcis-1,4-polyisoprene compounds and attacked high MW polymer chains rather than lower MW oligomers, 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al was identified as one of the first degradation products.Moreover,Linos andhisteamconfirmedTsuchii’s theories on the rubber cleavage mechanism by a Gordonia strainandfoundthatnotonlyaldehydeandketonegroups weredetectedbutalsothedecreaseinthenumberof cis-1,4-isoprenebondduringtheprocess,inaddition,twodifferent newfunctionalgroupsweredetectedafterbeingtreatedwith bacteria.31Theseresultsindicatedthatanoxidativeenzyme

Figure7–Thelatexglovepiecesafterincubatedwithmixedculture(b),andpurecultureF5(c),for30daysat30◦C comparedtotheabioticcontrol(a).

(7)

attackedatthedoublebondinthefirstmetabolicstepofthe biodegradationprocess.31,32Accordingtoalltheevidencesin thebiochemicaldegradationreactionsofpolyisoprenerubber totheidentificationofmetabolites,Bodeand histeam has establishedthe“hypotheticalpathwayofrubberdegradation” presentingthefirststepastheoxidativecleavageatthe iso-prenedoublebonds, withthe formationofcis-1,4-isoprene oligomerssuchas12-oxo-4,8-dimethyltrideca-4,8-diene-1-al and the presence ofketo and aldehyde groups atthe end ofthe splitchains.7These lowmolecularweightoligomers areconsequentlyutilizedbybacteriaandthealdehydegroup is oxidizedto the corresponding carboxylic acid. The acid isactivated to acoenzyme A (CoA)ester and then passes thoughthe␤-oxidationcycle.7,33 However,further investiga-tionandevidencesonthebiochemicalanalysis,metaboliteor endproductsofrubberarerequired.

Apart from the FTIR and weight loss analysis, carbon dioxide evolution has commonly been used to evaluate biodegradabilityofrubber;microbialdegradationofpolymeric materialcanbeevaluatedbyentrappingCO2evolutionasa

resultofmineralization.Inthepresentstudy,thequantityof CO2releasedinthetestflaskscontainingrubberglovesasthe

onlysourceofcarbonwassignificantlyhigherthanincontrol flaskswithoutrubbergloves,providingtheevidenceof miner-alizationofrubberpolymer.Inmostofthepublishedstudies conducting rubber degradation, Actinomycetes are reported to be the main group of rubber degrading microbes. The latex clearing protein (Lcp) encoded by lcp gene was first reportedinStreptomycessp.K30andalsolaterfoundinother gram-positiverubberdegraderincludingNocardiafarcinicaE1, NocardianovaSH22a,Nocardiasp.NVL3Actinoplanessp.OR16 andGordoniawestfalicaKb1.17,29,30,34–36Toourknowledge,we arethefirstgrouptousebacterialconsortiumtodegrade rub-berandalsothefirststudytodemonstrateanabilitytodegrade rubberby Rhodococcuspyridinivorans. Genus Rhodococcus has beenprovedtobeapromisingoptionforthebioremediation ofmanyxenobioticcompounds.37–40Watcharakuletal.firstly reportedtheabilityofR.rhodochrousinrubberdegradationand alsorevealedsomedifferentpropertiesofLcpproteinofR. rhodochrousRPK1thathas notbeen described previouslyin otherrubber-degradingbacteria.12Thedetectionoflcpgene inR.pyridinivoransF5inthisstudyconfirmedtheabilityofthis strainindegradingrubbergloves.SinceR.pyridinivoransF5did notproduceaclearingzonearoundthecolonyonNR over-layplate,thisresultsupportsthehypothesisofthestudyof Linhetal.thattheLcpitself isnotresponsibleforclearing zoneformation.31Itwillbenecessarytofurtherinvestigate thebiochemicalandbiophysicalpropertiesofthisenzymeto fullyunderstandthevariationoftheenzymepropertiesand toverifytheroleofLcpinrubberdegradation.

Conclusions

Inthepresentstudytheconsortium,mixedcultureandpure culturewereabletodegraderubberglovesinwhichsignificant changescanbedetectedwithin30days.Thedeterminationof theweightloss,theincreaseinviablecellcounts,FTIR,CO2

evolutiontestand the SEMhasconfirmed thatthe natural rubberdegradationprocessoccurred.Thestructureanalysis

from FTIR confirmed that the structureof the rubber was changedaftertreatmentwiththebacteriaandledtothe dete-riorationofthepolymer.RhodococcuspyridinivoransstrainF5 demonstratedthehighestrubberdegradingactivityamongall singlestrainsused.Thepresenceoflcpgeneencodeforlatex degradingenzymeinRhodococcuspyridinivoransF5supportsthe essentialfunctionoflcpinpoly(cis-1,4isoprene)degradation. Mixedcultureoftheselectedstrainsreachedthehighest rub-berdegradationafterone-monthincubationandshowedthe potentialtobeusedefficientlyforrubberdegradation.Further studiesarenecessarytoelucidaterolesofeachstraininthe mixedcultureandconsortium.Theresultsobtainedonbatch biodegradation ofrubberglovesusinga consortiumwillbe usefulinapplicationofcontinuousremovalofrubberwastes. Thishasanadvantagewhentheprocessisappliedinthe con-trolledenvironmentconditions,wherepureculturemightnot beabletoutilizethesecondarymetabolites.

Financial

support

ThisprojectwasfundedbyResearchAssistantscholarships, FacultyofScience,PrinceofSongklaUniversitytheFacultyof Scienceand alsotheResearchgrantfromPrinceofSongkla University.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Weare really gratefultoDr. BrianHodgson forhis uncon-ditional support and great advices.We are thankful toDr. NicholasHodgsonandMrs.AnnaChatthongforEnglish lan-guagecheckingandediting.

r

e

f

e

r

e

n

c

e

s

1.IsmailAM,MohamedHN,ShoreitMA.DegradationofFicus

elasticarubberlatexbyAspergillusterreus,Aspergillusflavus,

andMyceliophthorathermophile.IntBiodeteriorBiodegradation.

2013;78:82–88.

2.NayanashreeG,ThippeswamyB.Naturalrubberdegradation

bylaccaseandmanganeseperoxidaseenzymesofPenicillium

chrysogenum.IntJEnvironSciTechnol.2015;12:2665–2672.

3.YikmisM,SteinbüchelA.Historicalandrecentachievements

inthefieldofmicrobialdegradationofnaturalandsynthetic

rubber.ApplEnvironMicrobiol.2012;78:4543–4551.

4.InternationalRubberStudyGroup.Statisticalsummaryof

worldrubbersituation.RubberStatisticalBulletin;2016.

5.FattaD,PapadopoulosA,LoizidouM.Astudyonthelandfill

leachateanditsimpactonthegroundwaterqualityofthe

greaterarea.EnvironGeochemHealth.1999;21:175–190.

6.BodeHB,ZeeckA,PlückhahnK,JendrossekD.Physiological

andchemicalinvestigationsintomicrobialdegradationof

syntheticpoly(cis-1,4-isoprene).ApplEnvironMicrobiol.

2000;66:3680–3685.

7.BodeHB,KerkhoffK,JendrossekD.Bacterialdegradationof

naturalandsyntheticrubber.Biomacromolecules.

(8)

8. CherianE,JayachandranK.Microbialdegradationofnatural

rubberlatexbyanovelspeciesofBacillussp.SBS25isolated

fromsoil.IntJEnvironRes.2009;3:599–604.

9. HeshamAEL,WangZ,ZhangY,ZhangJ,LvW,YangM.

Isolationandidentificationofayeaststraincapableof

degradingfourandfiveringaromatichydrocarbons.Ann

Microbiol.2006;56:109–112.

10.ChengalroyenM,DabbsE.Thebiodegradationoflatex

rubber:aminireview.JPolymEnviron.2013;21:874–880.

11.GallertC.Degradationoflatexandofnaturalrubberby

StreptomycesstrainLa7.SystApplMicrobiol.2000;23:433–441.

12.WatcharakulS,RötherW,BirkeJ,UmsakulK,HodgsonB,

JendrossekD.Biochemicalandspectroscopic

characterizationofpurifiedLatexClearingProtein(Lcp)from

newlyisolatedrubberdegradingRhodococcusrhodochrous

strainRPK1revealsnovelpropertiesofLcp.BMCMicrobiol.

2016;16:92.

13.LinosA,SteinbüchelA.Microbialdegradationofnaturaland

syntheticrubbersbynovelbacteriabelongingtothegenus

Gordona.KautGummiKunstst.1998;51:498–499.

14.LinosA,BerekaaMM,SteinbüchelA,KimKK,SpröerC,

KroppenstedtRM.Gordoniawestfalicasp.nov.,anovel

rubber-degradingactinomycete.IntJSystEvolMicrobiol.

2002;52:1133–1139.

15.BerekaaMM.Colonizationandmicrobialdegradationof

polyisoprenerubberbynocardioformactinomyceteNocardia

sp.strain-MBR.Biotechnology.2006;5:234–239.

16.BraazR,FischerP,JendrossekD.Noveltypeof

heme-dependentoxygenasecatalyzesoxidativecleavageof

rubber(poly-cis-1,4-isoprene).ApplEnvironMicrobiol.

2004;70:7388–7395.

17.IbrahimEMA,ArenskotterM,LuftmannH,SteinbüchelA.

Identificationofpoly(cis-1,4-isoprene)degradation

intermediatesduringgrowthofmoderatelythermophilic

actinomycetesonrubberandcloningofafunctionallcp

homologuefromNocardiafarcinicastrainE1.ApplEnviron

Microbiol.2006;72:3375–3382.

18.RoseK,SteinbüchelA.Biodegradationofnaturalrubberand

relatedcompounds:recentinsightsintoahardlyunderstood

cataboliccapabilityofmicroorganisms.ApplEnviron

Microbiol.2005;71:2803–2812.

19.JendrossekD,TomasiG,KroppenstedtRM.Bacterial

degradationofnaturalrubber:aprivilegeofactinomycetes?

FemsMicrobiolLett.1997;150:179–188.

20.WeisburgG,BarnsM,PelletierA,LaneJ.16SribosomalDNA

amplificationforphylogeneticstudy.JBacteriol.

1991;173:697–703.

21.ShahA,HasanF,MutiullahZS,HameedA.Degradationof

polyisoprenerubberbynewlyisolatedBacillussp.AF-666

fromthesoil.ApplBiochemMicrobiol.2012;48:37–42.

22.TsuchiiA,SuzukiT,TakedaK.Microbialdegradationof

naturalrubbervulcanisates.ApplEnvironMicrobiol.

1985;50:965–970.

23.KimNK,OhS,LiuWT.Enrichmentandcharacterizationof

microbialconsortiadegradingsolublemicrobialproducts

dischargedfromanaerobicmethanogenicbioreactors.Water

Res.2016;90:395–404.

24.ShahZ,GulzarM,HasanF,ShahAA.Degradationof

polyesterpolyurethanebyanindigenouslydeveloped

consortiumofPseudomonasandBacillusspeciesisolatedfrom

soil.PolymDegradStab.2016;134:349–356.

25.RajamanickamR,KaliyamoorthiK,RamachandranN,

BaskaranD,KrishnanJ.Batchbiodegradationoftolueneby

mixedmicrobialconsortiaanditskinetics.IntBiodeterior

Biodegradation.2017;119:282–288.

26.ZafraG,AbsalónÁE,Anducho-ReyesMÁ,FernandezFJ,

Cortés-EspinosaDV.ConstructionofPAH-degradingmixed

microbialconsortiabyinducedselectioninsoil.Chemosphere.

2017;172:120–126.

27.InesM,SahnounR,GhribiD.Applicationofbacterial biosurfactantsforenhancedremovalandbiodegradationof dieseloilinsoilusinganewlyisolatedconsortium.Process SafEnvironProt.2017,

http://dx.doi.org/10.1016/j.psep.2017.02.002.

28.TsuchiiA,TakedaK.Rubberdegradingenzymefrom

bacterialculture.ApplEnvironMicrobiol.1990;56:269–274.

29.RoseK,TenbergeKB,SteinbüchelA.Identificationand

characterizationofgenesfromStreptomycessp.strainK30

responsibleforclearzoneformationonnaturalrubberlatex

andpoly(cis-1,4-isoprene)rubberdegradation.

Biomacromolecules.2005;6:180–188.

30.LuoQ,HiesslS,PoehleinA,DanielR,SteinbüchelA.Insights

intothemicrobialdegradationandgutta-perchabyanalysis

ofthecompletegenomeofNocardianovaSH22a.ApplEnviron

Microbiol.2014;80:3895–3907.

31.LinosA,ReicheltR,KelleRU,SteinbüchelA.Gram-negative

bacterium,identifiedasPseudomonasaeruginosaAL98,isa

potentdegraderofnaturalrubberandsynthetic

cis-1,4-polyisoprene.FemsMicrobiolLett.2000;182:155–161.

32.LinosA,SteinbüchelA.Biodegradationofnaturalandsynthetic

rubber.Weinheim,Germany:BiopolymersWiley-VCH; 2001:321–359.

33.BodeHB,ZeeckA,CkhahnKP,JendrossekD.Physiological

andchemicalinvestigationsintomicrobialdegradationof

syntheticpoly(cis-1,4isoprene).ApplEnvironMicrobiol.

2000;66:3680–3685.

34.LinhDV,HuongNL,TabataM,etal.Characterizationand

functionalexpressionofarubberdegradationgeneofa

Nocardiadegraderfromarubber-processingfactory.JBiosci Bioeng.2017;123:412–418.

35.BrökerD,DietzD,ArenskötterM,SteinbüchelA.The

genomesofthenon-clearing-zone-formingand

natural-rubber-degradingspeciesGordoniapolyisoprenivorans

andGordoniawestfalicaharborgenesexpressingLcpactivity inStreptomycesstrains.ApplEnvironMicrobiol.

2008;74:2288–2297.

36.ImaiS,IchikawaK,MuramatsuY,KasaiD,MasaiE,Fukuda

M.IsolationandcharacterizationofStreptomyces,

Actinoplanes,andMethylibiumstrainsthatareinvolvedin

degradationofnaturalrubberandsynthetic

poly(cis-1,4-isoprene).EnzymeMicroTechnol.2011;49:

526–531.

37.LarkinMJ,KulakovLA,AllenCCR.Biodegradationby

membersofthegenusRhodococcus:biochemistry,physiology,

andgeneticadaptation.AdvApplMicrobiol.2006;59:1–29.

38.PrettZ,DésiE,LepossaA,KrisztB,KukolyaJ,NagyE.

BiologicaldegradationofaflatoxinB1byaRhodococcus

pyridinivoransstraininby-productofbioethanol.AnimFeed SciTechnol.2017;224:104–114.

39.MartínkováL,UhnákováB,PátekM,NeˇsveraJ,KˇrenV.

BiodegradationpotentialofthegenusRhodococcus.Environ

Int.2009;35:162–177.

40.KunduD,HazraC,ChaudhariA.Enhanceddegradationof

4-nitrotoluenebyRhodococcuspyridinivoransNT2:multivariate

optimizationofprocessparametersandevaluationof

Referências

Documentos relacionados

No primeiro caso, para produzir níveis de saída adequados para a maioria dos processos de soldagem a arco, a energia elétrica da rede precisa ser convertida de sua forma original

Duas esculturas de Diana do Laboratorio de Joaquim Machado de Castro nos jardins portugueses, uma sobre a balaustrada do jardim de buxo do Palácio de Belém e a outra no sopé da

Diante da importância que a obesidade tem hoje não apenas na saúde pública, como também nos mais diversos setores da visa social, este estudo tem como

Synthetic glycerol was also used as substrate in a pulse feeding strategy (GA3) to evaluate the maximum storage capacity of the selected culture using a pure and

modelo de depoimento poderá ser vital e de grande auxilio no que tange à resolução dos crimes sexuais cometidos, especialmente contra crianças e adolescentes, e em

No que diz respeito ao integral pressão-tempo (IPT) e analisando os resultados obtidos, é possível confirmar que não existem diferenças significativas entre os arcos plantares,

The cellular growth of the isolated and mixed cultures of the chrysosporium and wortmannii, in the different types of starch in the culture medium containing 25 and

Bacteria were isolated from all wounds and 41 bacterial isolates could be identified based on culture of the materials collected by punch biopsy; 53.66% of the isolates