• Nenhum resultado encontrado

Collagenolytic enzymes produced by fungi: a systematic review

N/A
N/A
Protected

Academic year: 2021

Share "Collagenolytic enzymes produced by fungi: a systematic review"

Copied!
12
0
0

Texto

(1)

brazilian journal of microbiology 48(2017)13–24

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Review

Collagenolytic

enzymes

produced

by

fungi:

a

systematic

review

Maria

Carolina

de

Albuquerque

Wanderley

a

,

José

Manoel

Wanderley

Duarte

Neto

a

,

José

Luiz

de

Lima

Filho

a

,

Carolina

de

Albuquerque

Lima

b

,

José

António

Couto

Teixeira

c

,

Ana

Lúcia

Figueiredo

Porto

d,∗

aUniversidadeFederaldePernambuco(UFPE),LaboratóriodeImunopatologiaKeizoAsami(LIKA),Recife,PE,Brasil bUniversidadedePernambuco(UPE),FaculdadedeCiências,Educac¸ãoeTecnologiadeGaranhuns,Garanhuns,PE,Brasil cUniversidadedoMinho(UMinho),CentrodeEngenhariaBiológica,Braga,Portugal

dUniversidadeFederalRuraldePernambuco(UFRPE),DepartamentodeMorfologiaeFisiologiaAnimal,Recife,PE,Brasil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29December2015 Accepted15August2016

Availableonline30September2016 AssociateEditor:AdalbertoPessoaJr

Keywords: Collagenase Fungus Characterization Purification Production

a

b

s

t

r

a

c

t

Specific proteasescapableofdegradingnativetriplehelicalordenaturedcollagenhave beenrequiredformanyyearsandhavealargespectrumofapplications.Therearefew completereportsthatfullyuncoverproduction,characterizationandpurificationoffungi collagenases.Inthisreview,authorssearchedthroughfourscientificonlinedatabases usingthefollowingkeywords(collagenolyticORcollagenase)AND(fungiORfungusOR fun-gal)AND(productionORsynthesisORsynthesize)AND(characterization).Scientificcriteria wereadoptedinthisreviewtoclassifyfoundarticlesbyscore(from0to10).After exclu-sioncriteria,21articleswereselected.Noneobtainedthemaximumof10pointsdefinedby themethodology,whichindicatesadeficiencyinstudiesdealingsimultaneouslywith pro-duction,characterizationandpurificationofcollagenasebyfungi.Amongmicroorganisms studiedthenon-pathogenicfungiPenicilliumaurantiogriseumandRhizoctoniasolanistoodout involumetricandspecificcollagenaseactivity.Theonlyarticlefoundthatmade sequenc-ingofatruecollagenaseshowed100%homologywithseveralmetalloproteinasesfungi.A cleargapinliteratureaboutcollagenaseproductionbyfungiwasverified,whichprevents furtherdevelopmentintheareaandincreasestheneedforfurtherstudies,particularlyfull characterizationoffungalcollagenaseswithhighspecificitytocollagen.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthorat:DepartmentofMorphologyandAnimalPhysiology,FederalRuralUniversityofPernambuco,Av.DomManoel

deMedeiros,s/n,52171-900Recife,PE,Brazil. E-mail:analuporto@yahoo.com.br(A.L.Porto).

http://dx.doi.org/10.1016/j.bjm.2016.08.001

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

14

brazilian journal of microbiology48(2017)13–24

Introduction

Collagenisafibrousproteinfoundinskin,tendons,bones, teeth,bloodvessels,intestinesandcartilage,correspondingto 30%ofthetotalprotein,whosemainfunctionisstructural.1,2

There are morethan 26 geneticallydistinct types of colla-gens,characterizedbyconsiderablecomplexityanddiversity intheirstructure,theirsplicevariants,presenceofadditional, non-helical domains, their assembly and their function.3,4

Eachcollagenmoleculeisasmall,hardstickformedby inter-lacinginatriplehelixofthreepolypeptidechainscalledalpha chains(Fig.1).

Specificproteasescapableofdegradingnativetriple heli-calordenaturedcollagenhavebeenrequiredformanyyears.5

Collagenaseshavebeenisolatedandcharacterizedfrom dif-ferent sources,as digestivetracts offish and invertebrates including:tadpoletailfin,6,7Atlanticcod,8landsnail(Achatina fulica),9tropicalshrimp(Penaeusvannamei),10,11catfish (Parasil-urusasotus),10,12mackerel(Scomberjaponicas)13;besidesplants

(Zingiberofficinale)14;bacteriaas:Bacilluscereusand Klebsiella pneumoniae,15 Bacilluspumilus,16 Bacilluslicheniformis17–19 and

fungi,showninthisreview.

Proteases,ingeneral,frommicrobialsourcesarepreferred tothe enzymes fromplant andanimal sourcesforits bio-chemicaldiversityand geneticmanipulationpossibility.20,21

Microbialcollagenasehavebeenrecoveredfrompathogenic micro-organisms,especiallyClostridiumhistolyticum,whichis the most widely used commercial source.22 Other studies

reported collagenase producing fungi ofgenera Aspergillus, Cladosporium,PenicilliumandAlternaria.23

Among microorganisms that produce collagenolytic enzymes,filamentousfungihave greatadvantagessuchas highproductivityandlowproductioncost,rapiddevelopment, and the resulting enzyme may be modified and recovered more easily.24 Enzyme production occurs extracellularly,

which makesit particularly easier torecover afterwards.25

Asfungalproteases are capableofhydrolyzing manyother proteins besides collagen, the demand for collagenases fromfungiwithsuitablecharacteristics,namelyhigh speci-ficity,is avery significantresearch directiontobetaken.26 Collagenases are capable of hydrolyzing both native and denaturedcollagen,andarebecomingincreasinglyimportant commercially.27

Collagenaseshavebeenusedinmedical,pharmaceuticals, food,cosmeticsandtextilessegmentsandhaveapplications infurandhidetanningtohelpensuretheuniformdyingof leathers.28,29Inmedicalapplications,itcanbeusedinburns

andulcerstreatment,30,31toeliminatescars,32forDupuytren’s

diseasetreatmentinadditiontovarioustypesoffibrosissuch asliver cirrhosis, topreparing samplesfor diagnosis,33 for

productionof peptides with antioxidant and antimicrobial

Alpha chains

Fig.1–Collagenmolecule:intertwiningthreealphachains triplehelix.

activities,34andplayanextremelyimportantroleinthe

trans-plantsurgerysuccessofsomespecificorgans.32

Therulesforvertebratecollagenaseclassificationarevery clear, but the same does notapply to microbial enzymes. It isdifficult todistinguish betweentrue collagenases and gelatinases or other proteases,which leadsto controversy and imprecision inthe classificationand nomenclature of theseenzymes.Microbialcollagenasesarecapableof degrad-ingtriple-helicalcollagenanddenaturedfragmentsinvarious sites and are less specific. Althoughseveral proteases can hydrolyzedenaturedcollagen,theycannotbemistakenwith true collagenases, ableto hydrolyzethe native collagen as foundinconnectivetissues.35,36

Thesearchfornewmicrobialcollagenaseshasincreased over the years and its productioncurrentlyrepresentsone of the biggestenzyme industries.37,38 The developmentof

newproductionmethods,includingthesearchforproducing micro-organisms,alternativesourcesofsubstrates,and bet-terextractionconditionsandpurificationofcollagenase,has beenofgreatimportance,sinceithasawideapplication spec-trumwithhighbiotechnologicalpotential.Besides,themain publishedreviewpapersconcerningmicrobialcollagenolytic enzymesarelimitedtobacterialsource.22,35,39Inthiscontext,

theauthorsfelttheneedtobetterunderstandthestateofthe artregardingproduction,characterizationandpurificationof collagenolyticenzymesbyfungi.

Material

and

methods

The first step on this process, was to make electronic searches in the Scopus (http://www.scopus.com/), Sci-enceDirect (http://www.sciencedirect.com/), ISI Web of Science (http://apps.isiknowledge.com) and PubMed

(http://www.ncbi.nlm.nih.gov/pubmed)databases,using the

following keywords: (collagenolytic OR collagenase) AND (fungi ORfungusORfungal)AND (productionORsynthesis ORsynthesize)AND(characterization).

Thisprocedureallowedselectingpublishedpapersonthe productionandcharacterizationofcollagenolyticenzyme pro-duced byfungi. Papersthat did notreport onthe enzyme production process were excluded. There were no limita-tionsregardingtheyearanddateofpublication,duetolack ofpublicationsabout thisissue. Norestrictionswere made formethodology used, typesofanalysis andquantification ofresults.In addition,therewere norestrictionon typeof micro-organism,collagenolyticactivitymethodology,culture conditionsandcharacterizationassays.

Twoindependentsearchesweremadeandtheconformity of the selected papersvalidated,considering the inclusion criteria described.Incaseofdivergenceamongthepapers, allofthecriteriawerereviewedanddiscussed.Wheninthe article title onlyprotease productionwasmentioned, lack-ingcollagenrelatedterms,researchersproceededtosummary evaluation,lookingformethodologiesforactivity determina-tioninvolvingcollagenorgelatinassubstrate.

Papersselectioncriteriaweredefinedtoevaluateboth bet-terconditionsforcollagenolyticenzymeproductionbyfungus withbiotechnologicalpotentialapplicabilityand methodolog-icalqualityinthecharacterizationoftheenzyme.Scientific

(3)

brazilian journal of microbiology48(2017)13–24

15

criteria adoptedin this reviewwere according to the ones proposedbyGreenhalgh.40Theparameterswereclassifiedon

thescale:adequate(score:2),partiallyadequate(score:1)and inadequate(score:0)oradequate(score:1)andinadequate(0).

Productionprocess:Papersthatstudiedthebestgrowing con-ditionsforproducingcollagenolyticenzymereceivedascore of2,papersthat didnotconduct studiestoimprove grow-ingconditions,usingcollagenorgelatinassubstrate,received scoreof1,andthosewhichusednonspecificmeansfor col-lagenproductionreceivedascoreof0.Characterizationofthe enzyme:papersthatreportedbiochemicalcharacterizationof enzymeandincludedothertestsaswellasoptimumpHand temperatureandenzymeinhibitiontests,receivedascoreof 2.ThosewhichevaluatedonlyoptimumpHandtemperature andtheeffectofinhibitorsreceivedascoreof1.Papersthat didnothaveatleastthesethreefactorsinenzyme charac-terizationwere consideredinadequateandreceivedascore of 0. Quantification method of collagenolytic activity: methods thatusedchromogenicsubstrates(OrangeCollagenorAzocoll) forquantificationofcollagenolyticactivity,receivedascore of2.Paperswithother quantitativemethodologiesfor col-lagenolyticactivity,receivedascoreof1,andthosethatheld onlyqualitativeanalysisactivity,receivedascoreof0. Purifica-tion:purificationbychromatographymethodsreceivedascore of2,thosewhichusedotherpurificationmethods,receiveda scoreof1,andthosethatdidnotdoanykindofpurification, received0.Micro-organism:articlesthatusednon-pathogenic fungiforcollagenolyticenzymeproductionreceivedascoreof 1,whilethoseusingpathogenicfungiwereconsidered inade-quateandreceivedascoreof0.Substratespecificity:enzymes withspecificactivityovercollagen,receivedascoreof1;those whopresentedawidehydrolysisspectrumorhavenotbeen tested,receivedascoreof0.

Maximumoverallscorewas10points.Otherparameters suchasproductiontime,yearofpublication,satisfactory col-lagenolyticactivity,amongothers,didnotscored but were takenintoconsideration,astheywererelevanttosubsequent discussion.TheparametersscoredaresummarizedinTable1. Atablewasassembledwithasummaryofselected arti-clesrelevantdataaccordingtocriteriaadoptedonthereview, including somefeatures as optimumpH and temperature, inhibitors, enzyme nature (true collagenase or not) and enzymesequence.

Results

and

discussion

Byapplyingtheestablishedsearchprocedure,atotalof1346 articleswerefoundinScienceDirectdatabase,678articlesin Scopusdatabase,45articlesinPubMed,and5articlesinWeb ofScience,totaling2074articles.Basedondefinedinclusion andexclusioncriteria,21articleswereselectedforthisreview, distributedasshowninFig.2.

Regarding the scores obtained for each selected article, none obtained the maximum of 10 points defined by the methodology.According tothedistributioninTable 2, only onearticlehit ascoreof9(4.77% ofselectedarticles),two articles obtained the score of 8 (9.52%), and three articles reachedthescoreof7(14.29%).71.43%ofthearticlesachieved scoresbelow7,whichindicatesadeficiencyinstudiesdealing

simultaneouslywithproduction,characterizationand purifi-cationofcollagenasebyfungi.Wheretheenzymeobtained shouldpresent specificitytosubstrate andhaveitsactivity quantified bythe methodadoptedasthe mostappropriate (Azocoll).

Asdescribedinthemethodology,notimeintervalhasbeen defined.However,only11articleshavebeenpublishedinthe last10 years.Ofthese11 articles,only4werepublishedin thelast5years,clearlyindicatinganeedforfurtherresearch relatedtotheproductionofcollagenasebyfungi.

Microorganism

Based onthis systematicreview, 21 articleswere selected, of which 17 were carried out with 10 different genera of filamentous fungi (Penicillium, Aspergillus, Arthrobotrys, Monacrosporium,Trichophyton,Microsporum,Lecanicillium, Ento-mophthora, Micromycetes and Lagenidium).Two generafound wereclassifiedasdimorphic(CoccidioidesandParacoccidioides),

andonlyonehadayeastmorphology(Zygosaccharomyces). From the industrial point of view, pathogenicity can negatively influence microorganism choice for bioprocess development.Interestingly,approximately40%offungicited inselected articlesaredescribed asclassicpathogens.The non-pathogenicspeciesthatwereassociatedwithgood col-lagenolyticenzymeproductionwereRhizoctoniasolaniwitha productionof212.3U/mL55andPenicilliumaurantiogriseumwith

231U/mL24and164U/mL58.

A great diversity of collagenolytic enzymes producing fungicouldbeobserved(morethan20differenttaxa).Most belonging tophylum Ascomycota, other to phyla Basidiomy-cota (R. solani), Entomophthoromycota (Conidiobolus coronatus)

andOomycetes(Lagenidiumgiganteum).Filamentousfungiare clearlymorestudiedincomparisontoyeastsforcollagenolytic enzymeproduction.Manyarticlescontainpathogenicfungi inordertobetterunderstanditspathogenesismechanisms and notinorder tostudy enzymaticproductionitself.The genus Aspergillus was the most frequent, followed by Peni-cilliumandEntomophthoragenres.Consideringpathogenesis, enzymeactivityandspecificity,thefungibetterqualifiedfor enzymeproductionwerethefilamentousfungusP. aurantiogri-seumandZygosaccharomycesrouxiiyeast.

Culturemedium

Culture mediumselectionisofgreat importancefor colla-genaseproduction,sincethisfactorwilldirectlyaffectfinal processcost.Assaidearlier,oneoftheadvantagesofworking with microorganisms isthe possibility to vary the compo-sition of the culture medium, using lower cost materials, suchasbyproducts ofthefishingindustry,forexample,as substrate. Nine ofthe selected papers presenteda culture medium containing collagen or gelatin in its composition, other studies used other sources of carbon and nitrogen, mainlyyeastextract.Somestudiesinvolvingbacteriaindicate thataddinggelatinorcaseininthemediumincreasesthe col-lagenaseyield.However,theworkofOkandHashinaga48with Z.rouxiiyeast,observedthataddinggelatininYPGmedium was not essential for the production of collagenase. Lima etal.24reportedtheuseofainexpensiveculturemediumfor

(4)

16

brazilian journal of microbiology48(2017)13–24

Table1–Scoreofselectedparametersforcriticalevaluationofthesystematicreview.

Criteriafordeterminingthescores Pointing

2 1 0

(A)Production Specificforcollagenase,with controlledvariables

Specificforcollagenase,with uncontrolledvariables

Nospecificforcollagenase

(B)Characterization Complete Partial Absent

(C)Microorganism Non-pathogenic Pathogenic

(D)Collagenolyticactivitymethod AzocollorOrangeCollagen Others Absent

(E)Purification Complete Partial Absent

(F)Substrate Collagenase(specific) Non-Specific

Search Science direct Total: 1346 Selected: 7 Excluded: 1339 Scopus Total: 678 Selected: 11 Excluded: 667 Pubmed Total: 45 Selected: 1 Prev. selected: 1 Excluded: 43 Web of science Total: 5 Selected: 2 Prev. selected: 2 Excluded: 1

Fig.2–Totalarticlesselectedinfourdifferentdatabasesusingthedescribedmethodology.

Table2–Scoresdistributionofselectedarticles.

Authors (A) (B) (C) (D) (E) (F) Total

Hurionetal.(1977)41 1 0 0 2 2 0 4

Hurionetal.(1979)42 1 0 0 2 2 0 4

OlutiolaandNwaogwugwu(1982)43 0 2 1 0 0 0 4

DeanandDomnas(1983)44 0 2 1 1 1 0 6

Zhuetal.(1990)45 0 0 0 0 0 0 0 Tomeeetal.(1994)46 1 0 0 0 0 0 3 Ibrahim-Granetetal.(1996)47 0 1 0 2 2 0 4 OkandHashinaga(1996)48 2 1 1 1 1 1 7 Benitoetal.(2002)49 0 2 1 2 2 0 7 Minglianetal.(2004)50 1 2 1 2 2 0 8 Yangetal.(2005)51 1 2 1 1 1 0 6 Wangetal.(2006)52 1 2 1 2 2 0 7 Mahmoudetal.(2007)53 2 1 0 2 2 0 6 Vianietal.(2007)54 1 0 1 0 0 0 3 Hamdy(2008)55 2 2 1 2 2 0 8 Lopesetal.(2008)56 0 1 0 0 0 0 1 Voltanetal.(2008)57 1 0 0 1 1 0 4

Limaetal.(2011a)24 2 2 1 1 1 1 9

Limaetal.(2011b)58 2 0 1 0 0 0 5

deSiqueiraetal.(2014)59 0 2 1 1 1 0 6

Sharkovaetal.(2015)26 0 0 1 0 0 0 3

(A)Production:Specificforcollagenaseproductionwithcontrolledvariables(score2),specificforcollagenaseproductionwithuncontrolled variables(score1),non-specificforcollagenase(score0).

(B)Characterization:Completecharacterization(score2),partialcharacterization(score1),absent(score0). (C)Microorganism:Non-pathogenicmicroorganism(score1),pathogenicmicroorganism(score0).

(D)Collagenolyticactivity:Chromogenicsubstrateforcollagenolyticactivitymethod(score2),othersquantitativemethods(score1),qualitative (score0).

(E)Purification:Purificationbychromatography(score2),partialpurification(score1),absent(score0). (F)SubstrateSpecificity:Collagenasewithspecificityforcollagen(score1),non-specific(score0)

(5)

brazilian journal of microbiology48(2017)13–24

17

P.aurantiogriseumcollagenaseproduction,usingsoyflouras mainsubstrate,andthesamemediumwasusedbyauthors Limaetal.,58reachingoneofthebestcollagenolyticactivity

valuesfoundduringthisreview(Table3).

AccordingtoHamdy,55theuseofdifferentbatchorcollagen

typesmayinterfereinenzymesproduction(enzymeactivity) andcollagenasesfromdifferentmicroorganismshave affin-ityforspecifictypesofcollagen.60Theproductionofdifferent

fungiindifferentmediamustbethesubjectofextended stud-ies.

Cultureconditions

Processdevelopmentisafactortobeconsideredsince opti-mizationofcultureconditionscanpromoteanincreaseinthe yieldsofproteaseandreductioninproductioncosts,amajor issuefromanindustrialpointofview.58,61

Culture medium initial pH influences many enzymatic processes,suchasenzymeproduction,celltransportacross membranesandextracellularproteasesexpression.62,63 The

pH of the culture medium used in the selected articles rangedfrom5.5to8.0,whiletemperaturerangedfrom18to 37◦C.Regardingagitation,onlyHurionetal.42 showed

non-mixedenzymeproduction,withmicroorganismE. coronata.

Inmostoftheworks,rangedanagitationwasintherange 100–200rpm.

Fermentation time to collagenase production varied widely,from24hto14days,atimeof6–7daysbeingreported by8papers.Severalstudiesshowedactivitydecayafterthe 7thdayoffermentation.Zhu etal.45 demonstratedthat, in

mediumcontaininginsolublecollagen,after2weeks,fungus growsonlytohalfthemassobtainedinmilkmediumfor1 week.Articlesthatstudiedtimeinfluenceonenzyme produc-tionreportedhigherproductionduringstationaryphase.

The work of Lima et al.24 presented a factorial design

todefinethebest growingconditionsfortheproductionof collagenase.AuthorsstatedthatinitialpH,temperatureand concentration ofsubstrate are significant factors for colla-genaseproductionbyP.aurantiogriseumusingsoybean flour medium.

Temperatureinfluenceonproteaseproductionby microor-ganismsisanimportantfactor.64 Temperaturecanregulate

somecomponentsasenzymaticsynthesis,enzymesecretion andlengthoftheenzyme’ssynthesisphase,besidesthe prop-ertiesofcellwall63,65.Ingeneral,studiesusedtemperatures

between 18 and 37◦C during production. The papers that studieddifferenttemperaturesshowed30◦Castheoptimum temperatureforcollagenolyticproteaseproduction. Accord-ingtodeSiqueiraetal.,59incubationtemperatureinterferes

withfungusgrowthandmetabolism,andconsequently, pepti-daseproduction,thebesttemperaturebeing30◦C,according toHamdy.55 Limaet al.24 reportedthatthe bestconditions

forvolumetriccollagenolyticactivityandbiomassproduction were24◦CandpH7.0.

Among works that discriminated the shaking speed, 150–200rpmweremostused,exceptforYangetal.,51thatused

100rpm.Hamdy55showedinhisresultsthatalthoughthere

islittledifference,theagitationof175rpmwasthebestfor enzymeproduction.

Collagenolyticactivity

Collagenolyticactivitycanbedescribedascollagenhydrolysis bycollagenasewithpeptidesoraminoacidsrelease.Different methods are described in literatureto measure this activ-ity: colorimetric, fluorescence, turbidity and viscometry or radioactivity,amongothers.Allthesemethodsarequite time-consuming,thetimeneededrangingfrom3to18h.Onthe otherhand,theirmajoradvantageisthatmostofthemuse nativecollagens.22,66

The radioactive or fluorescent methods require more time to produce substrate and more specific measuring equipment, as well as immunological methods. Moreover, synthetic oligopeptide is not an entirely specific substrate forcollagenase.66Anotherusedtechniquewasdevelopedby

Mandletal.,60usingcollageninnaturaassubstrateand

ninhy-drinascoloringreagent.Theninhydrinmethodmeasuresfree aminoacidsrelease,whichdifficultcontinuousactivity mon-itoringormayunderestimateenzymesactivityifitreleases peptidesandnotfreeaminoacids.Besides,inthismethodthe ninhydrincanreactwithfreeaminoacidsexistinginsolution, whichlimitsthetechniquesensitivity.67

Amongcolorimetricmethods,thereistheAzocollbased.68

TheAzocollisanazodye-impregnatedcollagen,whichisa specific substrate forcollagenase,sinceit allowsobserving hydrolysisbyreleaseofdye-impregnatedsolublepeptidesthat aremeasuredbyspectrophotometry,increasingthemethod sensitivity.

All 21 articles selected in this review have different methodologiestoquantifycollagenaseactivity.Eightofthe articlesusedAzocollasasubstrateformeasurementof col-lagenolytic activity. Other papers used other quantitative methods,suchas:ninhydrin(4items),Folin(1item),synthetic peptide(4items)andOrangeCollagen(1item).

Regarding the specific activity, less than half the articles quantify this parameter. Interestingly Hamdy55

reported a specific activity value well above the others (18,064.7×103U/mg).Another articlethat presenteda good

specific activity was Lima et al.,24 with 319U/mg. In

gen-eral, the specific activity varied significantly (from 0.37 to 18,064.7×103U/mg).Thehighestactivitieswereobservedin

studies involving production optimization. However, effec-tiveness ofproductiontendstobeevaluatedbyvolumetric collagenolyticactivityduetotheindustrialrelevanceofthis parameterLimaetal.58

Enzymecharacterization

Isoeletricpoint

From selectedarticles, onlytwovaluesforisoelectricpoint ofcollagenolyticenzymewerereported.Thevaluesfoundby Minglianetal.50andWangetal.52wererespectively4.9toan

enzymeproducedbyA.oligosporaand6.8toanotherproduced byM.microscaphoides.However,inthesestudiesnosignificant collagenolyticactivitywasreportedwhencomparedtoother activitiesfound,ascanbeseeninTable3.

pHandtemperatureoptimal

TheoptimumpHforenzymeactivityvariedconsiderably(pH 5–10). For the best results regardingcollagenolytic activity,

(6)

18

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 13–24

Table3–Summaryofselectedarticlesrelevantdataaccordingtothecriteriaadoptedonthereview.

Purif. Enzymenature Enzymesequence Substrate Specific

activity

Inhibitors pHand

temper.

Isoelectric point Chromatography Gelatinolytic X BAE(trypsin-like),Elastin,

SyntheticPeptides 0.088 nkat/mg X X X Ultrafiltration,Sephadex G-25column

Gelatinolytic X Casein,Elastin,SyntheticPeptides X EDTA,DFP,TLCK,TPCK X X

Ammoniumsulfate Collagenolytic X Casein,Elastin,Collagen,Gelatin, p-nitrophenolcaprylate

3.6U/mg Ca2+,Na+,EDTA,2,4-DNP pH7,35X

X Collagenolytic X BAPA,TAME X PMSF,TPCK,

IAA2-mercaptoethanol, cysteineHCl,Zn,Ca,Mg, EDTA,Ca,Mg pH8.4,60◦ X (NH4)2SO4Ammonium Sulfate,SephadexG25, BiogelA

Collagenolytic X Azocasein,TypeICollagen,Elastin X EDTA,fenantrolin,PA, PMSF,elastina,NEM

X X

Cationexchange chromatography

Collagenolytic X Casein,Elastin,OrangeCollagen 0.39U/mg X X X

GF,Orange3,Yellow1,HA, TSK

Collagenolytic VFLGREPKPDAFY SyntheticPeptides,Collagen X Fenantrolina,EDTA, X X

X Collagenolytic X SyntheticCollagen,Peptides 70.4U/mg X pH8.2 X

Ammoniumsulfateand cationexchange chromatography

X AEQTDSTWGL Casein,BSA,Skimmedmilk,

Gelatin,Collagen,Denatured Collagen,Nematodecuticle

0.37U/mg PMSF,EDTA,PepstatinA, Leupeptin,Aprotinins

pH10,55◦ X

Ammoniumsulfate,Q SepharoseFF,Sephacryl S-100

Gellatonolytic X Casein,Gelatin,Nematodecuticle, Azocoll

1.12U/mg PMSFeSSI pH6–8,45◦ 4.9

Ultrafiltration,HITrapSPFF, HiPrepphenylFF

Gellatonolytic AITQQQGAPW Casein,BSA,Gelatin,Collagen, Nematodecuticle

48U/mg Leupeptin,Aprotinin,EDTA, PepstatinA,PMSF

pH10,70◦ X

Source15Q,Phenyl Superose

Gellatonolytic AEQLDSTWGL Casein,BSA,Skimmedmilk, Gelatin,HydrolyzedCollagen

X PMSF pH9,60◦ 6.8

AmmoniumSulfate, SephadexG-25e DEAE-cellulose

Collagenolytic X X 92.17U/mg Cetrimide X X

X Gelatinolytic X Keratin,Elastase,SyntheticPeptide X X X X

Ammoniumsulfate, DEAE-cellulose,Sephadex G150

Collagenolytic X Collagen,Casein,elastin 18,064.7x103

U/mg

EDTA,Iodoacetate,Sodium arsenate,arsenito,Cysteine

pH5,40◦ X

X X X Casein,Gelatin,Keratin,Albumin,

Hemoglobin

X PMSF X X

X Collagenolytic X Casein,Elastase.Azocoll X PMSF,EDTA,

Phenanthroline

X X

X Collagenolytic X Azocoll,TypeIcollagen,Gelatin,

Azocasein

319U/mg PMSF,iodoaceticacid,EDTA ePepstatinA

pH9,37◦ X

X Collagenolytic X X X X X X

X Collagenolytic X Casein,Keratin X PMSF,EDTA,IAA pH6.5,55◦ X

(7)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 13–24

19

Table3–(Continued). Purif. Molecular weight (kDa)

Col.activ. Col.activ.method. Culture conditions

Culture medium

Microorg. Authors

Chromatography 23–40 X Syntheticpeptide pH5.6,30◦C,

withoutagitation,15 days

Casaminoacids, Dextrose,CaCl2,YEand Berthelotsolution

E.coronata Hurionetal.(1977)41

Ultrafiltration, SephadexG-25 column X X Syntheticpeptide pH5.6,30◦C, without,15days Casaminoacids, Dextrose,CaCl2,YEand Berthelotsolution

E.coronata Hurionetal.(1979)42

Ammoniumsulfate X X Achillestendon

bovine

7days,30◦C Glucose,salts,

l-cysteine,tryptone, biotin,thiamine

A.aculeatus Olutiolaand Nwaogwugwu (1982)43

X X 8U/mL Azocoll Gyrotoryshaker

(20–24◦C),sobluzes fluorescents

Peptone,yeastextract andglucose(PYG)broth

L.giganteum DeanandDomnas (1983)44

(NH4)2SO4Ammonium

Sulfate,Sephadex G25,BiogelA

X X SDS-PAGE 2weeks,T.A. M9(without

NH4Cl)+collagen

A.flavus Zhuetal.(1990)45

Cationexchange chromatography 32 X Orangecollagene SyntheticPeptide 5days,37◦C, 150rpm Yeastcarbon base+collagentypeI

Aspergillus Tomeeetal.(1994)46 GF,Orange3,Yellow1,

HA,TSK

82 X RatnativetypeI

collagen

25◦C,pH6,7days Sabouraud T.schoenleinii Ibrahim-Granetetal.

(1996)47

X X 70.4U/mL Ninhydrin pH7,25◦C,50h,

withagitation

YPG Z.rouxii OkandHashinaga

(1996)48 Ammoniumsulfateand

cationexchange chromatography 35 1%and2% Azocoll 26◦C,200rpm,7 days LMZ P. chrysogenum Benitoetal.(2002)49 Ammoniumsulfate,Q SepharoseFF, SephacrylS-100 38 0.0134U/mL/m Azocoll 25–18◦C,6 days,150-200rpmpH 6.5

LMZ–withgelatin A.oligospora Minglianetal.

(8)

20

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 13–24 Table3–(Continued). Purif. Molecular weight (kDa)

Col.activ. Col.activ.method. Culture conditions Culture medium Microorg. Authors Ultrafiltration,HITrapSP FF,HiPrepphenylFF 32 14% Nondescribed 26◦C,100rpm,6 days

Glucose,gelatinand salts

L.psalliotae Yangetal.(2005)51 Source15Q,Phenyl Superose 39kDa Collagen15.9%, Denatured Collagen48.1%, Folin 6days,26◦C, 200rpm

Proteaseinducing–with gelatin M. microscaphoides Wangetal.(2006)52 AmmoniumSulfate, SephadexG-25e DEAE-cellulose

72–92kDa 82.95U/mL Ninhydrin 6days,37◦C Gelatin,glucose,yeast

extract,andnative bovinecollagen

A.flavus Mahmoudetal. (2007)53

X X 1Unitof

collagenase

Syntheticpeptide 14days MediumwithtypeI

collagen

M.canis Vianietal.(2007)54 Ammoniumsulfate,

DEAE-cellulose, SephadexG150

66kDa 212.33U/mL Ninhydrin 108h,175rpm,pH

5.5,30◦C

Sabouraud-glucose-collagen

R.solani Hamdy(2008)55

X 25kDa X Zymogram pH5.5,9days,T.A. Czapek C.immitis Lopesetal.(2008)56

X 20–200kDa 1.2U/mL Azocoll 150rpm,35◦C,for7,

14,21e28days

Yeastcarbon

base+collagen+vitamin solution;

neopeptoneBHI+elastin

P.brasiliensis Voltanetal.(2008)57

X X 164U/mL Azocoll 0.75%gelatin,

200rpm,pH8.0and 28◦C

Soybeanflour,glucose andmineralsolution

P. aurantiogri-seum

Limaetal.(2011a)24

X X 231U/mL Azocoll pH7.0,24◦C,24h Soybeanflour,Glucose

andmineralsolution

P. aurantiogri-seum

Limaetal.(2011b)58

X X 0.165OD/mL Azocoll 2.0×105espores,

72h,30◦C,75% humidity

Solidmediumofwheat bran

A.terreus deSiqueiraetal. (2014)59

X X 113.2and

332×10−3U/mL

Azocoll 200rpm,28◦C,4

days

Several Micromycetes Sharkovaetal.

(9)

brazilian journal of microbiology48(2017)13–24

21

Limaetal.58 andMahmoudetal.,53 theoptimumpHofthe

enzymewasnotevaluated.OkandHashinaga48evaluatedthe

optimalpH(8.2)oftheenzymeproducedbyZ.rouxiiyeast. Limaetal.24foundthatpHof9.0wasthebestforcollagenolytic

enzymeproducedbyP.aurantiogriseum.Onlytheenzyme pro-ducedbyR.solanipresentedanacidoptimumpH,5.0.55 As

pH,optimumenzymeactivitytemperaturealsovariedgreatly (from35to70◦C).Onlyoneoftheworkshaveproducedain naturacollagenspecificcollagenaseandevaluatedoptimum temperature,37◦C.24

Inhibitors

Enzymeinhibitorsaremoleculesthatinteractwithenzyme or compounds that chelate metal ions required by the enzymetomaintainitsconformation.22Somecompoundscan inactivateirreversiblyto collagenase,suchasdithiothreitol (DTT)and mercaptoethanol.69,70 Otherinhibitors testedare

phenylmethylsulphonylfluoride(PMSF)forserineproteases, ethylenediaminetetraaceticacid(EDTA)formetalloproteases, andiodoaceticacid(IAA)forcysteineproteases.58

Of the 21 selected articles, most conducted inhibitors tests (14 articles). Six concluded that the enzyme belongs toserine proteases group, four concludedbelongs to met-alloproteinases, two articles to both of the groups and in theremainderarticlesnoconclusionwereobtained.The col-lagenolytic enzymeproduced by R.solani was inhibited by Hg2+, iodoacetate, arsenate, arsenite, cystein and EDTA.55

Limaetal.24reportedtheinhibitionofthecollagenaseenzyme

producedbyP. aurantiogriseum byPMSF, indicating thatthe enzymeisaserineprotease.

Substratespecificity

For certain industrial applications, such as medical and cosmetic areas, the enzyme specificity is one ofthe most importantparameterstoconsider.Fromthe21selected arti-cles, 15 conducted substrate specificity tests using other proteinsources.Noneperformedspecificitytestsusing differ-enttypesofcollagen.Hamdy55testedtheenzymeproducedby R.solanioncollagen,caseinandgelatin,andthebestresults wereobtainedwithcollagen.Limaetal.24reportedenzyme

specificitytestsproducedbyP.aurantiogriseumonAzocoll,type Icollagen,gelatinandazocasein,wherethebestresultswere foundforthefirstsubstrate,Azocoll.

Molecularweight

Theidentifiedsizeofcollagenolyticenzymesfoundinthe dif-ferentpapersrangedfrom25to82kDa.However,themajority ofthevalues(5of11papers)arebetween32and39kDa.None ofthetwostudiesthathavespecificactivityforcollagen suc-ceeded inobtaining the preciseenzymemolecular weight. Amongthearticlesthatpresentedlargestenzymaticactivity, onlyHamdy55determinedtheenzymesizeby

electrophore-sis,reportingavalueof66kDa,with212.33U/mLofenzyme activity.

Molecularanalysis

Only two articles found performed sequencing of gene responsibleforenzymeproduction.Bothstudieswereabout collagenolyticproteases from nematode-trappingfungi.50,52

However,theseenzymeshavelowactivityfornativecollagen, whichpreventsitscharacterizationasatruecollagenase.

Theenzymesequenceoftruecollagenaseproducedby Tri-cophytonschoenleinii(VFLGREPKPDAFY)hadhomologywithrat proteasethimetoligopeptidaseandYscDoligopeptidasefrom yeastSaccharomycescerevisiaeandwasclassifiedassubfamily ofzinc-metalloproteinases.Itwasfoundhomologytovarious fungi,suggestingthattheenzymemaybeinvolvedincellular mechanismforconserved.47

It was conducted a Standard Protein BLAST, available on the NCBI (National Center for Biotechnology Informa-tion) website, waspossible tofind, with100% homology,a widevarietyofsequencesoffungalproteasesfrom the fol-lowing genres:Trichophyton(accessionnumbersOAL69080.1, EGD96548.1,XP003234056.1),Coccidioides(accessionnumbers XP012213938.1, KMU73771.1, XP003065029.1), Microsporum

(accession number XP 003170328.1)and Arthroderma (acces-sion number: XP002849330.1) and Paemoniella (accession number KKY24142.1). In addition, a putative conserved domain of Peptidase Gluzincin family (thermolysin-like proteinase,TLPs)couldbefound,thatincludesSeveral zinc-dependentmetallopeptidases(accessionnumbercl14813),as Fungalysinthathydrolyzesextracellularmatrixproteins,such as elastin, keratin and collagen.71 Family of Gluzincin is

included amongfamiliesdependent zincmetalloproteinase withskills tohydrolyzecollagenandpresent waste critical roleinassistingtheconnectionandopening(unwinding)of collagen.35

Enzymenature

Bacterialproteasescanbedividedintotwogroupsaccording to the ability to hydrolyze native or denatured colla-gen, being considered as gelatinolytic and collagenolytic, respectively.35,60 Withregard tothe fungalcollagenase,this

classificationisnotwellunderstood.However,adoptingthe sameparametersusedbyDuarteetal.,35systematicreview

foundarticles13(61.10%)whodescribedproducedenzymesas truecollagenases,sixarticles(28.57%)withenzymesclassified onlyasgelatinolyticandonlytwoarticles(9.52%)couldnotbe identifythenatureoftheenzyme(Table3).Aproperenzyme characterizationmustincludeconfirmationofthisactivity,so itcanbeidentifiedtherealpotentialofthestudiedenzymes.

Purification

Onceacrudecollagenaseextractisrecovered,itmustbe puri-fiedusingoneofseveralchromatographicmethodsthatcanbe classifiedas:gelfiltration,ionexchange,hydrophobic interac-tionoraffinity.22Furthermore,therearetraditionalenzymatic

extractionmethods,suchasammoniumsulfateprecipitation, ultrafiltration,Tris–HClbufferextraction,withsodium bicar-bonatebuffer,amongothers.22,72

Fromthe21articlesselected,12hadsomekindof purifi-cation, 11 ofthem using chromatographic techniques and onlyoneexclusivebyammoniumsulfate.43Mahmoudetal.53

purifiedtheenzymeproducedbyA.flavususingthe DEAE-Cellulosecolumnand obtainedayieldof39.43%. Hamdy55

could yield60.49%withthe purification usinggel filtration chromatography, but the enzyme activity had reduced the amountto128.4U/mL.

(10)

22

brazilian journal of microbiology48(2017)13–24

Theotherspapersreportinggoodenzymaticactivitiesdid notundergoanypurificationactivities.24,48,58Otherselected

articlesshowednosignificantamountofenzymenorquantify thecollagenaseproduced.

Conclusions

Fromthe21selectpapers,11were publishedinthelast10 years and only four in the last 5 years. According to the scoringmethodologycriteria,onlyfivestudiesshowedscore ≥7. This papersummarized the main findings on produc-tionoffungalcollagenase.Onlytwostudiesreportedenzymes withhighspecificitytocollagenoverotherproteinsubstrates. AmongmicroorganismsstudiedtheP.aurantiogriseumandR. solanistoodoutinvolumetricandspecificcollagenaseactivity, and are non-pathogenic filamentous fungi and extracellu-larenzymeproducers. Inthe culturemediumcomposition the use of collagen-basedcompounds seems notessential forcollagenolyticenzymesproduction.Forenzymes charac-terization,articlesfounddifferedalotregardingparameters analyzed. The articles with better scores did not undergo anappropriatepurification process.Six ofselected articles presentedenzymesthatcouldnotbeconsideredtrue colla-genases.Althoughtwo ofthearticleshave foundthegene responsibleforenzymeproduction,bothenzymesshowedlow activityagainstnativecollagen. Theonlyarticlefoundthat madesequencingofatruecollagenaseshowed100% homol-ogywithseveralmetalloproteinasesfungi.Itwaspossibleto observeagapinliteratureaboutcollagenaseproductionby fungianditscharacterization,whichpreventsfurther devel-opmentintheareaandincreasestheneedforfurtherstudies, particularly forfull characterizationof fungal collagenases withhighspecificity.Itwasalsoobservedthatstudiedfungal collagenasespresentspromisingandcompetitive biotechnol-ogycharacteristicswhencomparedwithbacterialenzymes, mostusedcommercially.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisworkwassupportedbyFundac¸ãodeAmparoàCiência eTecnologia doEstado dePernambuco (FACEPE), Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq) and Coordenac¸ão de Aperfeic¸oamento de Pessoal de Nível Superior(CAPES).

r

e

f

e

r

e

n

c

e

s

1. DiLulloGA,SweeneySM,KörkköJ,Ala-KokkoL,SanAntonio

JD.Mappingtheligand-bindingsitesanddisease-associated

mutationsonthemostabundantproteininthehuman,type

Icollagen.JBiolChem.2002;277(6):4223–4231.

2. MullerWEG.Theoriginofmetazoancomplexity:poriferaas

integratedanimals.IntegrCompBiol.2003;43(1):3–10.

3.ElangoJ,JingyiZ,BinB,ShanqiaoC,YuY,WenhuiW.Type-II

collagenderivedfrommarineenvirons:anextendedreview

foritsmechanismofactioninoraltoleranceandits

biomarkersforthedetectionofarthritisdiseaseinearlier

stage.WorldJPharmPharmSci.2015;4(10):215–238.

4.GelseK,PöschlE,AignerT.Collagens—structure,function,

andbiosynthesis.AdvDrugDelivRev.2003;55(12):

1531–1546.

5.SumanthaA,DeepaP,SandhyaC,SzakacsG,SoccolCR,

PandeyA.Ricebranasasubstrateforproteolyticenzyme

production.BrazArchBiolTechnol.2006;49(5):843–851.

6.GrossJ,NagaiY.Specificdegradationofthecollagen

moleculebytadpolecollagenolyticenzyme.Biochemistry.

1965;54:1197–1204.

7.NagaiY,LapiereCM,GrossJ.Tadpolecollagenase:

preparationandpurification.Biochemistry.1966;5:3123–3130.

8.KristjánssonMM,GudmundsdóttirS,FoxJW,BjamasonJB.

Characterizationofcollagenolyticserineproreinasefromthe

Atlanticcod(Gadusmorhua).CompBiochemPhysiol.

1995;110:707–717.

9.IndraD,RamalingamK,BabuM.Isolation,purificationand

characterizationofcollagenasefromhepatopancreasofthe

landsnailAchatinafulica.CompBiochemPhysiolBBiochemMol

Biol.2005;142(1):1–7.

10.SellosD,VanWormhoudtA.MolecularcloningofacDNA

thatencodesaserine-proteasewithchymotrypsicand

collagenolyticactivitiesinthehepatopancreasoftheshrimp

Penaeusvannamei(Crustacea,Decapoda).FEBSLett.

1992;309:219–224.

11.VanWormhoudtA,LeChevalierP,SellosD.Purification,

biochemicalcharacterizationandN-terminalsequenceofa

serine-proteasewithchymotrypsicandcollagenolytic

activitiesinatropicalshrimp,Penaeusvannamei(Crustacea,

Decapoda).CompBiochemPhysiol.1992;103:675–680.

12.KlimovaOA,BorukhovSI,SolovyevaTO.Theisolationand

propertiesofcollagenolyticproteasesfromcrab

hepatopancreas.BiochemBiophysResCommun.

1990;166:1411–1420.

13.ParkP-J,LeeS-H,ByunH-G,KimS-H,KimS-K.Purification andcharacterizationofacollagenasefromthemackerel, Scomberjaponicus.JBiochemMolBiol.2002;35(6):576–582.

http://www.ncbi.nlm.nih.gov/pubmed/12470591.

14.KimM,HamiltonSE,GuddatLW,OverallCM.Plant

collagenase:uniquecollagenolyticactivityofcysteine

proteasesfromginger.BiochimBiophysActa.

2007;1770(12):1627–1635.

15.SuphatharaprateepW,CheirsilpB,JongjareonrakA.

Productionandpropertiesoftwocollagenasesfrombacteria

andtheirapplicationforcollagenextraction.NBiotechnol.

2011;28(6):649–655.

16.WuQ,LiC,LiC,ChenH,ShuliangL.Purificationand

characterizationofanovelcollagenasefromBacilluspumilus

Col-J.ApplBiochemBiotechnol.2010;160(1):129–139.

17.AsdornnitheeS,AkiyamaK,SasakiT,TakataR.Isolationand

characterizationofacollagenolyticenzymefromBacillus

licheniformisN22.JFermentBioeng.1994;78(4):283–287.

18.BaehakiA,SuhartonoMT,SyahD,SitanggangAB,Setyahadi

S,MeinhardtF.Purificationandcharacterizationof

collagenasefromBacilluslicheniformisF11.4.AfrJMicrobiol

Res.2012;6(10):2373–2379.

19.BaehakiA,Sukamo,SyahD,SetyahadiS,SuhartonoMT.

Productionandcharacterizationofcollagenolyticprotease

fromBacilluslicheniformisF11.4originatedfromIndonesia.

AsianJChem.2014;26:2861–2864.

20.RaoMB,TanksaleAM,GhatgeMS,DeshpandeVV.Molecular

andbiotechnologicalaspectsofmicrobialproteases.

MicrobiolMolBiolRev.1998;62(3):597–635,doi:

papers2://publication/uuid/E58ABF6D-8C97-4209-810D-A452EE30B2CD.

(11)

brazilian journal of microbiology48(2017)13–24

23

21.PandeyA,WebbC,SoccolCR,LarrocheC.EnzymeTechnology.

1sted.Springer;2006.

22.DaboorSM,BudgeSM,GhalyAE,BrooksS,DaveD.Extraction

andpurificationofcollagenaseenzymes:acriticalreview.

AmJBiochemBiotechnol.2010;6(4):239–263.

23.YakovlevaMB,KhoangTL,NikitinaZK.Collagenolytic

activityinseveralspeciesofdeuteromycetesundervarious

storageconditions.ApplBiochemMicrobiol.2006;42(4):

431–434.

24.LimaCA,FilhoJLL,NetoBB,ConvertiA,CarneirodaCunha

MG,PortoALF.Productionandcharacterizationofa

collagenolyticserineproteinasebyPenicilliumaurantiogriseum

URM4622:afactorialstudy.BiotechnolBioprocessEng.

2011;16(3):549–560.

25.SandhyaC,SumanthaA,SzakacsG,PandeyA.Comparative

evaluationofneuralproteaseproductionbyAspergillus

oryzaeinsubmergedandsolidstatefermentation.Process Biochem.2005;40:2689–2694.

26.SharkovaTS,KurakovAV,OsmolovskiyAA,etal.Screening

ofproducersofproteinaseswithfibrinolyticand

collagenolyticactivitiesamongmicromycetes.Microbiology.

2015;84(3):359–364.

27.LimaCA,RodriguesPMB,PortoTS,etal.Productionofa

collagenasefromCandidaalbicansURM3622.BiochemEngJ.

2009;43(3):315–320.

28.GoshevI,GousterovaA,Vasileva-TonkovaE,NedkovP.

Characterizationoftheenzymecomplexesproducedbytwo

newlyisolatedthermophylicactinomycetestrainsduring

growthoncollagen-richmaterials.ProcessBiochem.

2005;40:1627–1631.

29.KanthSV,VenbaR,MadhanB,ChandrababuNK,SadullaS.

Studiesontheinfluenceofbacterialcollagenaseinleather

dyeing.DyePigment.2008;76:338–347.

30.AgrenMS,TaplinCJ,WoessnerJFJr,EagisteimWH,MertzPM.

Collagenaseinwoundhealing:effectofwoundageandtype.

JInvestDermatol.1992;99:709–714.

31.PüllenR,PoppR,VolkersP,FüsgenI.Prospectiverandomized

double-blindstudyofthewound-debridingeffectsof

collagenaseandfibrinolysin/deoxyribonucleaseinpressure

ulcers.AgeAgeing.2002;31:126–130.

32.ShmoilovAM,RudenskayaGN,IsevVA,BaydakovAV,

ZhantievRD.Acomparativestudyofcollagenasecomplex

andnewhomogeneouscollagenasepreparationsforscar

treatment.JDrugDelivSciTechnol.2006;16:285–292.

33.LimaCA,JúniorACVF,FilhoJLL,etal.Two-phasepartitioning

andpartialcharacterizationofacollagenasefromPenicillium

aurantiogriseumURM4622:applicationtocollagenhydrolysis.

BiochemEngJ.2013;75:64–71.

34.LimaC,CamposJF,Lima-FilhoJ,Carneiro-cunhaMG,Porto

ALF.Antimicrobialandradicalscavengingpropertiesof

bovinecollagenhydrolysatesproducedbyPenicillium

aurantiogriseumURM4622collagenase.JFoodSciTechnol.

2014;52(7):4459–4466.

35.DuarteAS,CorreiaA,EstevesAC.Bacterialcollagenases–a

review.CritRevMicrobiol.2014;7828(January):1–21.

36.HarringtonDJ.Bacterialcollagenasesandcollage-degrading

enzymesandtheirpotentialroleinhumandisease.Infect

Immun.1996;64(6):1885–1891.

37.AbidiF,AissaouiN,GaudinJC,ChobertJM,HaertléT,

MarzoukiMN.Analysisandmolecularcharacterizationof

botrytiscinereaproteaseProt-2.Useinbioactivepeptides

production.ApplBiochemBiotechnol.2013.

38.GraminhoER,daSilvaRR,deFreitasCabralTP,etal.

Purification,characterization,andspecificitydetermination

ofanewserineproteasesecretedbyPenicilliumwaksmanii.

ApplBiochemBiotechnol.2013;169:201–214.

39.WatanabeK.Collagenolyticproteasesfrombacteria.Appl

MicrobiolBiotechnol.2004;63(5):520–526.

40.GreenhalghT.Howtoreadapaper.Papersthatsummarise

otherpapers(systematicreviewsandmeta-analyses).BMJ.

1997;315(7109):668–671.

41.HurionN,FromentinH,KeilB.Proteolyticenzymesof

Entomophthoracoronata.Characterizationofacollagenase.

CompBiochemPhysiol.1977;56:259–264.

42.HurionN,FromentinH,KeilB.Specificityofthe

collagenolyticenzymefromthefungusEntomophthora

coronata:comparisonwiththebacterialcollagenasefrom

Achromobacteriophagus.ArchBiochemBiophys.

1979;192(2):438–445.

43.OlutiolaPO,NwaogwugwuRI.Growth,sporulationand

productionofmaltaseandproteolyticenzymesinAspergillus

aculeatus.TransBrMycolSoc.1982;78(1):105–113.

44.DeanDD,DomnasAJ.Theextracellularproteolyticenzymes

ofthemosquito-parasitizingfungusLagenidiumgiganteum.

ExpMycol.1983;7(1):31–39.

45.ZhuWS,WojdylaK,DonlonK,ThomasPA,EberleHI.

ExtracellularproteasesofAspergillusflavus.Fungalkeratitis,

proteases,andpathogenesis.DiagnMicrobiolInfectDis.

1990;13:491–497.

46.TomeeJF,KauffmanHF,KlimpAH,deMonchyJG,KöeterGH,

DuboisaE.Immunologicsignificanceofacollagen-derived

culturefiltratecontainingproteolyticactivityin

Aspergillus-relateddiseases.JAllergyClinImmunol.

1994;93(4):768–778.

47.Ibrahim-GranetO,HernandezFH,ChevrierG,DupontB.

ExpressionofPZ-peptidasesbyculturesofseveral

pathogenicfungi.Purificationandcharacterizationofa

collagenasefromTrichophytonschoenleinii.JMedVetMycol.

1996;34(2):83–90.

48.OkT,HashinagaF.Detectionandproductionofextracellular

collagenolyticenzymefromZygosaccharomycesrouxii.JGen

ApplMicrobiol.1996;42:517–523.

49.BenitoMJ,RodríguezM,Nú ˜nezF,Miguela,BermúdezME,

CórdobaJJ.Purificationandcharacterizationofanextracellular

proteasefromPenicilliumchrysogenumPg222activeagainstmeat proteinspurificationandcharacterizationofanextracellular proteasefromPenicilliumchrysogenumPg222activeagainstmeat proteins.2002;68(7):5–10.

50.MinglianZ,MingheM,KeqinZ.Characterizationofaneutral

serineproteaseanditsfull-lengthcDNAfromthe

nematode-trappingfungusArthrobotrysoligospora.Mycologia.

2004;96(1):16–22.

51.YangJ,HuangX,TianB,WangM,NiuQ,ZhangK.Isolation

andcharacterizationofaserineproteasefromthe

nematophagousfungus.Lecanicilliumpsalliotae,displaying

nematicidalactivity.BiotechnolLett.2005;27(15):

1123–1128.

52.WangM,YangJ,ZhangK-Q.Characterizationofan

extracellularproteaseanditscDNAfromthe

nematode-trappingfungusMonacrosporium

microscaphoides.CanJMicrobiol.2006;52(2):130–139.

53.MahmoudY-G,AbuEl-SouodSM,El-ShourbagySM,El-Badry

ASM.Characterisationandinhibitioneffectofcetrimideon

collagenaseproducedbyAspergillusflavus,isolatedfrom

mycoticulcers.AnnMicrobiol.2007;57(1):109–113.

54.VianiFC,CazaresVianiPR,GutierrezRiveraIN,daSilvaÉG,

PaulaCR,GambaleW.Actividadproteolíticaextracelulary

análisismoleculardecepasdeMicrosporumcanisaisladas

degatosconysinsintomatología.RevIberoamMicol.

2007;24(1):19–23.

55.HamdyHS.ExtracellularcollagenasefromRhizoctoniasolani:

production,purificationandcharacterization.IndianJ

Biotechnol.2008;7(July):333–340.

56.LopesBGB,SantosLSD,BezerraCDCF,etal.A25-kDaserine

peptidasewithkeratinolyticactivitysecretedbyCoccidioides

(12)

24

brazilian journal of microbiology48(2017)13–24

57.VoltanAR,DonofrioF,MirandaET,MoraesRA,

Mendes-GianniniMJS.Inductionandsecretionof

elastinolyticandproteolyticactivityinculturesof

Paracoccidioidesbrasiliensis.RevCiênciasFarmBásicaeApl.

2008;29(1):97–106.

58.LimaCA,VianaMarquesDA,NetoBB,LimaFilhoJL,

Carneiro-da-CunhaMG,PortoALF.Fermentationmediumfor

collagenaseproductionbyPenicilliumaurantiogriseum

URM4622.BiotechnolProg.2011;27(5):1470–1477.

59.deSiqueiraACR,daRosaNG,MottaCMS,CabralH.Peptidase

withkeratinolyticactivitysecretedbyAspergillusterreus

duringsolid-statefermentation.BrazArchBiolTechnol.

2014;57(4):514–522.

60.MandlI,MacLennanJD,HowesEL,DeBellisRH,SohlerA.

Isolationandcharacterizationofproteinaseandcollagenase

fromC.histolyticum.JClinInvest.1953;32(13):1323–1329.

61.HaddarA,AgrebiR,BougatefA,HmidetN,Sellami-Kamoun

A,NasriM.Twodetergentstablealkalineserine-proteases

fromBacillusmojavensisA21:Purification,characterization

andpotentialapplicationasalaundrydetergentadditive.

BioresourTechnol.2009;100(13):3366–3373.

62.ReddyLVA,WeeYJ,YunJS,RyuHW.Optimizationofalkaline

proteaseproductionbybatchcultureofBacillussp.RKY3

throughPlackett–Burmanandresponsesurface

methodologicalapproaches.BioresourTechnol.

2008;99:2242–2249.

63.AnandanD,MarmerWN,BasheerSM,ElyasKK.Isolation,

characterizationandoptimizationofcultureparametersfor

productionofanalkalineproteaseisolatedfromAspergillus

tamarii.JIndMicrobiolBiotechnol.2007;34:339–347.

64.ThysRCS,GuzzonSO,Cladera-OliveiraF,BrandelliA.

OptimizationofproteaseproductionbyMicrobacteriumsp.in

feathermealusingresponsesurfacemethodology.Process

Biochem.2006;41:67–73.

65.ChellapanS,JasminC,BasheerSM,ElyasK,BhatSG,

ChandrasekaranM.Production,purificationandpartial

characterizationofanovelproteasefrommarine

EngyodontiumalbumBTMFS10undersolidstation

fermentation.ProcessBiochem.2006;41:956–961.

66.Komsa-PenkovaRS,RashapR,YomtovaVM.Advantagesof

orange-labelledcollagenandgelatineassubstratesforrapid

collagenaseactivitymeasurement.JBiochemBiophysMethods.

1997;34(4):237–249.

67.LimDV,JacksonRJ,Pull-VonGruenigenCM.Purificationand

assayofbacterialcollagenases.JMicrobiolMethods.

1993;18:241–253.

68.ChaviraRJ,BurnettTJ,HagemanJH.Assayingproteinases

withazocoll.AnalBiochem.1984;136:446–450.

69.HookCW,BrownSI,IwaniW,NakanishiI.Characterization

andinhibitionofcornealcollagenase.OphthalmolVisSci.

1971;10:496–503.

70.WoessnerJF.Matrixmetalloproteinasesandtheirinhibitors

inconnectivetissueremodeling.FASEB.1991;5:2145–2154.

71.NCBI.ConservedProteinDomainFamily.http://www. ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln =10&seltype=2&uid=301352&query=VFLGREPKPDAFY&aln =1,1,622,12http://www.ncbi.nlm.nih.gov/Structure/cdd/ cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=301352&

query=VFLGREPKPDAFY&aln=1,1,622,12[Accessed28.06.16].

72.RossoBU,LimaCDA,PortoTS,etal.Partitioningand

extractionofcollagenasefromPenicilliumaurantiogriseumin

poly(ethyleneglycol)/phosphateaqueoustwo-phasesystem.

Referências

Documentos relacionados

FIGURE D.1: Light curves obtained with all the combinations of methods, using a shape mask and a background grid of 600.. D.1.2

Por fim, identificou-se que o PROADI-SUS é um programa inovador, que realiza ações que o SUS não disponibiliza, podendo beneficiar a população, no entanto necessita de

Por lo tanto, los fines propuestos para el desarrollo de una educación integral (Teleología) presupone el conocimiento correcto de lo que es el hombre (Ontología), lo

several papers (pgs. 473, 502, 494, 483, and 623) on the process of plant quarantine showed that: i) fungi, viruses, and mites are the most intercepted in the country and that

Nesse sentido, orientadas pelos postulados dos psicólogos sociais Lambert e Lambert (1968), avaliamos, pautadas na aplicação de um questionário, como que professores de

Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced

The purpose of this work was to characterize the enzyme penicillin G acylase (PGA) produced by Bacillus megaterium. Purification of the enzyme by ultra/diafiltration did not allow

Antunes (2013) tece algumas classificações de informalidade vivenciados pelos trabalhadores no Brasil. Antes de elencar as denominações é importante definir o