• Nenhum resultado encontrado

Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness

N/A
N/A
Protected

Academic year: 2021

Share "Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness"

Copied!
13
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Ecological

Indicators

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l i n d

Original

Articles

Defining

quantitative

stream

disturbance

gradients

and

the

additive

role

of

habitat

variation

to

explain

macroinvertebrate

taxa

richness

Raphael

Ligeiro

a,∗

,

Robert

M.

Hughes

b

,

Philip

R.

Kaufmann

c

,

Diego

R.

Macedo

a,d

,

Kele

R.

Firmiano

a

,

Wander

R.

Ferreira

a

,

Déborah

Oliveira

a

,

Adriano

S.

Melo

e

,

Marcos

Callisto

a

aLaboratóriodeEcologiadeBentos,DepartamentodeBiologiaGeral,InstitutodeCiênciasBiológicas,UniversidadeFederaldeMinasGerais,Av.AntônioCarlos6627,CP486,CEP

30161-970BeloHorizonte,MinasGerais,Brazil

bDepartmentofFisheries&Wildlife,OregonStateUniversityandAmnisOpesInstitute,NashHall,97331-4501Corvallis,OR,USA

cU.S.EnvironmentalProtectionAgency,OfficeofResearch&Development,NationalHealth&EnvironmentalEffectsLab.,WesternEcologyDivision,200SW35Street,97333Corvallis,

OR,USA

dInstitutoBrasileirodeGeografiaeEstatística,RuaOliveira523,CEP30310-150BeloHorizonte,MinasGerais,Brazil

eDepartamentodeEcologia,InstitutodeCiênciasBiológicas,UniversidadeFederaldeGoiás,CampusII,SamambaiaCP131,CEP74001-970Goiânia,Goiás,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14June2012

Receivedinrevisedform6September2012 Accepted9September2012

Keywords:

Referenceconditionapproach Localdisturbances Catchmentdisturbances Disturbanceindices Streamhabitats EPTassemblages

a

b

s

t

r

a

c

t

Moststudiesdealingwiththeuseofecologicalindicatorsandotherappliedecologicalresearchrelyon somedefinitionorconceptofwhatconstitutesleast-,intermediate-andmost-disturbedcondition. Cur-rently,mostrigorousmethodologiesdesignedtodefinethoseconditionsaresuitedtolargespatialextents (nations,ecoregions)andmanysites(hundredstothousands).Theobjectiveofthisstudywastodescribe amethodologytoquantitativelydefineadisturbancegradientfor40sitesineachoftwosmall south-easternBrazilriverbasins.Theassessmentofanthropogenicdisturbanceexperiencedbyeachsitewas basedsolelyonmeasurementsstrictlyrelatedtotheintensityandextentofanthropogenicpressures.We calculatedtwoindices:oneconcernedsite-scalepressuresandtheothercatchment-scalepressures.We combinedthosetwoindicesintoasingleintegrateddisturbanceindex(IDI)becausedisturbances oper-atingatbothscalesaffectstreambiota.Thelocal-andcatchment-scaledisturbanceindiceswereweakly correlatedinthetwobasins(r=0.21and0.35)andbothsignificantly(p<0.05)reducedsiteEPT(insect ordersEphemeroptera,Plecoptera,Trichoptera)richness.TheIDIalsoperformedwellinexplainingEPT richnessinthebasinthatpresentedthestrongerdisturbancegradient(R2=0.39,p<0.001).Natural habi-tatvariabilitywasassessedasasecondsourceofvariationinEPTrichness.Streamsizeandmicrohabitats werethekeyhabitatcharacteristicsnotrelatedtodisturbancesthatenhancedtheexplanationofEPT richnessoverthatattributedtotheIDI.InbothbasinstheIDIplushabitatmetricstogetherexplained around50%ofEPTrichnessvariation.Inthebasinwiththeweakerdisturbancegradient,naturalhabitat explainedmorevariationinEPTrichnessthandidtheIDI,aresultthathasimplicationsforbiomonitoring studies.Weconcludethatquantitativelydefineddisturbancegradientsofferareliableandcomprehensive characterizationofanthropogenicpressurethatintegratesdatafromdifferentspatialscales.

©2012ElsevierLtd.Allrightsreserved.

1. Introduction

Thedevelopmentandmaintenanceofhumansocietiesrelyon

the conservationof freshwater resources and of theecological

Abbreviations:LDI,localdisturbanceindex;CDI,catchmentdisturbanceindex; IDI,integrateddisturbanceindex.

∗ Correspondingauthor.Tel.:+553134094597;fax:+553134092569. E-mailaddresses:ligeirobio@gmail.com(R.Ligeiro),

Hughes.Bob@epamail.epa.gov(R.M.Hughes),Kaufmann.Phil@epamail.epa.gov (P.R.Kaufmann),rodriguesmacedo@gmail.com(D.R.Macedo),

kelerocha@gmail.com(K.R.Firmiano),ferreirawr@gmail.com(W.R.Ferreira), deborah.ufmg@gmail.com(D.Oliveira),asm.adrimelo@gmail.com(A.S.Melo), mcallisto13@gmail.com(M.Callisto).

servicesthat streams and riversprovide (Karr,1999).

Monitor-ingthe“ecosystem health”ofstreams(sensuNorrisandThoms,

1999)isafundamentalstepforconsciousandeffective

manage-mentofcatchments(Boulton,1999).Currently,biomonitoringis

consideredoneofthemostefficientwaystoassessstream

con-dition(Marchantetal.,2006).Macroinvertebrateassemblagesare

responsivetoenvironmentalconditionandthusintegrate

phys-ical,chemicalandbiologicalaspectsofecosystems.Accordingly,

theyareconsideredgoodbiologicalindicatorsofstream

ecolog-icalcondition(KarrandChu, 1999;Bonada etal.,2006;Hughes

andPeck,2008)andareextensivelyusedinmultimetricindices

(MMIs)forsuchpurposes(Reynoldsonetal.,1997;Barbouretal.,

1999;Klemmetal.,2003;Heringetal.,2006;Whittieretal.,2007a).

TheEPTassemblages(insectordersEphemeroptera,Plecopteraand

1470-160X/$–seefrontmatter©2012ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.ecolind.2012.09.004

(2)

Trichoptera),particularly,haveproveneffectiveecological

indica-torsofhumandisturbances(RosenbergandResh,1993;Stoddard

etal.,2008).

Agoalofmanybiomonitoringapproachesistoreporthowtest

sitesdeviatefromthe“undisturbed”(natural)conditioninterms

ofthestructureand/orcompositionoftheassemblagesthey

sup-port.Thisistypicallyaccomplishedbydesignating“referencesites”,

thatis,sites minimallyaffectedby humanactivitiesand whose

biological,physicalandchemicalfeaturesserveasreference

con-ditionfornaturallevelsofpatternsandprocesses(Hughesetal.,

1986;Stoddardetal.,2006;Hawkinsetal.,2010).Asetof

refer-encesitesshouldbespecificforaparticulartypology(e.g.,altitude,

streamsize,andpredominantsubstrate)andgeographicdomain

(biomeandecoregion)becausetheseareimportantnaturaldrivers

ofstreamcharacteristics,includingtheirbiota(Hughesetal.,1986,

1990;Gerritsenetal.,2000;Waiteetal.,2000;Sánchez-Montoya

etal.,2007).Thisframeworkhasbeenestablishedasthe“reference

conditionapproach”(RCA)(Baileyetal.,2004).Inmostcasesitisnot

practicaltoseeksitesthathavetrulyundisturbed/minimally

dis-turbedconditionsbecause(1)humanmodificationsarewidespread

inmostlandscapesworldwide, and (2) manyplaceshave been

modifiedforhundreds(oreventhousands)ofyears(Stoddardetal.,

2006;Whittieretal.,2007b; Herlihyet al.,2008).Instead,sites

inleast-disturbedcondition,i.e.,thebestsetofsitesavailablein

acontinuousgradientofdisturbance,aretypicallyusedto

repre-sent“reference”conditions(Reynoldsonetal.,1997;Stoddardetal.,

2006;YatesandBailey,2010).

Itisexplicitlystatedin theRCA thatthereferencecondition

shouldbechosenbasedstrictlyoncriteriaconcerningtheminimal

exposureofthesitestohumandisturbances(Baileyetal.,2004).

Althoughhumandisturbancesaffectstreambiologicalandhabitat

attributes(Maddock,1999),referencesiteselectionshouldnotbe

basedoneitherbecauseitisdifficulttodistinguishbetweeneffects

fromhumandisturbanceandnaturalvariation(DovciakandPerry,

2002;Morenoetal.,2006).Infact,akeyaspectoftheRCAisthat

naturalvariabilityisintrinsicinecosystemsandthatthisvariability

mustbeaccountedforbyusingmodelstounderstandtheeffects

ofhumandisturbanceonassemblagestructureoffish(Oberdorff

etal.,2002;Tejerina-Garroetal.,2006;Pontetal.,2006,2009)and

macroinvertebrates(Clarkeetal.,2003;Baileyetal.,2004;Hawkins

etal.,2010;Moyaetal.,2011).

A multitude of stressors have been identified and used as

criteriafor determining referencesites.As geographic

informa-tionsystem(GIS) technologyhasbecomeoperationallysimpler

andwidely available(Kinget al.,2005), disturbances identified

at the catchment scale have been used for defining potential

reference areas (Collier et al., 2007; Wang et al., 2008).

How-ever,humanmodificationsactingatboth large(catchment)and

local(streamchannelandriparianzone)scalesshouldbe

inves-tigated becausepressures or stressors operating at both scales

canimpairthestreambiota (Bryceetal., 1999;Whittieret al.,

2007b;Hughesetal.,2010).

Increasingly,methodsfordefiningandselectingreferencesites

areappliedtolargespatialextents(wholeecoregions,states,and

countries),commonlyinvolvinghundredsorthousandsofsites.The

EnvironmentalProtectionAgencyoftheUnitedStatesofAmerica

(US-EPA),initsnationalWadeableStreamAssessment(WSA)

pro-gram,screenedaseriesofphysicalhabitatandwaterqualitydata,

settingthresholdsfortheselectionofleast-disturbedsitesin

differ-entecoregions(Herlihyetal.,2008).Thesame“filtering”approach

wasemployedinregionalassessmentsmadebythesameagency

(Klemmetal.,2003;Whittieretal.,2007b).Inasimilarapproach,

alargesetofcriteriaofhumandisturbancesoperatingatbothlocal

andregionalspatialscaleswereusedtoselectleast-and

most-disturbedsitesonEuropeanstreams(Nijboeretal.,2004;Pontetal.,

2006;Sánchez-Montoyaetal.,2009).

However,methodologiesemployedatlargespatialextentsmay

beinappropriateforstudiesdealingwithmorerestrictedspatial

extentsandfarfewersites.First,formostecosystemslocatedin

lessstudiedregionsoftheworld,suchasintropicaldeveloping

countries,thereisnoreliableinformationaboutthephysicaland

chemicalthresholdsthatindicatesubstantialdisturbance(Boyero

etal.,2009).Second,theapplicationofrigidfilterstoasmallnumber

ofsitesislikelytoselecttoofewsites,ornoneatall.EveninEurope,

whenhundredsofsitesfrom4countrieswereanalyzed,formany

streamtypesitwasnotpossibletofindanysinglesitethatfulfilled

allthecriteriaproposedforEuropeanreferenceconditions(Nijboer

etal.,2004).Nevertheless,manymonitoringinitiativesareapplied

atmorerestrictedgeographicareas(smalltomedium-sizedbasins

orsub-basins)andfarfewersites(dozensatbest)(Baptistaetal.,

2007;Morenoetal.,2009;Oliveiraetal.,2011;Surianoetal.,2011).

Toourknowledge,nosystematicmethodologyhasbeenproposed

toclearlydefinedisturbanceconditionsinthosesituations.

Whenworkingwithfewsites,insteadoftryingtoallocatesites

into‘boxed’categoriesfromtheonsetoftheproject(e.g.,least-,

intermediate-,andmost-disturbedsites),theuseofacontinuous

disturbancegradientcanbemoreadvantageousforclassifyingthe

sitesincludedinthestudy,enablingthedefinitionaposterioriof

theleast-disturbedsitesandthemost-disturbedsites.This

con-trastisnecessaryforthedevelopmentofMMIs(e.g.,Stoddardetal.,

2008;Oliveiraetal.,2011).Forinstance,predictivemodelsarefirst

concernedwithdescribingassemblagecompositioninreference

conditions(Reynoldsonetal.,1995),i.e.,the“goodtail”ofa

disturb-ancegradient.Inadditiontobiomonitoringstudies,anyapplied

ecologicalresearchconcernedwithchangesinpatternsand

pro-cessesassociatedwiththeintensityofhumanmodificationswill

benefitfromtheuseofadisturbancegradient.

Inthisstudywepresentamethodologytoquantitativelydefine

disturbancegradientsintwobasinssampledwitharelativelysmall

numberofsites(40each),eachbasinincludingarangeofsitesfrom

relativelyundisturbedtogreatlyaltered.Tothisend,weworked

withtwohypotheses.(1)Disturbancestakingplaceatbothlocal

(streamsites)andcatchmentspatialscalesreducetheEPT

assem-blagerichnessofthesites.(2)TheproportionofvariationinEPT

richnessassociatedwithnaturalvariabilityamongsitehabitatswill

begreaterinthebasinwiththeweakeranthropogenicdisturbance

gradient.

2. Methods

2.1. Studyarea

WesampledstreamsintwobasinsoftheCerradobiomeinthe

stateofMinasGerais,southeasternBrazil:UpperAraguaribasin(in

theParanáriverbasin)andtheUpperSãoFranciscobasin(inthe

SãoFranciscoriverbasin)(Fig.1).Bothstudyareaswere

demar-catedupstreamofthefirstbigreservoirofeachbasin(NovaPonte

andTrêsMariasreservoirs,respectively).TheCerradoisthe

second-mostextensivebiomeoftheNeotropics(Wantzen,2003),originally

covering20%ofBrazilianterritory,andoneoftheterrestrial

biodi-versity“hotspots”oftheplanet(Myersetal.,2000).Itisalsoone

ofthemostthreatenedduetoever-expandingpastureand

agricul-turalactivities(Wantzenetal.,2006).TheCerradoclimatehastwo

welldefinedannualseasons:adryseasonfromOctobertoMarch,

andawetseasonfromApriltoSeptember,with1200–1800mm

ofprecipitationperyear.Thevegetationistypicallysavannah-like,

withdenserforestformationsalongwatercoursesandwetareas.

Mostpeoplelivinginthestudyareasdwellonfarmsandinsmall

towns(upto20,000inhabitants),althoughafewsmallcities(up

to80,000inhabitants)arepresent.TheUpperAraguarihasawell

(3)

Fig.1.Locationofthebasinsandstreamsitessampled.(A)UpperAraguaribasinand(B)UpperSãoFranciscobasin.

soy,coffee,corn,andsugarcane culture.Irrigatedagricultureis

lesscommonintheUpperSãoFrancisco,wherepastureandsmall

familyfarmspredominate.

2.2. Siteselection

Forty“wadeable”streamsites(thatcanbetraversedbya

per-sonwading)rangingfrom1stto3rdorder(sensuStrahler,1957)

wereselectedon1:100,000scalemapsineachbasinandsampled

duringthedryseason.Thesiteselectionwasperformedthrougha

probability-baseddesignasdescribedinOlsenandPeck(2008),the

sameprocedureusedbytheUS-EPAintheEnvironmental

Moni-toringandAssessmentProgramWesternPilotStudy(EMAP-West,

Stoddardetal.,2005)anditsnationalWadeableStream

Assess-ment(WSA,Paulsenetal.,2008).Inthisapproach,amastersample

frame(MS)isfirstestablishedusingadigitizeddrainagesystem

map(1:100,000scale),andthenthesamplesitesareselectedviaa

hierarchical,spatiallyweightedcriteria(StevensandOlsen,2003).

Thisprocedureassuresabalancedselectionofsitesacrosstherange

ofstreamordersandgeographiclocation.TheUpperAraguarisites

weresampledinSeptember2009andtheUpperSãoFranciscosites

weresampledinAugust/September2010.

2.3. Sitehabitatmeasurements

ThefieldphysicalhabitatwasmeasuredasdescribedinPeck

etal.(2006).Thesitelengthsweresetat40timestheirmeanwetted

width,andaminimumof150m.Giventheirnarrowwidths,most

siteswere150mlong.Ineachsite,11equidistantcross-sectional

transectsweremarked,defining10sectionsofthesamelength.

In each transect and along thesections, a largeset of

mea-surementswererecorded,includingsitemorphology(e.g.,slope,

sinuosity,wettedandbankfullwidth,depth,andincisionheight),

habitatcharacteristics(e.g.,substratesizeandembeddedness,flow

type,and largewood),riparianstructure(e.g.,mid-channeland

marginshading,treeand herbaceouscoverdensity)andhuman

disturbanceinthechannelandriparianzone(e.g.,presenceof

pas-ture,crops,pipes,andtrash).Habitatmetricswerethencalculated

followingKaufmannetal.(1999).

Thefollowingphysicalandchemicalcharacteristicsofthewater

columnwerealsomeasuredinthefieldforeachsite:pH,

electri-calconductivity,andtotaldissolvedsolids(TDS).Watersamples

were collectedfor furtheranalysis in the laboratory, including

dissolved oxygen, turbidity, total alkalinity, total nitrogen, and

totalphosphorus.ThoseanalyseswereconductedfollowingAPHA

(1998).

Thesitenutrientconcentrationsofbothbasinswereextremely

low and not indicative of anthropogenic sources. In the Upper

Araguari,thevalues were0.06±0.01mg/L(mean±SD) fortotal

nitrogenand0.03±0.01mg/Lfortotalphosphorus.The

concen-trationsintheUpperSãoFranciscowere0.08±0.06mg/Lfortotal

nitrogenand0.02±0.01mg/Lfortotalphosphorus.

2.4. Macroinvertebratesamplingandlaboratoryprocessing

ThebiologicalsamplingalsofollowedtheprotocolofPecketal.

(2006)and Hughes and Peck (2008).Elevensample units were

takenperstreamsite,onepertransect,generatingonecomposite

sampleforeachsite.Eachsampleunitwascollectedthroughuseof

aD-net(30cmmouthwidth,500␮mmesh),effectivelysampling

1m2ofstreambottomareasampledpersite.Thesampleunitswere

obtainedbyfollowingasystematiczigzagpatternalongthesites

toavoidbiasinhabitatselection.Immediatelyaftercollection,the

compositesampleswereplacedinindividualplasticbucketsand

preservedwith10%formalin.

Inthelaboratory,themacroinvertebratesweresortedbyeye,

and theEPTindividualswereidentified togenusundera100×

(4)

Fig.2. Conceptualmodelofthedisturbanceplanewhoseaxesrepresenttheamount ofdisturbanceobservedatthelocalscale(in-streamandriparianzone)andatthe catchmentscale.Theidealleast-disturbedsiteswouldbethoselocatedclosestto theoriginoftheaxes,withfewdisturbancesobservedatbothscales.Theideal most-disturbedsiteswouldbethoselocatedintheoppositecorneroftheplane.Asingle measurementofdisturbancecanbetheEuclideandistance(calculatedthroughthe Pythagoreantheorem)betweenthelocationofthesiteintheplaneandtheorigin oftheaxes(seetheexampleinthefigurewithsite“A”).Forthispurposetheaxes valuesshouldbestandardizedatthesamescale.

keys(Pérez,1988;FernándezandDomínguez,2001;Mugnaietal., 2010).

2.5. Dataanalyses

2.5.1. Calculationofthedisturbancegradient

Todescribethetotalexposureofthesitestohumanpressures,

wedevelopedtwoseparateindices:onereflectingdisturbancesat

thesitescaleandonereflectingdisturbancesatthecatchmentscale,

bothhavingtheirorigins(0values)representingtheabsenceof

evi-denceofdisturbances.Ineachindex,thehigherthesitevalue,the

greatertheintensityofhumanmodificationsobservedforthatsite,

i.e.,thegreaterthedeviationfromthepristineconditionatthat

spa-tialscale.Thus,wepositionedeachsiteina‘disturbancebi-plane’

constructedwiththetwodisturbanceindicesasaxes.The‘ideal’

referencesitesshouldbethoselackingevidenceofhuman

mod-ificationsatboth near/in-streamand catchmentscales(concept

of minimally disturbed condition; Stoddard et al., 2006).

Typi-cally,however,referencesitesarethosewiththeleastdisturbances

amongthesitesavailable(conceptofleast-disturbedcondition;

Stoddardetal.,2006).Throughthisconceptualmodel,the

least-andmost-disturbedsitesinapoolofsitescanbevisualized

accord-ingtotheirpositionsinthedisturbanceplane,theleast-disturbed

sitesbeingclosertotheorigin(lowerleftcorneroftheplane)and

themost-disturbedsitesbeingfarthestfromtheorigin(upperright

corneroftheplane)(Fig.2).

Forquantifyingthelocaldisturbanceindex(LDI)weusedthe

metricW1hall,calculatedasdescribedinKaufmannetal.(1999),

ameasurecommonlyusedintheUS-EPAstreamassessments.This

metricsummarizestheamountofevidenceobservedin-channel

andintheriparianzonefor11typesofdisturbances(buildings,

channelrevetment,pavement,roads,pipes,trashandlandfill,parks

andlawns,rowcropagriculture,pasture,loggingandmining)along

theeleventransectsdemarkedatthestreamsite.Thevaluesare

weightedaccordingtotheproximityoftheobservationfromthe

streamchannel(Kaufmannetal.,1999).

Weassessedwatershedlandusesforeachsitethroughuseof

manualimageinterpretation.Watershedswereextractedfromthe

terrainmodelfromtheShuttleRadarTopographicMission–SRTM

(USGS,2005).Wemanuallyinterpretedhighresolution

multispec-tralimagesinconjunctionwiththeLandsatTMsensorusingSpring

software(Camaraetal.,1996).Thehigh-resolutionimages

pro-videdinformationabouttheshapeandtextureoftheelements,and

theLandsatimagesshowedspectralresponsefordifferenttargets.

Ourmappingidentifiedthreehuman-influencedlanduses

(pas-ture,agriculture,andurban).Thecatchmentpercentagesofeach

landusewereestimatedforeachsite.

Thecatchmentdisturbanceindex(CDI)wasbasedonthehuman

landusesinthecatchmentsandwascalculatedfollowing

Rawer-Jostetal.(2004),accordingtotheformula:

catchmentdisturbanceindex (CDI)=4×%urbanareas

+2×%agriculturalareas+%pastureareas

We evaluated the collinearity betweenlocal and catchment

humandisturbancesineachbasinthroughuseofPearson

corre-lationsbetweentheLDIandtheCDIvaluesofthesites.

Becausethelocalandthecatchmentdisturbanceindicesdonot

sharethesamenumericalscale,bothwereseparatelystandardized

toprovideasimilarscaleinvalues.Thistransformationwas

neces-sarytoreliablycalculateanintegrateddisturbanceindexforeach

site,basedonboththelocalandcatchmentindices(seebelow).The

valuesofeachindexweredividedby75%ofthemaximumvalue

thateachcantheoreticallyachieve.Wedidnotusethemaximum

valuesofeachindexforthesestandardizationsbecausethose

val-uesarerarelyachieved.Dividingbythemaximumvalueswould

shrinkgreatly andunnecessarily thevaluesin thestandardized

indices,shiftingnearlyallthesitesveryclosetotheoriginofthe

disturbanceplane.

TheCDIvaluespotentiallyrangefrom0(nolanduseinthe

catch-ment)to400(entirecatchmentoccupiedbyurbanareas).Sothe

valuesofthisindexweredividedby300.TheLDIvalues(W1hall

metric)potentiallyrangefrom0(noevidenceofanytypeof

dis-turbanceinthechannelorriparianzone)to16.5(all11typesof

disturbancesobservedinsidethestreamchannelinalltransects).

Butthistheoreticaluppervalueishighlyunlikelybecauseofspatial

limitationsandnegativecolinearitiesamongthetypesof

disturb-ance(listedabove).TheempiricalmaximumvalueoftheW1hall

metricisaround7(Kaufmannetal.,1999), sothevaluesofthis

indexweredividedby5.

Tosummarizethedisturbancesmeasuredatbothscalesina

singleindexwecalculatedforeachsiteanintegrateddisturbance

index(IDI).It wasmeasuredastheEuclidiandistance between

thepositionofthesiteinthedisturbanceplane(axes

standard-ized)totheoriginoftheplane(Fig.2).Thiswasperformedthrough

applicationofthePythagoreantheorem:

integrateddisturbanceindex(IDI)=



LDI5

2

+



CDI300

2

1/2

ThehighertheIDIofasite,themorethatsitedeviatesfromthe

‘origin’,i.e.,fromthe‘ideal’referenceconditionofnodisturbance

insidethestreamchannel,intheriparianzone,orinthecatchment.

Thus,wedefinedthedisturbancegradientsimplyastheascending

ordinationoftheIDI’sinapoolofsites.Thesteeperthedisturbance

gradientinapoolofsites,thegreaterthedifferenceinecological

conditionbetweentheleast-andmost-disturbedsitesinthepool.

2.5.2. EPTrichnessassociationswiththedisturbanceindices

To evaluate how EPT assemblages responded tothe degree

(5)

Table1

CandidatesitehabitatmetricsforexplainingEPTrichnessvariabilityinbothstudiedbasins.

Metricname Metriccode Notsignificantlycorrelated Notstronglycorrelated

Withdisturbances(p>0.05) Amongeachother(r<0.6)

UpperAraguari UpperSãoFrancisco UpperAraguari UpperSãoFrancisco

Meanwidth xwidth *

Meandepth xdepth *

Meanslope xslope

Meanbankfullwidth XBKF W

Meanwidth× meandepth XWXD * * * *

Mean(width/depth) xwdrat * *

Meandepth×meanslope xdepthxslope

Bankfull(width/depth) BKFWDrat * * * *

Meanresidualpoolarea rp100 *

Meanwatervolume/m2 v1w msq

Ripariancanopy(>5mhigh)presence xpcan

Ripariancanopy(>5mhigh)cover XC *

Totalripariancover(allvegetationlayers) xcmg * * * *

Totalriparianwoodycover xcmgw

Meancanopydensity(mid-stream) xcdenmid

Naturalcoverinthestream(all) xfcnat * *

Naturalcoverprovidedbylargewood xfclwd * *

Percentageoffastwater pctfast * * * *

Percentageoffines(siltandclay) pctfn *

Percentageofsand+fines pct sfgf *

Percentageofcobble pctcb * *

Percentageofcoarsesubstrate(>16mm) pctbigr *

Logofmeansubstratediameter lsubdmm * *

Meansubstrateembeddedness xembed

Logofrelativebedstability LRBS

pH pH * *

Conductivity(␮S/cm) Cond

Totaldissolvedsolids(g/L) TDS * *

Turbity(NTU) Turb * *

Dissolvedoxygen(mg/L) DO * *

Alkalinity(mequiv./L) Alk

conductedmultiplelinearregressionsbetweenEPTrichnessand

thestandardizedLDIandCDIofthesitesforeachbasin.Wealso

regressedEPTrichnessagainsttheIDItoevaluateitsperformance

relativetoEPTrichnessvariability.

2.5.3. Contributionofnaturalvariabilityofsitehabitat

characteristicstoexplainingthevariationofEPTrichness

Throughthefollowingmethodology,weevaluatedhowmuch

naturalphysicalhabitatvariabilityaddedtotheexplanationofEPT

richnessprovidedbythedisturbancegradientalone.Theprocess

wasperformedseparatelyforeachbasin(Fig.3).

Westartedwithasetof31habitatmetricscalculatedfromthe

rawfielddata(Table1).Withthesemetricsweaimedto

repre-sentkeyaspectsofthehabitatsofthesites,suchasmorphology

(e.g.,mean wetted and bankfull width,mean depth, and mean

slope),ripariancondition(e.g.,riparianvegetationextentandmean

canopy cover),habitatheterogeneity(e.g.,% fastwater,% large

substrates,%finesubstrates,andmeansubstrateembeddedness)

andwaterquality(e.g.,dissolvedoxygen,pH,andalkalinity).We

obtainedPearsoncorrelationsbetweenthosemetricsandallthe

disturbancedescriptorswehadavailable:the3landuses

percent-ages,the11typesoflocalsitedisturbances,theLDI,theCDIand

theIDI.Allmetricssignificantlycorrelated(p<0.05)withanyof

thedisturbancedescriptorsweredisregardedforthenextstepof

theanalysis.Inthisway,wefilteredallthehabitatmetricsthat

couldbeaffectedbyhumandisturbancesofanykind;theremaining

metricswereconsideredassourcesofnaturalvariationinthesites.

Next,a Pearsonproduct–momentcorrelationmatrix was

calcu-latedwithallthemetricsnotcorrelatedwithdisturbanceevidence.

Theredundantmetrics(r>0.6)wereremovedandthechoiceofthe

metricstoberetainedwasbasedonecologicalrationale.

Amongthe31initialhabitatmetrics,manywerenot

signifi-cantlycorrelatedwithhumandisturbances(9intheUpperAraguari

and15intheUpperSãoFrancisco,Table1).Inbothbasins,someof

theremainingmetricswereremovedbecauseofhighcolinearities

(r>0.6).IntheUpperAraguari,meandepthandmeanresidualpool

areawereremovedandmeanwettedwidth×meanthalwegdepth

waskept,becausewebelievethelattermetricbestsummarized

thestreamchannelsize.IntheUpperSãoFrancisco,meanwetted

widthwasremovedandmeanwettedwidth×meanthalwegdepth

waskept(samereasonasabove)andripariancanopycoverwas

removedandtotalripariancover,amoreembracingmetric,was

kept.Percentageofcoarsesubstrates(>16mm),percentageoffines

(<0.06mm: silt and clay), percentage of sand+fines (<2.0mm),

andlogofthegeometricmeansubstratediameterhadhigh

cor-relations. We chose toinclude log of mean substratediameter

becauseitbestrepresentedthepredominantsubstratesizesofthe

sites.

We used the reduced set of habitat metrics to perform a

hierarchicalmultipleregression,forcingtheentranceofthe

inte-grateddisturbanceindex(IDI)inthefirstblockandallowing,in

the secondblock, a best-subsetsmultiple regression procedure

searchforthecombinationsofhabitatmetricsthatbestexplained

the remaining variability in EPT richness. The R2 values were

considered ascriteria for the selection ofthe bestmodels. We

restricted the number of predictor variables in the final

mod-elstoa total of 4 (10%of40 sites)toavoid model over-fitting

(Harrell, 2001; Tabachnick and Fidell, 2007). Thus, in addition

totheIDIinthefirstblock,threehabitatmetricswereallowed

toenterinthesecondblock.Hierarchicalmultipleregressionis

an efficientwaytoisolatethe contributionofsomefactor in a

regressionmodelbecauseresidualregressionscanleadtobiased

(6)

Fig.3.Summaryofthemethodologicaldesignusedtoteststatisticallyhowsitehabitatmetricsnotsubjectedtohumandisturbancesenhancedtheexplanationgivenbythe integrateddisturbanceindex(IDI)toEPTrichnessineachbasin.

(7)

(A) (B)

Upper Araguari Upper São Francisco

Basin 0 1 2 3 4 5 Loc a l D is tur ba nc e I n de x ( L D I)

Upper Araguari Upper São Francisco

Basin 0 50 100 150 200 250 300 C a tc h m en t D ist u rb a n c e I n d ex ( C D I)

Fig.4. Distribution(mediansandquartiles)ofthevaluesofthe(A)localdisturbanceindexandofthe(B)catchmentdisturbanceindexineachstudiedbasin.

2002).OnlypredictorvariableswithindividualF-values>1were

allowedinthefinalmodels.Thestatisticalsignificanceofthe

hier-archicalmultipleregressions(block1vsblock1+block2)were

tested through analysis of variance (ANOVA’s). In this way we

tested whether thehabitat metrics contributed significantly to

the explanation of EPT richness derived from theIDI for each

basin.

3. Results

3.1. Localandcatchmentdisturbanceindicesandthedisturbance

plane

ThetwobasinshadsimilarpatternsinmostLDIvalues(Fig.4A),

althoughtheUpperAraguaribasinhadafewhighervalues,

result-ing from urban sites. On the other hand, the patterns of CDI

valuesvariedconsiderablybetweenthebasins,theUpperAraguari

had higher CDI values than the Upper São Francisco(Fig. 4B).

IntheUpperSãoFrancisco,onlyonesitehad aCDIvalue>100.

Thedifferingpatternsareexplainedbythelandusepatternsin

both basins (Fig. 5A–C). In the Upper Araguari we observed a

higherproportionofagricultureinthecatchments,whereasinthe

UpperSãoFranciscopasturepredominated.Proportionsofurban

areas were low in both basins, most catchments having none.

ThePearson correlations betweentheLDI andCDI scoreswere

weak(r=0.21intheUpperAraguariandr=0.35intheUpperSão

Francisco).

In both basins few sites were located close to the

ori-gin on the disturbance plane (Fig. 6), but because of higher

CDI values, more Upper Araguari sites were located farther

from the origin. This distribution pattern is summarized by

thedifferent slopes of the disturbancegradients of thebasins,

showing the IDI values in ascending order (Fig. 7). In the

Upper Araguari we observed a much wider range in site

IDI values (i.e., more sites nearer and farther from the

ori-gin), indicating a much stronger disturbance gradient in that

basin.

3.2. DescriptionoftheEPTassemblages

A total of 5463 EPTindividuals (61 genera) were identified

in Upper Araguari sites, and 15,133 EPT individuals (65

gen-era)wereidentifiedinUpperSãoFranciscosites.Inbothbasins

Ephemeroptera comprised the majority of the EPT genera (30

in theUpper Araguari and 35 in theUpper São Francisco) and

numberoforganisms(3291intheUpperAraguariand12,529in

theUpperSãoFrancisco).IntheUpperAraguari,themost

abun-dantgenerawereSmicridea(Trichoptera),andtheEphemeroptera

Thraulodes, Traverhyphes and Tricorythopsis. Those four genera

represented 43% of theEPT individuals collected in the Upper

Araguari.IntheUpperSãoFrancisco,themostabundantgenera

wereCallibaetis,Cloeodes,Americabaetis,CaenisandTraverhyphes,

allEphemeroptera.Thosefivegenerarepresented54%oftheEPT

individualscollectedintheUpperSãoFrancisco.Around25%ofthe

taxaidentifiedintheUpperAraguari,and20%ofthetaxa

iden-tified in the Upper São Francisco,can beconsidered rare taxa,

withjust5orfewerindividualsidentifiedacrossallsitesofeach

basin.

3.3. EPTrichnessversusdisturbanceindices

The variation of EPT richness explained by theLDI and CDI

togetherwasmuchhigherintheUpperAraguari(R2=0.40)than

intheUpperSãoFrancisco(R2=0.18)(Table2).Inbothbasins,EPT

richnesswassignificantlyrelatedtotheCDI,butonlyintheUpper

AraguarididtheLDIcontributesignificantlytoexplainEPTrichness

variation(Table2).TheslopebetweenLDIandEPTrichnessinthe

UpperSãoFranciscoapproachedzero(Table2).Asexpected,all

sig-nificantrelationshipswerenegative.IntheUpperAraguari,theIDI

explainedamoderateamountofEPTrichness(Simplelinear

regres-sion,R2=0.39,F

(1,38)=24.6,p<0.001;Fig.8A),nearlythesameas

thecombinedexplanationsgivenbytheLDIandCDIinthe

multi-pleregression.IntheUpperSãoFrancisco,theIDIexplainedpoorly,

butsignificantly,EPTrichnessvariation(simplelinearregression,

R2=0.11,F

(1,38)=4.55,p=0.039;Fig.8B).

Table2

MultipleregressionresultsforeachbasinwithEPTrichnessastheresponsevariableandthelocaldisturbanceindex(LDI)andthecatchmentdisturbanceindex(CDI)as predictorvariables.

F-Value(2,37) p-Value R-Square Beta Std.err.ofbeta t(37) p-Value

UpperAraguari 12.5 <0.001 0.403

Intercept 9.806 <0.001

CDI −0.450 0.130 −3.467 0.001

LDI −0.364 0.130 −2.802 0.008

UpperSãoFrancisco 4.005 0.027 0.178

Intercept 8.820 <0.001

CDI −0.424 0.159 −2.671 0.011

(8)

0 20 40 60 80 100 Percentage of pasture 0 20 40 60 80 100 Percentage of agriculture (A) (B) (C) Basin 0 20 40 60 80 100

Percentage of urban areas

UpperAraguari UpperSão Francisco

Fig.5.Distribution(mediansandquartiles)ofthepercentagesof(A)pasture,(B) rowcropagriculturaland(C)urbanareasinthecatchmentsofthesitessampledin eachbasin.

3.4. Contributionofnaturalvariabilityofhabitatcharacteristics

inexplainingEPTrichness

Thehierarchicalregressionsinformedhowtheexplanations(R2

values)givenbytheIDIstoEPTrichnessvariationswereincreased

bytheadditionofhabitatmetricsnotrelated tohuman

distur-bances.In theUpper Araguari,theincrementwaslow and just

marginallysignificant(Table3).Inthatbasin,theR2valueincreased

from0.39to0.49,anincreaseof0.1.Ontheotherhand,intheUpper

SãoFranciscotheincrementwasmuchgreater,theR2valuerising

from0.11to0.50,anincrementof0.39.Theamountofexplanation

given bythe combinedmodels (IDI+habitatmetrics not

corre-latedwithdisturbance)weresimilarinbothbasins,withR2values

around0.5,meaningthatthefinalmodelsexplainedonlyabouthalf

thevariation.

Thecombined models generated frombest-subsetsmultiple

regressionshad, inadditiontotheIDI,2 habitatmetricsinthe

UpperAraguariand3habitatmetricsintheUpperSãoFrancisco

(allwithF-values>1,Table3).Inboth basins,asite sizemetric

(meanwidth×meandepth)wasimportantinexplainingEPT

rich-nessvariation.IntheUpperAraguari,anothermorphologicmetric

(bankfullwidth/depth)wasincorporatedinthemodel,whereasin

theUpperSãoFrancisco,microhabitatmetrics(percentfastflows

andlogofmeansubstratediameter)wereincluded.

4. Discussion

4.1. Premisesforcomparisonsbetweensites

Ithasbeenlongrecognizedthatsomegeographic(e.g.,

ecore-gions) and non-geographic features (e.g.,typologies) of stream

sitesexercise astronginfluence onthecomposition and

struc-tureoftheirmacroinvertebrateassemblages(Hughes,1985,1995;

Gerritsenetal.,2000).Accordingly,itisimportantfortheassigned

referencesitesandthetestsitesofastudytosharethesekey

biolog-icaldrivers,allowingreliablecomparisonsbetweenthem(Herlihy

etal.,2008).InthewordsofGerritsenetal.(2000)itisimportant

to“putlikewithlike”.

Gradualchangesinthehabitattemplate,intheavailablefood

resources,andinthebiologicalassemblagesnaturallyoccuralong

the longitudinal gradient of lotic ecosystems (from spring to

mouth),resultingmainlyfromdownstreamchangesintheir

mor-phologicaldimensions,catchmentareasanddischarges(Vannote

etal.,1980;Poole,2002;Hughesetal.,2011).Wereducedsuch

sourcesofvariationbyselectingstreamswithsimilar

morphologi-caldimensions.Allsitescanbeclassifiedassmallstreams,closeto

theheadwaters.

There is no geographic classification formally designed for

Brazil that is comparable in detail to the ecoregion

classifica-tionsoftheUSA(Omernik,1995)orEurope(e.g.,Gustafssonand

Ahlén,1996).However,thebasinsstudiedareinthesamebiome

0.0 0.2 0.4 0.6 0.8 1.0

LDI (standardized) 0.0 0.2 0.4 0.6 0.8 1.0

CDI (standardized) UpperAraguari sites

UpperSão Francisco sites

Fig.6.Distributionofthesitesofeachbasininthedisturbanceplane,withUpperAraguarisitesrepresentedbyopencircles()andUpperSãoFranciscositesrepresented byfilledboxes( ).Theaxesofthelocaldisturbanceindex(LDI)andthecatchmentdisturbanceindex(CDI)werestandardizedatthesamescale(relativepositionsofthe sitesoneachaxis,andintheplane,wereretained).

(9)

0 5 10 15 20 25 30 35 40 Ranking of the streams (from least- to

most-disturbed) 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Integrated Disturbance Index (IDI)

UpperAraguari sites UpperSão Francisco sites

Fig.7.Disturbancegradientsinbothbasins,representedbyascendingsitevaluesoftheintegrateddisturbanceindex(IDI).UpperAraguarisitesarerepresentedbyopen circles()andUpperSãoFranciscositesarerepresentedbyfilledboxes( ).

(Cerrado)andinthesamegeneralterrestrialandaquaticecoregions

outlinedbyOlsonetal.(2001),meaningthatthesitessharesimilar

climatic,edaphic,vegetation,geologicalandbiogeographic

condi-tions(Olsonetal.,2001;Wantzen,2003).Moreover,thebasinswere

analyzedseparately,andtheirindividualareasaremuchsmaller

thanthoseoftheUSlevelIVecoregions,themostdetailedlevel

oftheirclassification.Thus, althoughlackinganofficialdetailed

classification,weconsiderallthesitesinthesameecoregion.

4.2. Theroleofthedisturbancesmeasuredatlocalandcatchment

spatialscales

Asstatedintheclassicalviewofstreamimpairment,human

disturbancesoperatingatmultiplescalescanalterpatternsand

processesofthenaturalhabitat,ultimatelyleadingtomodifications

orimpairmentofbiologicalassemblages(Karr,1999;Norrisand

Thoms,1999;Bryceetal.,1999;FeldandHering,2007).However,

theexactmechanisticpathwaysamongtheoriginsofimpairment,

thehabitatmodifications,andthebiologicalresponsesarenotwell

knowninmostcases(BedfordandPreston,1988;Karr,1991).For

this reason,rather thansearching forall theindividualsources

ofimpairment,itisimportanttodevelopagroupofdisturbance

metricsthatcanserveasgeneralindicatorsofthetotalpressureto

whichanecosystemmaybesubjected(Boulton,1999).

Disturbancesinthechannelorriparianzonecanimpairthe

habi-tatsandthebiota(Bryceetal.,1999;DeathandJoy,2004;Kaufmann

andHughes,2006).Becausecatchmentsdrivethestreamfeatures

inalmosteveryaspect(Hynes,1975;Wiens,2002),humanland

usesarealsousuallylinkedwiththeecologicalconditionofstreams

(Bryce et al., 1999; Allan,2004; Wang et al., 2008).Non-point

sources in catchments commonly contribute excess sediments,

nutrientsandpollutantstostreamsandrivers(AllanandCastillo,

2007;Allan,2004).Humanactivitiesinthecatchmentalso

influ-encetheconditionofstreamriparianzones(VanSickleetal.,2004;

Sponselleretal.,2001;Miserendinoetal.,2011).Theorderingof

“disturbancepotential”usedinthisstudy(urbanareashavingmore

weightthanrowcropagriculture,whichinturnhasmoreweight

thanpasture),aswellastheuseofthewholecatchmentareaas

the“buffer”toestimatecatchmenthumanpressures,are

corrob-oratedbymanypreviousstudies(Sponselleretal.,2001;Mebane

etal.,2003;Wangetal.,2008;Guckeretal.,2009;Trautweinetal.,

2011).Inourstudy,disturbancesmeasuredatlocalandcatchment

spatialscalesbothreduced EPTrichness,corroboratingourfirst

hypothesis.InagreementwithKailetal.(2012),catchment

distur-banceshadagreatereffectthanlocaldisturbancesinthesebasins.

Thelatterwerenotevensignificantlyrelatedtomacroinvertebrate

richnessintheUpperSãoFranciscosites.

Localdisturbancewasnotcorrelatedwithcatchment

disturb-ance.Thislackofassociationmeansthatcatchmentlanduseswere

notdrivingnearorin-streammodifications,andwhatisobserved

at onescale candiffer fromwhat isobserved at theother.For

instance,inourstudyweobservedcatchmentshighlydominated

byrowcropagriculturebutwithundisturbedriparianvegetation

and streamchannels.Conversely,we alsohadcatchments with

mostly natural land coverbut stream channelsaltered by

live-stock.Scenarioslikethesearelikelytohappenelsewhere(Nijboer

etal.,2004).Consequently,relyingonjustonescaletodescribethe

levelofhumanpressureatasitecanleadtomisleading

interpre-tationsofbiologicalresponses(Bryceetal.,1999;FeldandHering,

2007).

Table3

Hierarchicalmultipleregressionresultscontrastingthesignificanceofthedifferencesbetweentheregressionmodelsineachbasin.Thefirstmodels(block1)consistedof simpleregressionswithEPTrichnessastheresponsevariableandtheintegrateddisturbanceindex(IDI)asthepredictorvariable.Thesecondmodels(block1+block2) includedaspredictorvariablesthehabitatmetricsselectedbythebestsubsetsprocedureasthosewhich,togetherwiththeIDI,betterexplainedEPTrichness.Habitatmetric codesaredefinedinTable1.

Basin F-Value p-Value R-Square Metrics’meanbetavalues ANOVAtestforhierarchical

regressionanalysis[block1vs (block1+block2)] F-Value p-Value UpperAraguari Model1 24.6 <0.001 0.393 IDI 3.194 0.053 −0.627

Model2 11.28 <0.001 0.484 IDI−0.523 XWXD0.227 BKF0.299WDrat

UpperSãoFrancisco

Model1 4.548 0.04 0.107 IDI

9.144 <0.001 −0.327

(10)

(A)

(B)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Integrated Disturbance Index (IDI)

0 5 10 15 20 25 30 35 40 EPT r ic h n e s s 0 5 10 15 20 25 30 35 40 E P T r ic hne s s

Fig.8. Linearregressionsbetweentheintegrateddisturbanceindex(IDI)valuesand theEPTrichnessofthesitesof(A)theUpperAraguaribasin,representedbyopen circles(),and(B)theUpperSãoFranciscobasin,representedbyfilledboxes( ).

Theintegrateddisturbanceindex(IDI)proved tobea useful

andaccurateunivariatedescriptorofthetotalityofdisturbances

measuredatdifferentspatialscales.Itexplainedthevariabilityin

EPTrichnessbetterthanseparatelocalandcatchmentindices,and

almostaswellaswhenthosetwoindiceswereseparatelyincluded

inmultipleregression.Theexistenceofasingleindexto

summa-rizetheoverallecologicalcondition,althoughneverperfect,isa

quickand practical way todescribetheconditionof individual

sitesand therelative conditionof a site in comparisonto

oth-ers(Bryceet al.,1999; Wanget al.,2008).Thisis necessaryto

setdisturbancethresholdsand topresent tosocietyand

stake-holdersanobjectiveandsimplemeasurementofsiteconditions

(Hughesand Peck,2008).Therange anddistributionofIDI

val-uesacrossarepresentativepoolofsitescanindicatethestrength

ofthedisturbancegradientinaregion.Thegreatertherangeand

evennessofthedistributionofsitesacrossthatrange,thegreater

thestrengthofthedisturbancegradient(shownintheascending

ordinationsofFig.7),andthegreatertheexpecteddifferencesin

ecologicalconditionbetweentheleast- andthemost-disturbed

sites.

4.3. Theroleofnaturalhabitatvariation

Theimportanceofnaturalstreamhabitatvariation hasbeen

long recognized in stream ecology (Karr and Dudley, 1981;

Allan and Castillo, 2007). Metrics related to hydromorphology

(percentage of fast flows, mean wetted width×mean thalweg

depth, bankfull width/depth, log of geometric mean substrate

diameter), which were not related to human disturbances in

thesebasins,helpedexplainEPTrichnessvariability,apartfrom

theeffects thatcouldbeattributedsolely tohumaninfluences.

Thosefactorsarecommonlyreportedasimportantfor

structur-ing stream macroinvertebrate assemblages (Schmera and Er ˝os,

2004; Brooks et al., 2005; LeCraw and Mackereth, 2010).

Con-sistent with our second hypothesis, the relative and absolute

contributionof thenaturalhabitatwasmuchmorepronounced

intheUpperSãoFranciscobasin,whichhadaweakerdisturbance

gradient.

Oneconclusionemergingfromourresultsisthatifthe

anthro-pogenicdisturbancegradientisnotstrong,thedeleteriouseffect

ofhumanactivitiesonassemblagerichnesswillbemostlyeclipsed

byvariationassociatedwithstreamhabitatnaturalvariability.In

otherwords,thedisturbance“signal”willbeburiedbyhabitat

vari-ation“noise”(ParsonsandNorris,1996;GerthandHerlihy,2006).

Ascan beobserved in theUpper São FranciscoBasin(Fig.8B),

sitesthatwereslightlymoreperturbedfrequentlyhadhigherEPT

richness thanothers thatwereslightly less perturbed.Many of

thesedivergences in relation towhat would be expectedfrom

thedisturbance-onlymodelwereprobablydrivenbydifferences

instreamhydromorphology.IntheUpperAraguaribasin,which

hadastrongerdisturbancegradient,thosesituationsalsooccurred,

butlessfrequently(Fig.8A).Asecondconclusionisthattheeffort

tocontrolbroad-scaledriversofbiological assemblagesthrough

useof ecoregionsandstreamtypologiesdoesnoteliminatethe

necessitytoaccountforlocalhabitatvariabilitywhencomparing

sites(Hughesetal.,1986;Waiteetal.,2000;Pintoetal.,2009).

Althoughweaimedtostandardizethestreamsizes,asizemetric

(meanwidth×meandepth)stillexplainedsignificantdifferences

inEPTrichness.Inaddition,evenneighboringsitesmayhavehighly

dissimilarhabitatsandbiologicalassemblages(Downesetal.,2000;

FinnandPoff,2005;Ligeiroetal.,2010),sothatecoregion

standard-izationalsoisnotenough.

TheamountofEPTrichnessvariabilityexplainedwassimilarin

bothbasins(around50%).Thisvaluecanbeconsideredhigh,given:

(1)theintrinsiccomplexityandunpredictabilityofstream

ecosys-temsandthedifficultyofobtaininggoodmodelsofthem(Harris

andHeathwaite,2011),(2)thesourcesofvariationnotaccounted

forinthisstudy,suchaslegacyeffects(Allan,2004)and

condi-tionsatupstreamreaches(KailandHering,2009)oratneighboring

sites(Sandersonetal.,2005),and(3)theintrinsicunpredictability

(“noise”)relatedtoseasonalandsamplingvariability(Kaufmann

etal.,1999;KaufmannandHughes,2006).Weemphasizethatthe

streamhabitatcontributiontorichnessexplanationwasanalyzed

inaveryconservativeway.Toreliablydeterminethedegreethat

naturalhabitatvariabilitycanaddexplanationatvaryinglevelsof

disturbancestrength,wedealtonlywiththehabitatmetricsnot

significantlycorrelatedwithanyofthedisturbancemeasurements

wehadavailable.Inthisregard,weevendiscardedmetrics

sig-nificantlybutweaklycorrelatedtodisturbance(e.g.,r<0.4).Thus,

webelievethathabitatvariabilityhasagreaterroleinstructuring

macroinvertebrateassemblagesthanshowninourresults,because

thoserejectedhabitatmetricsthatwererelatedtohuman

distur-banceswerealsodrivenbynaturalvariabilitytosomedegree(King

etal.,2005).

4.4. Importanceoftheconstructionofadisturbancegradient

Theexplicit,quantitativedeterminationofadisturbance

gra-dientismoreadvantageousthanasetofdisturbancecategories

because distinct separations in ecological conditions shouldbe

rareinanygroupofsites(Whittieretal.,2007b;Herlihyetal.,

(11)

most-disturbed, or impaired. Depending on the intensity and

extentofhumaninfluencesinthelandscape,sometimesitis

nec-essarytorelaxthestringencyoftheacceptancethresholdsinorder

tofindleast-disturbedconditions(Stoddardetal.,2006;Whittier

etal.,2007b;Herlihyetal.,2008).Soitisimportanttorecognizethe

relativityoftermslike“least”,or“most”,whendescribingecological

condition(Stoddardetal.,2006).Absolute,“boxed”designations,

althoughcomfortableandoperationallyeasiertohandle,canlead

tomisunderstandingsor erroneouscomparisons amongstudies

simplybecausethetrueecologicalconditionsofthesitesalongthe

disturbancegradientcontinuumwerenotexplicitlystated.

Oftenthedesignations ofreferenceandmost-disturbedsites

aremadepriortosampling(Baileyetal.,2004).GISdataand

tech-niqueshavebeenwidelyappliedwhenscreeningforreferencesites

(Collieretal.,2007;YatesandBailey,2010)andfield

reconnais-sanceisstronglyrecommended (Hugheset al.,1986;Yatesand

Bailey,2010).Yet,eveninthosecasesweencourageresearchersto

quantitativelyre-assessthedisturbancegradientafterfield

samp-lingtocheckthevalidityofanypreviousclassificationsandthe

exactquantitativedifferenceintheconditionsbetweenthe

“refer-ence”and“test”sites.

4.5. Thebenefits,scopeandfurtherpossibilitiesoftheproposed

methodology

Thedisturbanceplaneconceivedinthiswork,visually

describ-ingtheintensityofhumandisturbancesatbothlocalandcatchment

scales,establishedaneasyandintuitivewaytodescribethetotal

amountofpressureatsites.Thedisturbanceplanefacilitates

com-parisonsofsiteconditionsinamorestraightforwardandspecific

manner,quantitativelypositioningeachsitealong adisturbance

continuum,ratherthanassigninglabelstothesites.When

neces-sary,labelssuchas“minimally-”,“least-”and“most-disturbed”can

beassignedtositesbasedonquantitativedataversussubjective

decisions.Objectivecriteriaandquantitativeapproachestoselect

referencesiteshavebeenprovenmoreefficientforselectingthe

“best”sites(Whittieretal.,2007b),andthesamemaybetruefor

selectingthe“worst”ones.

Becauseonlydirectobservationsofhumanactivitieswereused

todescribeanthropogenicpressure,furthercharacterizationofthe

chemical and physical habitatofthe least-and most-disturbed

sitescanbemadewithoutincurringanyconceptualcircularity.As

addressedbefore,metricslikedissolvednutrientconcentrations,

ripariancoverandsedimentsizes,althoughcommonlyassociated

withhumanmodifications, are also subjectto natural

variabil-ity(Kinget al.,2005;Miserendino etal.,2011).Forexample,in

this studyno landuse measurement orlocal modificationwas

correlated withnutrientconcentrations (total phosphorousand

totalnitrogen).Lownutrientconcentrationsarecommonin

Cer-rado streams because of naturally oligotrophic soils (Wantzen,

2003).In theUpper São Francisco, noevidence of disturbance

wascorrelatedwithsubstratesizesandriparianvegetationcover

(Table1).So,inaccordwithBaileyetal.(2004),naturalpatterns,

notresearchers’opinions,shouldbeusedtocharacterizereference

conditionattributes.

Theproposedmethodologywaswellsuitedfordescribingthe

disturbancegradientofthe40siteswestudiedineachbasin.When

necessary,sitesfromdifferentregionscanbeincorporatedinthe

samedisturbanceplane(asshowninFig.6).Webelievethatthis

methodologyis alsoapplicabletolargerdatasets,although

fur-therresearchisneededtoconfirmthisassumptionandtocompare

outputsgeneratedthroughotherapproaches.

Dependingonresearcherpreferencesandtheamountofdata

available,localand/orcatchmentdisturbanceindicescanbe

cal-culated in different ways, perhaps using different disturbance

measurements. For instance, other commonly used metrics to

characterizehumanpressureincludehumanpopulationdensity,

livestockdensity,number ofdwellingsand roaddensity(Wang

etal.,2008;Brownetal.,2009).Ifonedesiresfurtherchangesinthis

methodology,moredisturbanceaxescanbeaddedtothemodel,

perhapsrepresentingfactorsconsideredkeystressorsinparticular

studies (e.g.,dams and toxic substances).This willgenerate

n-dimensionaldisturbancepolygons,ratherthanthebi-dimensional

disturbanceplanepresentedinthiswork.Althoughsuch

refine-mentserodethesimplicityandvisualappealofthemodel,they

couldimprovetheaccuracyoftheintegrateddisturbance

quantifi-cationsofthesites(Danzetal.,2007).

Inourstudy,theIDIwasareliableunivariatemeasurementof

sitedisturbancestatus.TheIDIisalsoagoodtoolfordescribing

thedisturbancegradientstrengthinapoolofsites,viatherange

anddistributionofitsvalues.So,ratherthanastandardizedand

rigidmethodology,weofferaflexibleandadaptiveframeworkfor

characterizingandquantifyingdisturbanceinmanysituations.

5. Conclusions

Weshowedthroughourresultsthatareliableand

comprehen-sivecharacterizationofhumanpressuresonstreamsreliesonthe

useofdifferenttoolsandshouldintegratedatafromdifferent

spa-tialscales.Inourstudy,localandcatchmentdisturbanceswerenot

correlated,andbothindependentlyaffectedsiteEPTassemblages.

Theproposedmethodologyquantifiedthehumanpressureonsites

withoutresortingtonaturallyvaryinghabitatmetrics.We

demon-stratedthatthestrengthofthedisturbancegradientinfluencedthe

degreetowhichnaturalhabitatvariabilityexplainedEPTrichness

variation,afindingthathasimportantimplicationsfor

biomoni-toringstudies.Thus,theuseofquantitativedisturbancegradients

isessentialforefficientuseofecologicalindicatorsandweadvise

researcherstodefinequantitativelythedisturbancestatusoftheir

studysites.Inthisstudywepresentedaframeworkfordoingso.

Acknowledgements

Wereceivedfundingandsupportforthisresearchfrom

CEMIG-ProgramaPeixeVivo,CAPES,CNPq,FAPEMIGandFulbrightBrasil.

WethankTonyOlsen,MarcWeber,andPhilLarsenoftheCorvallis

EPALaboratory(Oregon,USA)forassistanceindevelopingspatial

samplingdesignsandselectingwadeablestreamsamplesitesin

ourBrazilianbasins.WethankAmandaNahlikandBobOzretich,

fromUS-EPA,forfurthereditorialchanges.JulianaFranc¸aandAna

PaulaEllerwereresponsibleforwaterqualityanalyses.CarlosB.M.

Alveshelpedwithgenerallogisticsandfieldwork.Colleaguesfrom

theLaboratóriodeEcologiadeBentos(UFMG),CEFET-MG,Federal

UniversityofLavras (UFLA)andPontificalCatholicUniversityof

MinasGerais(PUC-MG)assistedwithfieldcollections.Discussions

heldduringthe“WorkshoponEcologicalAssessment:the

Foun-dationforEvaluatingBiologicalPatterns”(October3–7,2011,US

EPAWesternEcologyDivision,Corvallis,OR,USA)addedconcepts

andideasforthisstudy.Themanuscriptwaswrittenwhilethefirst

authorwasaguestresearcherattheUSEPACorvallisLaboratory.

References

Allan,J.D.,2004.Landscapeandriverscapes:theinfluenceoflanduseonriver ecosys-tems.Annu.Rev.Ecol.Evol.Syst.35,257–284.

Allan,J.D.,Castillo,M.M.,2007.StreamEcology:StructureandFunctionofRunning Waters,2nded.ChapmanandHall,NewYork,NY.

AmericanPublicHealthAssociation(APHA),1998.In:Clesceri,L.S.,Greenberg,A.E., Eaton,A.D.(Eds.),StandardMethodsfortheExaminationofWaterand Waste-water.,20thed.AmericanPublicHealthAssociation,Washington,DC. Bailey,R.C.,Norris,R.H.,Reynoldson,T.B.,2004.BioassessmentofFreshwater

Ecosys-temsusingtheReferenceConditionApproach.KluwerAcademicPublishers, Boston.

(12)

Baptista,D.F.,Buss,D.F.,Egler,M.,Giovanelli,A.,Silveira,M.P.,Nessimian,J.,2007. Amultimetricindexbasedonbenthicmacroinvertebratesforevaluationof AtlanticForeststreamsatRiodeJaneiroState,Brazil.Hydrobiologia575,83–94. Barbour,M.T.,Gerritsen, J.,Snyder,B.D., Stribling,J.B., 1999. Rapid Bioassess-mentProtocolsforuseinStreamsandWadeableRivers:Periphyton,Benthic MacroinvertebratesandFish,2nded.EPA841-B-99-002,OfficeofWater,US EnvironmentalProtectionAgency,Washington,DC,p.339.

Bedford,B.,Preston,E.,1988.Developingthescientificbasisforassessing cumu-lativeeffectsofwetlandlossanddegradationonlandscapefunctions:status, perspectivesandprospects.Environ.Manage.12,751–771.

Bonada,N.,Prat,N.,Resh,V.H.,Statzner,B.,2006.Developmentsinaquaticinsect biomonitoring:acomparativeanalysisofrecentapproaches.Annu.Rev. Ento-mol.51,495–523.

Boulton,A.J.,1999.Anoverviewofriverhealthassessment:philosophies,practice, problemsandprognosis.Freshw.Biol.41,469–479.

Boyero,L.,Ramirez,A.,Dudgeon,D.,Pearson,R.G.,2009.Aretropicalstreamsreally different?J.N.Am.Benthol.Soc.28,397–403.

Brooks,A.J.,Haeusler,T.,Reinfelds,I.,Williams,S.,2005.Hydraulicmicrohabitats andthedistributionofmacroinvertebrateassemblagesinriffles.Freshw.Biol. 50,331–344.

Brown,L.R.,Cuffney,T.F.,Coles,J.F.,Fitzpatrick,F.,McMahon,G.,Steuer,J.,Bell,A.H., May,J.T.,2009.UrbanstreamsacrosstheUSA:lessonslearnedfromstudiesin 9metropolitanareas.J.N.Am.Benthol.Soc.28,1051–1069.

Bryce,S.A.,Larsen,D.P.,Hughes,R.M.,Kaufmann,P.R.,1999.Assessingrelativerisks toaquaticecosystems:aMid-Appalachiancasestudy.J.Am.WaterRes.Ass.35, 23–36.

Camara,G.,Cartaxo,R.,Souza,M.,Freitas,U.M.,Garrido,J.,1996.SPRING:integrating remotesensingandGISbyobject-orienteddatamodelling.J.Comput.Graph.20, 395–403.

Clarke,R.T.,Wright,J.F.,Furse,M.T.,2003.RIVPACSmodels forpredictingthe expectedmacroinvertebratefaunaandassessingtheecologicalqualityofrivers. Ecol.Model.160,219–233.

Collier,K.J.,Haigh,A.,Kelly,J.,2007.CouplingGISandmultivariateapproachesto referencesiteselectionforwadeablestreammonitoring.Environ.Monit.Assess. 127,29–45.

Danz,N.P.,Niemi,G.J.,Regal,R.R.,Hollenhorst,T.,Johnson,L.B.,Hanowski,J.,Axler, R.,Ciborowski,J.J.H.,Hrabik,T.,Brady,V.J.,Kelly,J.R.,Brazner,J.C.,Howe,R.W., Host,G.E.,2007.IntegratedmeasuresofanthropogenicstressintheU.S.Great Lakesbasin.Environ.Manage.39,631–647.

Death,R.G.,Joy,M.K.,2004.Invertebratecommunitystructureinstreamsofthe Manawatu–Wanganuiregion,NewZealand:therolesofcatchmentversusreach scaleinfluences.Freshw.Biol.49,982–997.

Dovciak,A.,Perry,J.A.,2002.Insearchofeffectivescalesforstreammanagement: doesagroecoregion,watershed,ortheirintersectionbestexplainthevariance instreammacroinvertebratecommunities?Environ.Manage.30,365–377. Downes,B.J.,Hindell,J.S.,Bond,N.R.,2000.What’sinasite?Variationinlotic

macroinvertebratedensityanddiversityinaspatiallyreplicatedexperiment. Aust.J.Ecol.25,128–139.

Feld,C.K.,Hering,D.,2007.Communitystructureorfunction:effectsof environmen-talstressonbenthicmacroinvertebratesatdifferentspatialscales.Freshw.Biol. 52,1380–1399.

Fernández,H.R.,Domínguez,E.,2001.Guiaparaladeterminacióndelosartrópodos bentônicossudamericanos.UniversidadNacionaldeTucumán,Tucumán. Finn,D.S.,Poff,N.L.,2005.Variabilityandconvergenceinbenthiccommunitiesalong

thelongitudinalgradientsoffourphysicallysimilarRockyMountainstreams. Freshw.Biol.50,243–261.

Freckleton,R.P.,2002.Onthemisuseofresidualsinecology:regressionofresiduals vs.multipleregression.J.Anim.Ecol.71,542–545.

Gerth,W.J.,Herlihy,A.T.,2006.Effectofsamplingdifferenthabitattypesinregional macroinvertebratebioassessmentsurveys.J.N.Am.Benthol.Soc.25,501–512. Gucker,B.,Boechat,I.G.,Giani,A.,2009.Impactsofagriculturallanduseonecosystem structureandwhole-streammetabolismoftropicalCerradostreams.Freshw. Biol.54,2069–2085.

Gustafsson,L.,Ahlén,I.,1996.GeographyofPlantsandAnimals.Almqvistand Wik-sellInternational,Stockholm.

Gerritsen,J.,Barbour,M.T.,King,K.,2000.Apples,oranges,andecoregions:on deter-miningpatterninaquaticassemblages.J.N.Am.Benthol.Soc.19,487–496. HarrellJr.,F.E.,2001.RegressionModelingStrategies,withApplicationstoLinear

Models,LogisticRegression,andSurvivalAnalysis.Springer-Verlag,NewYork. Harris, G.P., Heathwaite, A.L., 2011. Why is achieving good ecologi-cal outcomes in rivers so difficult? Freshw. Biol, http://dx.doi.org/10. 1111/j.1365-2427.2011.02640.x.

Hawkins,C.P.,Olson,J.R.,Hill,R.A.,2010.Thereferencecondition:predicting bench-marksforecologicalandwater-qualityassessments.J.N.Am.Benthol.Soc.29, 312–343.

Hering,D.,Feld,C.K.,Moog,O.,Ofenbock,T.,2006.Cookbookforthedevelopment ofamultimetricindexforbiologicalconditionofaquaticecosystems: expe-riencesfromtheEuropeanAQEMandSTARprojectsandrelatedinitiatives. Hydrobiologia566,311–342.

Herlihy,A.T.,Paulsen,S.G.,VanSickle,J.,Stoddard,J.L.,Hawkins,C.P.,Yuan,L.L.,2008. Strivingforconsistencyinanationalassessment:thechallengesofapplyinga reference-conditionapproachatacontinentalscale.J.N.Am.Benthol.Soc.27, 860–877.

Hughes,R.M.,1985.Useofwatershedcharacteristicstoselectcontrolstreamsfor estimatingeffectsofmetalminingwastesonextensivelydisturbedstreams. Environ.Manage.9,253–262.

Hughes,R.M.,Larsen,D.P.,Omernik,J.M.,1986.Regionalreferencesites:amethod forassessingstreampotentials.Environ.Manage.10,629–635.

Hughes,R.M.,Whittier,T.R.,Rohm,C.M.,Larsen,D.P.,1990.Aregionalframework forestablishingrecoverycriteria.Environ.Manage.14,673–683.

Hughes,R.M.,1995.Definingacceptablebiologicalstatusbycomparingwith ref-erenceconditions.In:Davis,W.,Simon,T.(Eds.),BiologicalAssessmentand Criteria:ToolsforWaterResourcePlanningandDecisionMaking.Lewis Pub-lishers,BocaRaton,FL.

Hughes,R.M.,Peck,D.V.,2008.Acquiringdataforlargeaquaticresourcesurveys: theartofcompromiseamongscience,logistics,andreality.J.N.Am.Benthol. Soc.27,837–859.

Hughes,R.M.,Herlihy, A.T.,Kaufmann,P.R.,2010.Anevaluationofqualitative indexesofphysicalhabitatappliedtoagriculturalstreamsintenU.S.states. J.Am.WaterRes.Assoc.46,792–806.

Hughes,R.M.,Kaufmann,P.R.,Weber,M.H.,2011.Nationalandregionalcomparisons betweenStrahlerorderandstreamsize.J.N.Am.Benthol.Soc.30,103–121. Hynes,H.B.N.,1975.Thestreamanditsvalley.Verh.Int.Verein.Theor.Ang.Limnol.

19,1–15.

Kail,J.,Hering,D.,2009.Theinfluenceofadjacentstreamreachesonthelocal ecologicalstatusofCentralEuropeanmountainstreams.RiverRes.Appl.25, 537–550.

Kail,J.,Arleb,J.,Jähnig,S.C.,2012.Limitingfactorsandthresholdsfor macroinverte-brateassemblagesinEuropeanrivers:empiricalevidencefromthreedatasets onwaterquality,catchmenturbanization,andriverrestoration.Ecol.Indic.18, 63–72.

Karr,J.R.,Dudley,D.R.,1981.Ecologicalperspectiveonwaterqualitygoals.Environ. Manage.5,55–68.

Karr,J.R.,1991.Biologicalintegrity:along-neglectedaspectofwaterresource man-agement.Ecol.Appl.1,66–84.

Karr,J.R.,1999.Definingandmeasuringriverhealth.Freshw.Biol.41,221–234. Karr,J.R.,Chu,E.W.,1999.RestoringLifeinRunningWaters:BetterBiological

Mon-itoring.IslandPress,Washington,DC.

Kaufmann,P.R.,Levine,P.,Robison,E.G.,Seeliger,C.,Peck,D.V.,1999.Quantifying PhysicalHabitatinWadeableStreams.EPA/620/R-99/003.U.S.Environmental ProtectionAgency,Washington,DC.

Kaufmann,P.R.,Hughes,R.M.,2006.Geomorphicandanthropogenicinfluenceson fishandamphibiansinPacificNorthwestcoastalstreams.In:Hughes,R.M., Wang,L.,Seelbach,P.W.(Eds.),LandscapeInfluencesonStreamHabitatand Bio-logicalAssemblages,Symposium48.AmericanFisheriesSociety,pp.429–455. King,R.S.,Baker,M.E.,Whigham,D.F.,Weller,D.E.,Jordan,T.E.,Kazyak,P.F.,Hurd,

M.K.,2005.Spatialconsiderationsforlinkingwatershedlandcovertoecological indicatorsinstreams.Ecol.Appl.15,137–152.

Klemm,D.J.,Blocksom,K.A.,Fulk,F.A.,Herlihy,A.T.,Hughes,R.M.,Kaufmann,P.R., Peck,D.V.,Stoddard,J.L.,Thoeny,W.T.,2003.Developmentandevaluationof amacroinvertebratebioticintegrityindex(MBII)forregionallyassessing Mid-AtlanticHighlandsstreams.Environ.Manage.31,656–669.

LeCraw,R.M.,Mackereth,R.,2010.Sourcesofsmall-scalevariationinheadwater streaminvertebratecommunities.Freshw.Biol.55,1219–1233.

Ligeiro,R.,Melo,A.S.,Callisto,M.,2010.Spatialscaleandthediversityof macroin-vertebratesinaneotropicalcatchment.Freshw.Biol.55,424–435.

Maddock,I.,1999.Theimportanceofphysicalhabitatassessmentforevaluating riverhealth.Freshw.Biol.41,373–391.

Marchant,R.,Norris,R.H.,Milligan,A.,2006.Evaluationandapplicationofmethods forbiologicalassessmentofstreams:summaryofpapers.Hydrobiologia572, 1–7.

Mebane,C.A.,Maret,T.R.,Hughes,R.M.,2003.Anindexofbiologicalintegrity(IBI) forPacificNorthwestrivers.Trans.Am.Fish.Soc.132,239–261.

Miserendino,M.L.,Casaux,R.,Archangelsky,M.,DiPrinzio,C.Y.,Brand,C.,Kutschker, A.M.,2011.Assessingland-useeffectsonwaterquality,in-streamhabitat, ripar-ianecosystemsandbiodiversityinPatagoniannorthweststreams.Sci.Total Environ.409,612–624.

Moreno,J.L.,Navarro,C.,LasHeras,J.D.,2006.Abioticecotypesinsouth-central Spanish rivers: reference conditions and pollution. Environ. Pollut. 143, 388–396.

Moreno,P.,Franc¸a,J.S.,Ferreira,W.R.,Paz,A.D.,Monteiro,I.,Callisto,M.,2009.Use oftheBEASTmodelforbiomonitoringwaterqualityinaneotropicalbasin. Hydrobiologia630,231–242.

Moya,N.,Hughes,R.M.,Dominguez,E.,Gibon,F.M.,Goita,E.,Oberdorff,T.,2011. Macroinvertebrate-basedmultimetricpredictive models formeasuring the bioticconditionofBolivianstreams.Ecol.Indic.11,840–847.

Mugnai,R.,Nessimian,J.L.,Baptista,D.F.,2010.ManualdeIdentificac¸ãode Macroin-vertebradosAquáticosdoEstadodoRiodeJaneiro.TechnicalBooks,Riode Janeiro.

Myers,N.,Mittermeier,R.A.,Mittermeier,C.G.,Fonseca,G.A.B.,Kent,J.,2000. Biodi-versityhotspotsforconservationpriorities.Nature403,853–858.

Nijboer,R.C.,Johnson,R.K.,Verdonschot,P.F.M.,Sommerhäuser,M.,Buffagni,A., 2004.EstablishingreferenceconditionsforEuropeanstreams.Hydrobiologia 516,93–107.

Norris,R.H.,Thoms,M.C.,1999.Whatisriverhealth?Freshw.Biol.41,197–211. Oberdorff,T.,Pont,D.,Hugueny,B.,Porcher,J.P.,2002.Developmentandvalidation

ofafish-basedindex(FBI)fortheassessmentof“riverhealth”inFrance.Freshw. Biol.47,1720–1735.

Oliveira,R.B.S.,Mugnai,R.,Castro,C.M.,Baptista,D.F.,Hughes,R.M.,2011.Towards arapidbioassessmentprotocolforwadeablestreamsinBrazil:development ofamultimetricindexbasedonbenthicmacroinvertebrates.Ecol.Indic.11, 1584–1593.

(13)

Olsen,A.R.,Peck,D.V.,2008.SurveydesignandextentestimatesfortheWadeable StreamsAssessment.J.N.Am.Benthol.Soc.27,822–836.

Olson,D.M., Dinerstein,E.,Wikramanayake, E.D.,Burgess,N.D., Powell,G.V.N., Underwood,E.C.,D’Amico,J.A.,Itoua,I.,Strand,H.E.,Morrison,J.C.,Loucks,C.J., Allnutt,T.F.,Ricketts,T.H.,Kura,Y.,Lamoreux,J.F.,Wettengel,W.W.,Hedao,P., Kassem,K.R.,2001.Terrestrialecoregionsoftheworld:anewmapoflifeon Earth.Bioscience51,933–938.

Omernik,J.M.,1995.Ecoregions:aspatialframeworkforenvironmental manage-ment.In:Davis,W.,Simon,T.P.(Eds.),BiologicalAssessmentandCriteria:Tools forWaterResourcePlanningandDecisionMaking.LewisPublishing,BocaRaton, FL.

Parsons,M.,Norris,R.H.,1996.Theeffectofhabitatspecificsamplingonbiological assessmentofwaterqualityusingapredictivemodel.Freshw.Biol.36,419–434. Paulsen,S.G.,Mayio,A.,Peck,D.V.,Stoddard,J.L.,Tarquinio,E.,Holdsworth,S.M., VanSickle,J.,Yuan,L.L.,Hawkins,C.P.,Herlihy,A.T.,Kaufmann,P.R.,Barbour, M.T.,Larsen,D.P.,Olsen,A.R.,2008.ConditionofstreamecosystemsintheUS: anoverviewofthefirstnationalassessment.J.N.Am.Benthol.Soc.27,812–821. Peck,D.V.,Herlihy,A.T.,Hill,B.H.,Hughes,R.M.,Kaufmann,P.R.,Klemm,D.J., Lazor-chak,J.M.,McCormick,F.H.,Peterson,S.A.,Ringold,P.L.,Magee,T.,Cappaert,M.R., 2006.EnvironmentalMonitoringandAssessmentProgram– SurfaceWaters WesternPilotStudy:FieldOperations ManualforWadeableStreams.EPA 600/R-06/003.U.S.EnvironmentalProtectionAgency,OfficeofResearchand Development,Washington,DC.

Pérez,G.R.,1988.Guíaparaelestudiodelosmacroinvertebradosacuáticosdel DepartamentodeAntioquia.EditorialPresenciaLtda.,Bogotá,Colombia. Pinto,B.C.T.,Araújo,F.G.,Rodriguez,V.D.,Hughes,R.M.,2009.Localandecoregion

effectsonfishassemblagestructureintributariesoftheRioParaíbadoSul,Brazil. Freshw.Biol.54,2600–2615.

Pont,D.,Hugueny,B.,Beier,U.,Goffaux,D.,Melcher,A.,Noble,R.,Rogers,C.,Roset, N.,Schmutz,S.,2006.Assessingriverbioticconditionatthecontinentalscale:a Europeanapproachusingfunctionalmetricsandfishassemblages.J.Appl.Ecol. 43,70–80.

Pont,D.,Hughes,R.M.,Whittier,T.R.,Schmutz,S.,2009.Apredictiveindexofbiotic integritymodelforaquatic-vertebrateassemblagesofwesternU.S.streams. Trans.Am.Fish.Soc.138,292–305.

Poole,G.C.,2002.Fluviallandscapeecology:addressinguniquenesswithintheriver discontinuum.Freshw.Biol.47,641–660.

Rawer-Jost,C.,Zenker,A.,Böhmer,J.,2004.ReferenceconditionsofGermanstream typesanalysedandrevisedwithmacroinvertebrate fauna.Limnologica34, 390–397.

Reynoldson,T.B.,Bailey,R.C.,Day,K.E.,Norris,R.H.,1995.Biologicalguidelinesfor freshwatersedimentbasedonBEnthicAssessmentofSedimenT(theBEAST) usingamultivariateapproachforpredictingbiologicalstate.Aust.J.Ecol.20, 198–219.

Reynoldson,T.B.,Norris,R.H.,Resh,V.H.,Day,K.E.,Rosenberg,D.M.,1997.The ref-erencecondition:acomparisonofmultimetricandmultivariateapproachesto assesswater-qualityimpairmentusingbenthicmacroinvertebrates.J.N.Am. Benthol.Soc.16,833–852.

Rosenberg,D.M.,Resh,V.H.,1993.FreshwaterBiomonitoringandBenthic Macroin-vertebrates.ChapmanandHall,NewYork.

Sánchez-Montoya,M.M.,Puntí,T.,Suárez,M.L.,Vidal-Abarca,M.R.,Rieradevall,M., Poquet,J.M.,Zamora-Munõz,C.,Robles,S.,Álvarez,M.,Alba-Tercedor,J.,Toro, M.,Pujante,A.,Munné,A.,Prat,N.,2007.Concordancebetweenecotypesand macroinvertebrateassemblagesinMediterraneanstreams.Freshw.Biol.52, 2240–2255.

Sánchez-Montoya,M.M.,Vidal-Abarca,M.R.,Puntí,T.,Poquet,J.M.,Prat,N., Riera-devall,M.,Alba-Tercedor,J.,Zamora-Munõz,C.,Toro,M.,Robles,S.,Álvarez,M., Suárez,M.L.,2009.DefiningcriteriatoselectreferencesitesinMediterranean streams.Hydrobiologia619,39–54.

Sanderson,R.A.,Eyre,M.D.,Rushton,S.P.,2005.Theinfluenceofstreaminvertebrate compositionatneighbouringsitesonlocalassemblagecomposition.Freshw. Biol.50,221–231.

Schmera,D.,Er ˝os,T.,2004.Effectofriverbedmorphology,streamorderandseason onthestructuralandfunctionalattributesofcaddisflyassemblages.Ann.Limnol. Int.J.Limnol.40,193–200.

Sponseller,R.A.,Benfield,E.F.,Valett,H.M.,2001.Relationshipsbetweenlanduse, spatialscaleandstreammacroinvertebratecommunities.Freshw.Biol.46, 1409–1424.

Stevens,D.L.,Olsen,A.R.,2003.Varianceestimationforspatiallybalancedsamples ofenvironmentalresources.Environmetrics14,593–610.

Stoddard,J.L.,Peck,D.V.,Olsen,A.R.,Paulsen,S.G.,VanSickle,J.,Herlihy,A.T., Kauf-mann,P.R.,Hughes,R.M.,Whittier,T.R.,Lomnicky,G.,Larsen,D.P.,Peterson,S.A., Ringold,P.L.,2005.AnEcologicalAssessmentofWesternStreamsandRivers. U.S.EnvironmentalProtectionAgency,OregonStateUniversity,andDynamic Corporation,Corvallis,OR.

Stoddard,J.,Larsen,D.P.,Hawkins,C.P.,Johnson,R.K.,Norris,R.H.,2006.Setting expectationsfortheecologicalconditionofstreams:theconceptofreference condition.Ecol.Appl.16,1267–1276.

Stoddard,J.L.,Herlihy,A.T.,Peck,D.V.,Hughes,R.M.,Whittier,T.R.,Tarquinio,E., 2008.Aprocessforcreatingmulti-metricindicesforlarge-scaleaquaticsurveys. J.N.Am.Benthol.Soc.27,878–891.

Strahler,A.N.,1957.Quantitativeanalysisofwatershedgeomorphology.Trans.Am. Geophys.Union38,913–920.

Suriano,M.T.,Fonseca-Gessner,A.A.,Roque,F.O.,Froehlich,C.G.,2011.Choiceof macroinvertebratemetricstoevaluatestreamconditionsinAtlanticforest, Brazil.Environ.Monit.Assoc.175,87–101.

Tabachnick,B.G.,Fidell,L.S.,2007.UsingMultivariateStatistics,5thed.Pearson/Allyn &Bacon,Boston.

Tejerina-Garro,F.L.,deMérona,B.,Oberdorff,T.,Hugueny,B.,2006.Afish-based indexoflargeriverqualityforFrenchGuiana(SouthAmerica):methodand preliminaryresults.Aquat.LivingResour.19,31–46.

Trautwein,C.,Schinegger,R.,Schmutz,S.,2011.Cumulativeeffectsoflanduse onfishmetricsindifferenttypesofrunningwatersinAustria.Aquat.Sci.74, 329–341.

USGS(UnitedStatesGeologicalSurvey),2005.ShuttleRadarTopographyMission– SRTM.,http://www.srtm.usgs.gov

VanSickle,J.,Baker,J.,Herlihy,A.,Bayley,P.,Gregory,S.,Haggerty,P.,Ashkenas, L.,Li,J.,2004.Projectingthebiologicalconditionofstreamsunderalternative scenariosofhumanlanduse.Ecol.Appl.14,368–380.

Vannote,R.L.,Minshall,G.W.,Cummins,K.W.,Sedell,J.R.,Cushing,C.E.,1980.The rivercontinuumconcept.Can.J.Fish.Aquat.Sci.37,130–137.

Waite,I.R.,Herlihy,A.T.,Larsen,D.P.,Klemm,D.J.,2000.Comparingstrengthsof geo-graphicandnongeographicclassificationsofstreambenthicmacroinvertebrates intheMid-Atlantic.J.N.Am.Benthol.Soc.19,429–441.

Wang,L.,Brenden,T.,Seelbach,P.,Cooper,A.,Allan,D.,ClarkJr.,R.,Wiley,M.,2008. Landscapebasedidentificationofhumandisturbancegradientsandreference conditionsforMichiganstreams.Environ.Monit.Assess.141,1–17.

Wantzen,K.M.,2003.Cerradostreams–characteristicsofathreatened freshwa-terecosystemtypeonthetertiaryshieldsofSouthAmerica.Amazoniana17, 485–502.

Wantzen,K.M.,Siqueira,A.,NunesDaCunha,C.,Sá,M.F.P.,2006.Stream–valley systemsoftheBraziliancerrado:impactassessmentandconservationscheme. Aquat.Cons.:Mar.Freshw.Ecosyst.16,713–732.

Whittier,T.R.,Hughes,R.M.,Stoddard,J.L.,Lomnicky,G.A.,Peck,D.V.,Herlihy,A.T., 2007a.Astructuredapproachfordevelopingindicesofbioticintegrity:three examplesfromwesternUSAstreamsandrivers.Trans.Am.Fish.Soc.136, 718–735.

Whittier,T.R.,Stoddard,J.L.,Larsen,D.P.,Herlihy,A.T.,2007b.Selectingreference sitesforstreambiologicalassessments:bestprofessionaljudgmentorobjective criteria.J.N.Am.Benthol.Soc.26,349–360.

Wiens,J.A.,2002.Riverinelandscapes:takinglandscapeecologyintothewater. Freshw.Biol.47,501–515.

Yates,A.G.,Bailey,R.C.,2010.Selectingobjectivelydefinedreferencesitesforstream bioassessmentprograms.Environ.Monit.Assess.170,129–140.

Referências

Documentos relacionados

Os resultados mostraram que a combinação dos instrumentos contemplou todas as áreas do mencionado componente, sendo capaz de estimar as capacidades em relação a função motora e

This study therefore aimed to evaluate the effects of disturbance on tree species richness and diversity, as well as on the proportional distribution by diameter, in

In its conception, the Educational Development Program (PDE-PR) is a process of continued education, full of collaborative possibilities to overcome the poor conditions in

A partir dos resultados apresentados nesta revisão de literatura, podemos sugerir que as pesquisas relativas aos efeitos do Método Pilates na flexibilidade e postura de

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Foram detetadas necessidades que passam pela inexistência de vestuário profissional diferenciador das funções dos colaboradores, a falta de aplicação da marca gráfica da

In its distribution in the thematic classes of the physical environment, the optimized state occurred in eleven distinct combinations, especially in land with high use