• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
5
0
0

Texto

(1)

Integrable Systems and Quantum Groups

Itzhak Roditi

CentroBrasileirodePesquisas Fsias

Rua Dr.XavierSigaud150, Rio deJaneiro, 22290-180,Brazil

Reeived7January,2000

Wepresent someaspetsofthestudyofquantumintegrablesystemsanditsrelationto quantum

groups.

I Introdution

Themainpurposeofthisletureistopresentthestudy

of quantum integrablesystems and its interplay with

thestudyofquantumgroups. Thehistoryofquantum

integrable systems begins, following a ertain

histori-al path, with the rst attempts of W. Heisenberg to

developamirosopitheory thatould explain

ferro-magnetism [1℄. Later on a method was proposed by

H. Bethe [2℄ in order to obtain the spetrum of the

isotropi Heisenberg model. This approah is alled

the Bethe ansatz and it givesthe parameterizationof

the eigenvetorsthroughaset ofequations, alled the

Bethe ansatz equations establishing the solvability of

the model. Sine then a steady evolution has taken

plae, goingthroughtheworksofL.Onsager[3℄,C.N.

Yang andC.P.Yang [4℄, R.Baxter [5℄andmany

oth-ers, ulminating with the adventof the Quantum

In-verse Sattering Method (QISM)[6℄. The time

inter-val between Bethe's solution and the QISM is of

al-most fty years. The QISM was developed to

inves-tigate integrablesystemsin quantum eld theoryand

quantumstatistialphysisanditwaslargelybasedon

an algebrai viewpoint. It provided a unied

frame-workfortreatingthepreviousapproahesusedtosolve

integrable systems, in theoretial and mathematial

physis. Moreover,itisduetotheQISMthatquantum

groupsmadetheirappearaneinthephysissenario.

The study of quantum groups, or quantum

alge-bras[7,8℄is ruialtotheunderstandingofintegrable

systems as well as the development of new integrable

models. It also grewas anindependent areain

math-ematial physis showing interesting onnetions with

other mathematial subjets suh as knottheory and

non-ommutativegeometry.

Atthispointduetospaeandtimelimits,inherent

to aleture, itwouldbeuseful tomakerefereneto a

ertainnumberofexellentreviewswhereoneannd

a deeper insight into the QISM and quantum groups,

aswellasaomprehensivelistofreferenes[9℄.

In the next setion the QISM is introdued and

quantum groupsare dened. The hoie of

presenta-tion followsanalgebraiapproah,givingaquite

gen-eral andmodelindependentframework.

InsetionIIIweshowhowtoobtain

multiparamet-riquantumspinhainsstillbasedonalgebrairesults.

Themotivation of that setion isrelated to thestudy

oftheeetofboundaryonditionsin models

desrib-ing systems of orrelated eletrons. In partiular we

establish aorrespondene between twistedboundary

onditionsandmultiparametrimodels [10,11,12℄

SetionIVisdevotedtomentioningsomeother

de-velopmentsandtodrawsomeindiationsaboutfuture

work.

Before we proeed some aknowledgments are in

order. The present work has muh proted from the

disussionswith myolleagues from CBPF,Maro

R-Monteiroand Ligia Rodrigues aswell aswith my

ol-laborators and friends, Angela Foerster, Katrina

Hib-berd, Antonio Lima-Santosand Jon Links,whose

le-turenotes[13℄ havebeenextremelyuseful.

II Quantum Inverse Sattering

Method: a telegraphi

ver-sion

Letus introdue herein a verybrief way someof the

algebraistruturedening theQISM.LetT i

j

(); 1

i;j n , be n 2

generators of an abstrat algebra A

and 2C is alled the spetral parameter. Consider

aninvertibleoperator

R ()2End(V V);

where V is an n-dimensionalvetorspae. R maybe

writteninomponentformas

R ()= X

ijk l R

jl

ik ()e

i

j e

k

l :

Onean set

T()= X

ij e

i

j T

j

i ();

andimposegeneralizedommutationrelationsinAvia

R

12

( )T

13 ()T

23 ()

(2)

where the subsripts refer to the embeddings in End

(V V)A. R k l

ij

()maybeseentogivethestruture

onstantsofthealgebraA,ifonewrites (1)as

R jl

ik

( )T

p

j ()T

q

l

()=T j

k ()T

l

i ()R

pq

lj

( ):

From (1)andtheylipropertyof thetraeone an

showthattheelements

T

13 ()T

23

()=R 1

12

( )T

23 ()T

13 ()R

12

( ) (2)

()=(trI)T()= n

X

i=1 T

i

i ();

ofthealgebraAommute

[();()℄=0; 8;2C:

The fat that () provides a one-parameter family

of mutually ommuting elements of the algebra A is

deeply related to the denition of integrability as we

shall disuss later. A suÆient ondition for A to be

assoiativeandthenbeabletoobtainmatrix

represen-tationsisthat

R

12

( )R

13

( w)R

23

(v w) (3)

=R

23

(v w)R

13

( w)R

12

( );

onthespaeEnd(V V V),whihistheelebrated

Yang-Baxterequation. We all the algebraA dened

insuhawayaYang-BaxteralgebraoraYangian

alge-bra. The fatthat R ()must satisfytheYang-Baxter

equationprovidesuswiththeadjointrepresentation,

T j

i ()

= X

k ;l R

jl

ik ()e

k

l :

Furthermore,theYangianalgebraAhasastruture

ofabi-algebrawhihanbeseenfromtheexisteneof

thefollowingalgebrahomomorphisms,theo-produt

:A!AA

denedby

T j

i ()

= X

k T

j

k

()T k

i ()

andtheo-unit

:A!C

T j

i ()

= Æ j

i :

The signiane of the o-produt is that it allows

ustobuild tensorprodutrepresentationsofA.

If

1 ;

2

aretworepresentationsofAwhihaton

thespaesV

1 ;V

2

respetivelythen

(

1

2 )

T j

i ()

=

1 T

k

i ()

2

T j

k ()

givesarepresentationonV

1 V

2

. Wemayalsousethe

oppositeo-produtgivenby

T j

()

=T k

()T j

()

whihisalsoanalgebrahomomorphism.

II.1 Quasi-triangularHopf algebras

Inthe above we havedened the Yangian algebra

Aandseenthatithasabi-algebrastruture. The

dis-ussedpropertiesarepartoftheonstrutionof

quan-tumgroups,orquasi-triangularHopfalgebras. AHopf

algebraanbedenedasabi-algebrathatpossessesan

antihomomorphism

S:A!A;

suhthat

m(SI)(a)=m(IS)(a)=i(a);

where m andi arerespetively themultipliationand

unit elementmapsonA,denedby

m(ab)=ab

and

i()=I;

8a2A and 2C:

The key ingredient in the denition of aquantum

groupisthe existeneof anelement thatestablishes a

relation between the o-produt and the opposite

o-produtdevelopinganisomorphismbetweenthetensor

produt

1

2 !

2

1

oftworepresentations. More

preisely, aHopfalgebraAis quasi-triangularifthere

existsaninvertibleelementR2AA,alledthe

uni-versalR-matrix,that satisesthefollowingrelations,

(a)R = R(a);8a2A (4)

(I)R = R

13 R

12

(I)R = R

13 R

23

and

(SI)R=(IS 1

)R=R 1

:

AsaresultoftheaboverelationstheuniversalR-matrix

isasolutionoftheYang-Baxterequation,

R

12 R

13 R

23 =R

23 R

13 R

12

(5)

One of best known examples of a quantum group is

U

q (sl

2

), whih is assoiatedto the anisotropi

Heisen-berg model. Muh of theabove disussionan be

ex-tended to superalgebrasand to aÆne (super)algebras.

TheuniversalR-matrixRpresentedabovedoesnot

de-pendonaspetralparameter. AYang-Baxterequation

thatdependsonaspetralparametermaybeobtained

forquantumaÆne(super)algebrasanditssolution

pro-videsaspetralparameterdependentR-matrix,byuse

(3)

Baxter-that throughBaxterization itis possible to obtain

R-matriesrelatedtonewintegrablesystems.

II.2 Integrable systems: anoverview

Using the representations of a Yangian algebra A

one is in position to onstrut a one-dimensional

ab-stratintegrablequantumsystem. Forthispurposelet

usdenetheLaxoperatorastheadjointrepresentation

L j

i ()=

X

k ;l R

jl

ik ()e

k

l :

WheretheR-matrixsatisestheYang-Baxter

equa-tiononV V foragivenvetorspaeV. Those

Lax-operatorsareloalmatrixoperators,meaningthatthey

atonsomeinternalspaeatapartiularsite. Onthe

(N+1)-foldtensorprodutspaewemayonstrutthe

monodromymatrix

T()=L

0N ()L

0(N 1) ()::::L

01 ();

whihgivesarepresentationofAonthespaeV N

as

R

12

( )L

13 ()L

23

()=L

23 ()L

13 ()R

12

( );

where thesubsript3refersto thespaeV N

andthe

spae to whih thesubsript 0refers is usually alled

the auxiliaryspae. Onealso denes,in this

represen-tation, thetransfermatrix

t()=tr

0

T()=(())= X

i T

i

i ()

!

and itiseasytoverify thatthetransfermatries

om-mute.

[t();t()℄=0;8;2C:

Letusnowexpandthetransfermatrixinapowerseries

t()= X

k

k

k

;

from theommutationrelationsitfollowsthat

[

k ;

j

℄=0 8k;j;

and one may interpret the operators

k

as

onserva-tion lawsfor some abstrat one-dimensionalquantum

system ating on the spae V N

. We onsider that

a model is integrable when the number of onserved

quantitiesandthenumberofdegreesoffreedomofthe

systemareequal.

From theintertwining relation forthe monodromy

matrixwhen=itisreasonabletoexpetthatR (0)

anbemadeproportionaltothepermutationoperator

P,withthatinminditmaybepossibletoextratfrom

the transfer matrixsome operators for whih one an

giveaphysialinterpretation.

In partiular, assuming that the R-matrix an be

normalizedsothatR (0)=P,onehas

t(0)=tr L(0)=P P ::::P :

Thisoperatorwillatasashiftoperatoronaperiodi

lattieofN sites.

AlsousuallyonedenestheHamiltonianas

H =t 1

(0)t 0

(0)=t 0

(0)t 1

(0);

wheretheprimedenotesdierentiationwithrespetto

thevariable. Furthermore itispossibletoseethat

t 1

(0)t 0

(0)= N

X

i=1 h

i(i+1) ;

where

h= d

d

( PR ()) j

=0 ;

andN+11.

Thus we have dened a Hamiltonian that is the

sum of loal two-site Hamiltonians ating on a

one-dimensionallattiewithperiodiboundaryonditions.

Most integrable models on one dimensional latties,

suh as the XXZ or anisotropi Heisenberg model

[4℄, the supersymmetri t-J model [15-19℄ and the U

model[20, 21℄, fall into the abovedesription. Within

the framework of the QISM in order to obtain

solu-tionsof partiularmodelsandgetthespetrumofthe

ommuting familyof operatorst()one usesthe

alge-braiBetheansatz(ABA) [6, 9℄. The ABA providesa

rigorousmethod for obtainingtheBethe ansatz

equa-tions. As the main interest here is to reveal some of

the interplay between quantum groups and quantum

integrablesystems we refer to the exellent literature

available[6,9℄forthedetailsontheABA.

III Multiparametri Integrable

Systems

Hereweshowhowtoobtainmultiparametriquantum

spin hains using Reshetikhin's onstrution [22℄ for

multiparametri quantum algebras. We also

demon-strate that under appropriate onstraints these

mod-els may be transformed to quantum spin hains with

twistedboundaryonditions[12℄.

Let (A; ; R ) denote a quasitriangular Hopf

al-gebra where and R denote the o-produt and

R-matrixrespetively. Suppose that there exists an

ele-mentF 2AAsuh that

(I)(F)= F

13 F

23

; (I)(F) =F

13 F

12 ;

F

12 F

13 F

23

= F

23 F

13 F

12

; F

12 F

21

=I (6)

Theorem 1 of [22℄ states that (A; F

; R F

) is also a

quasitriangular Hopf algebra with o-produt and

R-matrixrespetivelygivenby

F

=F

12 F

21

; R

F

=F

21 R F

21

: (7)

Intheasethat(A; ; R )isanaÆnequantumalgebra

wehavefrom[22℄ thatF anbehosentobe

F =exp X

(H

i H

j H

j H

i )

ij

(4)

wherefH

i

gisabasisfortheCartansubalgebraofthe

aÆne quantum algebra and the

ij

; i < j are

arbi-trary omplex parameters. For our purposes we will

extendtheCartansubalgebrabyanadditionalentral

extension(not theusualentral harge)H

0

whih will

atasasalarmultiple oftheidentityoperatorin any

representation.

SupposethatisalooprepresentationoftheaÆne

quantum algebra. Welet R (), R F

() be the matrix

representativesof R and R F

respetively, whih both

satisfytheYang-Baxterequation

R 12 ( )R 13 ()R 23

()=R

23 ()R 13 ()R 12 ( ):

If R ()j

=0

= P with P the permutation

opera-tor then R F

()

=0

=P as a result of (6). We may

onstrutthetransfermatrix

t F

()=tr

0 (N+1) I F N R F 01 = tr 0 R F 0N ()R F 0(N 1) ()::::R F 01 () ; (9) where F N

isdenedreursivelythrough

F

N

= II:::: F F N 1 = F

I::::I

F

N 1

: (10)

Thesubsripts0and1,2,...,N denotetheauxiliaryand

quantum spaes respetively and tr

0

is the traeover

thezerothspae. FromtheYang-Baxterequationit

fol-lows that the multiparametritransfer matriest F

()

form a ommuting family. The assoiated

multipara-metrispinhain Hamiltonianisgivenby

H F = t F () 1 d du t F () =0 = N 1 X i=1 h F i;i+1 +h F N1 ; (11) with h F = d du PR F () =0 :

Throughuseof(6)wemayalternativelywrite

J N = G N 1 G N 2 ::::G 1 ; G i = F iN F i(N 1) ::::F i(i+1) ; (12)

weandene anewtransfermatrix

t()=J 1 N t F ()J N =tr 0 (N+1) (I N )(F 10 R 01 F 10 ) ;

wherewehaveemployedtheonventiontoletF denote

boththealgebraiobjetanditsmatrixrepresentative.

Throughfurtheruseof(6)wemayshowthat

t()=tr

0 F 10 F 20 ::::F N0 R 0N ()R 0(N 1) () (13)

:::R ()F ::::F );

andtheassoiatedHamiltonianisgivenby

H = (t()) 1 d du t() =0 (14) = N 1 X i=1 h i;i+1 + F N(N 1) ::::F N1 2 h N1 F 1N ::::F (N 1)N 2 where h= d du PR ()

=0 :

The above Hamiltonian desribes a losed system

where instead of the usual periodi boundary

ondi-tions we now have a more general type of boundary

ondition. The boundary termin theabove

Hamilto-nianisaglobaloperator;i.e. itatsnon-triviallyonall

sites. Howeverweaninfatinterpretthistermasa

lo-aloperatorwhihouplesonlythesiteslabeled1and

N. Itanbeshownthattheboundarytermommutes

withtheloalobservablesh

i;i+1

fori6=1; N 1. This

situation is analogous to the losed quantum algebra

invarianthainsdisussedin [23℄.

Fromtheaboveonstrutionwemayalsoyield

mod-elswithtwistedboundaryonditionsbyanappropriate

hoie of F. Reallthat we extendthe Cartan

subal-gebrabythe entralelementH

0

. Letthis elementat

asI in the representation where issomeomplex

number. If we now hoose

ij

= 0 for i 6= 0 in the

expression(8)thematrixF fatorizesasF =M 1

1 M

2

with

M=exp l X i=1 0i H i ! ;

and l is the rank of the underlying quantum algebra

U

q

(g). Usingthefatthat theR-matrixsatises

[R (); I H

i +H

i

I℄=0; i=1;2;:::;l

tellsusthat

[R (); M

1 M

2 ℄=0:

InthisasetheHamiltonian(15)reduesto

H = N 1 X i=1 h i;i+1 +M 2N 1 h N1 M 2N 1 ; (15)

whih is preisely the form for asystem with twisted

boundaryonditions(see[24℄).

IV Final Remarks

Weareawarethatinthisshortandhighlybiasedreview

it is virtuallyimpossibleto onveyallthe rihness

in-volvedinthestudyofquantumintegrablesystemsand

quantumgroups. Neverthelessitis importantto

men-tionsomeofitshighlightsastheintersetionwith

on-formal eld theories (see [25℄ and referenes therein).

In fat from the saling limit of integrable models it

ispossibletoobtaininformationaboutonformaleld

(5)

the Bethe ansatz equations of some models it is

pos-sible to alulate suh quantities asthe entral harge

andtheonformaldimensions.

Alsoduetothequestforanappropriatetheory

ex-plaining high T

superondutivity there has been an

inreasinginterestin integrablemodelsdesribing

or-relatedeletrons. Examples ofsuhmodelsarethe

su-persymmetrit Jmodel[15-19℄,theEKS[26℄andthe

U model[20, 21℄ that are generalizations of the

Hub-bardmodel(see[27,28℄),aswellasmodelsrelatedtoa

Temperley-Liebalgebra[29-31℄. Morereentlyan

inte-grable modelof orrelatedeletronsbasedonanso(5)

algebra andshowingo-diagonallong-rangeorder has

beenproposed[32℄.

The future points towards a multitude of

di-retions some of them being the investigation of

reation-diusion models [33℄,the study of q-vertex

operators[34℄, the relation of integrable models with

quantummatrixmodels[35℄andthereentlyproposed

integrableladdermodels[36℄.

Referenes

[1℄ W.Heisenberg,Z.Phys.38,441(1926).

[2℄ H.Bethe,Z.Phys.71,205(1931).

[3℄ L.Onsager,Phys.Rev.65,117(1944).

[4℄ C.N.YangandC.P.Yang,Phys.Rev.150,321(1966);

150,327(1966);151, 258(1966).

[5℄ R.J.Baxter,Pro.Roy.So.A289,1359(1978).

[6℄ L.D.Faddeev,E.K.Sklyanin,A.Takhtajan,Teor.Mat.

Fiz.40,194(1979).

[7℄ M.Jimbo,Lett.Math.Phys.10,63(1985).

[8℄ V.G.Drinfeld,Pro.Int.Cong.Math., 798(Berkeley)

(1986).

[9℄ E.K. Sklyanin,in Nankai Letures in Mathematial

Physis, ed. Mo-Lin Ge, (Singapore: World

Si-enti), 63 (1992). V.E. Korepin, N.M. Bogoliubov

andA.G.Izergin,QuantumInverse Sattering Method

and Correlation Funtions (Cambridge: Cambridge

University Press) (1993). V. Chari and A.

Press-ley,A Guideto Quantum Groups (Cambridge:

Cam-bridge University Press) (1994). M.Chaihian and A.

Demihev,Introdution to Quantum Groups

(Singa-pore: World Sienti) (1996). C. Gomez, M.

Ruiz-Altaba and G. Sierra, Quantum Groups in

Two-Dimensional Physis(Cambridge: Cambridge

Univer-sityPress)(1996).

[10℄ M. R-Monteiro, I. Roditi, L.M.C.S. Rodrigues and

S.SiutoPhys.Lett.B354,389(1995).

[11℄ A. Foerster, I.Roditiand L.M.C.S. Rodrigues, Mod.

Phys.Lett.A11,987(1996).

[12℄ A.Foerster,J.LinksandI.Roditi, J.Phys.A31,687

(1998).

[13℄ J.Links,LetureNotesonStatistialPhysis,

unpub-lished.

[14℄ G.WDelius,M.D.GouldandY.-Z.Zhang,Nul.Phys.

B432,377(1994).

[15℄ C.K.Lai,J.Math.Phys.15,1675 (1974).

[16℄ B.Sutherland,Phys.Rev.B12,3795(1975).

[17℄ P.Shlottmann,Phys.Rev.B36,5177(1987).

[18℄ F.H.L.EsslerandV.E.Korepin,Phys.Rev.B46,9147

(1992).

[19℄ A.Foerster andM. Karowski, Phys.Rev.B46,9234

(1992);Nul.Phys.B396,611(1993).

[20℄ A.J.Braken,M.D.Gould,J.R.LinksandY.-Z.Zhang,

Phys.Rev.Lett.74,2769(1995).

[21℄ K.E.Hibberd,M.D.GouldandJ.R.Links,J.Phys.A

29,8430(1996).

[22℄ N.Reshetikhin,Lett.Math.Phys.20,331(1990).

[23℄ J.LinksandA.Foerster,J.Phys.A30,2483(1997).

[24℄ H.J.deVega,Nul.Phys.B240,495(1984);

C.M.YungandM.T.Bathelor,Nul.Phys.446,[FS℄

461(1995).

[25℄ V. Pasquier and H. Saleur, Nul. Phys. B 316, 523

(1990).

[26℄ F.H.L. Essler, V.E. Korepin and K.Shoutens, Phys.

Rev.Lett.68(1992)2960;ibid.70,73(1993).

[27℄ F.H.L.EsslerandV.E.Korepin,ExatlySolvable

Mod-elsofStrongly CorrelatedEletrons(Singapore: World

Sienti)(1994).

[28℄ P.B. Ramos and M.J. Martins, J. Phys.A 30, L195

(1997).

[29℄ J.Links,J.Phys.A29,L69(1996).

[30℄ A.Foerster, J.Links andI. Roditi, Mod. Phys.Lett.

A12,1035(1997).

[31℄ A.Lima-Santos,I.RoditiandA.FoersterInt.J.Mod.

Phys.A13,4309(1998).

[32℄ A.Foerster,J.LinksandI.Roditi,J.Phys.A32,L441

(1999).

[33℄ F.C.Alaraz,M.Droz,M.Henkel,V.Rittenberg,

An-nalsofPhys.230,250(1994).

[34℄ O. Foda, M. Jimbo, T. Miwa, K. Miki and A.

Nakayashiki,J.Math.Phys.35,13(1994).

[35℄ C.-W.H.Lee and S.G. RajeevPhys.Lett. B 436, 91

(1998).

Referências

Documentos relacionados

Since Feynman first introduced the concept of a quantum computer [13] and noted the apparent expo- nential cost to simulate general quantum systems with classical computers there

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

De acordo com a metodologia utilizada pode-se concluir que a maioria dos profissionais da área médica confia na eficácia dos medicamentos genéricos; prescreve medicamentos

Major, minor depression and depressive symptoms are mostly underdiagnosed and undertreated in cardiovascular patients, although several studies have found that they

Em suma, o financiamento do BNDES para a agroindústria sucroenergética no período recente atendeu de forma majoritária, mas não unicamente, o eixo Centro-Sul do país, priorizando

Pretendeu-se conhecer as áreas de atenção de enfermagem e intervenções de enfermagem definidas pelos enfermeiros no momento da alta hospitalar, como referência para

We present a review of some appliations of quantum eld theory in the physis of ondensed matter.. stressing the extremely fruitful interation between these