• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número3"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Dendranthema

grandiflorum

,

a

hybrid

ornamental

plant,

is

a

source

of

larvicidal

compounds

against

Aedes

aegypti

larvae

Kassia

C.V.W.

Spindola

a

,

Naomi

K.

Simas

b

,

Celso

E.

dos

Santos

a

,

Ary

G.

da

Silva

c

,

Wanderson

Romão

d

,

Gabriela

Vanini

d

,

Samantha

R.C.

da

Silva

d

,

Grazielle

R.

Borges

e

,

Fernando

G.

de

Souza

e

,

Ricardo

M.

Kuster

a,d,∗

aInstitutodePesquisasdeProdutosNaturais,CentrodeCiênciasdaSaúde,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

bFaculdadedeFarmácia,CentrodeCiênciasdaSaúde,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

cFunctionalEcologyLaboratory,UniversidadedeVilaVelha,BoaVista,ES,Brazil

dNúcleodeCompetênciaemQuímicadoPetróleo,DepartamentodeQuímica,UniversidadeFederaldoEspíritoSanto,Vitória,ES,Brazil

eBiopolymersandSensorsLaboratory,InstitutodeMacromoléculas,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15October2015 Accepted21January2016 Availableonline9February2016

Keywords:

Aedesaegypti

Caffeoylquinicacids Agribusiness Fattyacids Larvicidalactivity Triterpenoids

a

b

s

t

r

a

c

t

Inhybridcultivatedform,Dendranthemagrandiflorum(Ramat.)Kitam.,Asteraceae,flowers( Chrysan-themummorifoliumRamat.)wereutilizedintheproductionofextracts,whichwereanalyzedforlarvicidal activityagainstAedesaegyptithirdinstarlarvae.MethanolanddichloromethaneextractsshowedLC50

valuesof5.02and5.93ppm,respectively.UsingGC–MS,phytochemicalanalysesofthedichloromethane extractshowedthepresenceoftriterpenoidsandfattyacids,whileflavonoidsandcaffeoylquinicacids wereshowntooccurinthemethanolextractbyESIFourierTransformIonCyclotronResonanceMass Spectrometry(ESI-FT-ICR-MS).Triterpenoidsandfattyacidsarewellknowninsecticidalcompounds. Fromthisstudy,itcanbeconcludedthatD.grandiflorumgrownforfloriculture,asanagribusiness,can haveadditionalapplicationsasrawmaterialfortheproductionofinsecticidalproducts.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Knownforover2000years,thechrysanthemumisan

ornamen-talplantnativetoChina.ItbelongstothegenusDendranthema, Asteraceae,andnumerouscultivarshavebeenproduced(Kimetal.,

2015).Thecutchrysanthemumisoneofthemostcommercially

successfulflowersbythediversityofitsinflorescence(Brackmann etal.,2005).Floricultureis arepresentativeactivityin Brazilian agribusinessand, assuch,it hasmadeanoutstandingeconomic and technological contribution. In particular, the

chrysanthe-mumculture (Dendranthema grandiflorum (Ramat.) Kitam.) has

greatimportanceinBrazilianfloriculture,anditscultivationhas increasedthroughoutthecountry(Polanczyketal.,2008).Climate isanimportantfactorthatfavorstheexpansionoffloriculture,as anagribusiness,inBrazil.Specifically,itallowsforthecultivationof temperateandtropicalflowerswithlowcostandhighproduction allyearlong(DaSilvaJunioretal.,2011).

∗ Correspondingauthor.

E-mail:ricardo.m.kuster@ufes.br(R.M.Kuster).

DengueisamajorpublichealthprobleminBrazil.The trans-missionofthedenguevirustohumansoccursthroughthebiteof themosquitoAedes aegypti.Thediseasecanbetemporarily dis-abling,butinitshemorrhagicform,itcanresultindeath.Although publicpoliciesexist formosquitocontrol,resistanceto conven-tionalinsecticidesisconcerningtohealthauthorities(Liu,2015). Therefore,this paperdescribesa naturalproduct,extractsof D. grandiflorum,whichareobtainedfromthecultivar“yellowsheena”, asasourceofcompoundswithlarvicidalactivityagainstA.aegypti

thirdinstarlarvae.Thestudiedplantisorganicallycultivatedinthe StateofRiodeJaneiro,NovaFriburgoCity.Inviewofitslarvicidal potential,thecutflowershouldalsosupporttheestablishmentof floricultureasanimportantagribusinessinBrazil.

Materialsandmethods

Plantmaterial

Dendranthema grandiflorum (Ramat.)Kitam., Asteraceae, yel-lowsheena,ahybridunderorganiccultivation,wasobtainedfrom farmersinNovaFriburgo,StateofRiodeJaneiro,inSeptember2013 andbotanicallyidentifiedbyDr.MarianaMachadoSaavedrafrom

http://dx.doi.org/10.1016/j.bjp.2016.01.003

(2)

theRiodeJaneiroBotanicalGarden(voucherspecimendeposited attheherbariumProf.JorgePedroPereiraCarautaundernumber

HUNI3531).

Preparationofextracts

Theflowersweredriedinanovenat50◦Cfor7days(223g).

Afterthat, they weresubmitted tomethanol extractionover a

periodof15days.Theextractwasfilteredandthesolventremoved byrotativeevaporationundervacuumtoobtainthefirstproduct,a dryMeOHextract(80g).Seventygramsweresuspendedinwater, andaftersolventremoval,thesuspensionwaspartitioned with dichloromethanetoyieldthesecondproduct,adryCH2Cl2extract (29g).

Phytochemicalanalysis

Electron Impact Ionization/Mass Spectrometry (EI/MS) was

obtainedusing a ShimadzuQP5050 GC–MSon a DB-5 column

(30m×0.25mm and film thicknessof 0.25␮m, J&W Scientific) withanionizingenergyof70eV.Programmingoftheoven temper-aturestartedat80◦C,whichwasmaintainedfor2min.Then,the temperaturewasraisedto260◦Catarateof15C/minandagain increasedto320◦Cat5C/min.Anisothermduring10minwas performedatthisfinaltemperature.Thetemperaturesofinjector andionsourcewerekeptat250◦Cand280C,respectively.Helium wasusedasthecarriergaswithaconstantflowof1.1mlmin−1. Onemicroliterofthesamplewasinjectedwithasplitratioof70:1.

MassspectraofextractcompoundswerecomparedwiththeNIST

MassSpectralDatabase(MSSearch2.0)andwithliteraturedata (AssimoupoulouandPapageorgiou,2005).

Themethanolicextractof D. grandiflorumwasanalyzedin a

mass spectrometer(Model9.4 T Solarix, BrukerDaltonics,

Bre-men,Germany),whichwassettooperateinnegativeionmode,

ESI(-),overamassrangeofm/z200–1300.Theparametersofthe ESI(-)sourcewereasfollows:nebulizergaspressureof0.5–1.0bar, capillaryvoltageof3–3.5kV,andtransfercapillarytemperatureof 250◦C.ThemassspectrumwasprocessedusingtheCompassData Analysissoftwarepackage(BrukerDaltonics,Bremen,Germany). Aresolvingpower,m/m50%=∼500,000,inwhichm50%isthefull peakwidthathalf-maximumpeakheightofm/z∼=400andamass accuracyof<1ppm,providedtheunambiguousmolecularformula assignmentsforsinglychargedmolecularions.Elemental compo-sitionsofthecompoundsweredeterminedbymeasuringthem/z

values.Theunsaturationlevelofeachmoleculecouldbededuced directlyfromitsdoublebondequivalent(DBE),followingthe equa-tionDBE=c−h/2+n/2+1,wherec,h,andnarethenumbersof carbon,hydrogen,andnitrogenatoms,respectively(Ferreiraetal., 2014;Costaetal.,2014;DeSáetal.,2015;Nascimentoetal.,2015). Molecularformula,measuredm/zvalues,DBE,andmasserrorare showninTable1.Tandemmassspectrometry(MS2)experiments

were also performedon a quadrupole analyzer coupledto the

FT-ICRmassspectrometer,andquadrupoleFouriertransformion

cyclotronresonancemassspectrometry(Q-FT-ICRMS)was

per-formedforionsofm/z353,431,447,449and515.Thefragments produced (m/zvalues) fromESI(-)-MS/MSspectraare shownin Table3.

Larvicidalactivity

A. aegypti larvae that originatedfrom theNPPN strain were rearedinthelaboratoryundercontrolledphotoperiod(12hlight and12hdark)at27◦Cand80±10%rel.humidityintraysfilled withdechlorinatedtapwaterandcaninefood.

Larvicidalactivitywasconductedfollowingthemethodadapted fromWHO(1970).Foreachtreatmentandcontrol,fivelarvaeof thirdstageinstars,orearlyfourthstageinstars,weretransferred into20mlglassesin14.9mlof distilledwater. Thesolutionsof crudeextracts,orfractions,werepreparedinethanolandadded (0.1ml)tothetreatmentglasseswithapipettetogivethefinal

assay concentrations. Controls received aqueous solution with

0.1mlofethanolonly.After24h,thenumberofdeadlarvaeineach glasswascounted.Alltreatmentswerereplicatedthreetimes.The 50%lethalconcentration(LC50)wascalculatedwitha95% confi-dencelimitbyProbitanalysis.

Resultsanddiscussion

Phytochemicalanalysis

As shown in Fig. 1, methanol extract of D. grandiflorum by

ESI(-)FT-ICRMSyielded 11compoundsidentified asfattyacids, phenylpropanoidsandflavonoids(Table1).Allcompoundswere detected as deprotonated molecules, i.e., adduct ion, as repre-sentedby[M−H]− ion,formedbytheinteractionofa molecule withaproton,orhydrogen(Table1).Amongfattyacids,palmitic

acid, m/z 255.2330, was the major compound found in the

crudeextract.Phenylpropanoids,suchasmonocaffeoylquinicacids,

(8)

(9)

(10)

(11) (1)

(2)

(3) (5) (7)

(4)

200 300 400 500 600 700 800

(6)

m/z

(3)

Table1

Fattyacids,flavonoidsandcaffeicacidderivativesofmethanolextractofDendranthemagrandiflorum,asidentifiedfromESI(-)-FT-ICRMS.

Identification m/zmeasured Identifiedcompounds [M−H]− FragmentsMS/MS DBE Error(ppm)

1 255.2330 Palmiticacid C16H31O2 – 1 0.05

2 269.0456 Apigenin C15H9O5 – 11 0.26

3 279.2330 Linoleicacid C18H31O2 – 3 0.32

4 285.0406 Luteolin C15H9O6 – 11 0.31

5 293.2123 Linolenicacidmethylester C18H29O3 – 4 0.30

6 295.2280 Linoleicacidmethylester C18H31O3 – 3 0.45

7 353.0881 Monocaffeoylquinicacid C16H17O9 191 8 0.77

8 431.0987 Apigenin7-O-glucoside C21H19O10 269 12 0.65

9 447.0937 Luteolin7-O-glucoside C21H19O11 285 12 0.90

10 449.1094 Eriodictyol7-O-glucoside C21H19O11 431,413,387,311,and287 11 1.01

11 515.1201 Dicaffeoylquinicacid C25H23O12 353 14 1.18

Table2

Compositionoffattyacids,steroidsandtriterpenoidsinthedichloromethanepartitionofDendranthemagrandiflorum.

Retentiontime–RT(min) MajorfragmentsfromMSdata Identifiedcompounds Relativeconcentration(%)

12.95 270(M+),227,143,99,87,74(100%),55 Methylpalmitate 2.98

13.20 256(M+),213,185,171,157,143,129,115,83,73,57(100%) Palmiticacid 3.97 13.40 284(M+),256,241,227,213,157,101,88(100%),83,73,55 Ethylpalmitate 0.23

14.15 294(M+),263,95,81,67(100%),55 Linoleicacidmethylester 0.15

14.20 292(M+),264,149,135,122,108,93,79(100%),67,55 Linolenicacidmethylester 0.17

14.36 298(M+),255,199,143,87,74(100%),55 Methylstearate 0.12

Totalrelativeconcentrationoffattyacids 8.42

32.75 412(M+),55(100%) Stigmasterol 3.68

33.79 414(M+),55(100%) Sitosterol 13.47

34.45 426(M+),218(100%),203(49%),189 ␤-Amyrin 13.53

35.20 426(M+),218(100%),203(18%),189 ␣-Amyrin 22.03

35.79 468(M+),218(100%),207(61%),203(40%),189(20%) ␤-Amyrinacetate 1.68 36.50 468(M+),218(100%),207(67%),203(21%),189(40%) ␣-Amyrinacetate 4.78 36.68 426(M+),207,189(100%),175,147,135,121,109,95,81,68,55 Lupeol 5.06

Totalrelativeconcentrationoftriterpenoidsandsteroids 64.23%

m/z 353.0878, and dicaffeoylquinic acids, m/z 515.1201, were detectedasminorcompounds.Amongtheflavonoidsidentified, apigenin7-O-glucoside,m/z431.0987,eriodictyol7-O-glucoside,

m/z449.1093,andluteolin7-O-glucoside,m/z447.0933,werethe maincompoundsoftheMeOHextract.PurificationandNMR iden-tificationoftheflavonoidsweredescribedbySpindola(2015),and allthecompoundsweredescribedtooccurinD.grandiflorum(Lin andHarnly,2010;Ueharaetal.,2012).Table1showstheidentified compoundsforfattyandcaffeicacids,aswellasflavonoidsofD. grandiflorummethanolextract,asidentifiedfromESI(-)-FT-ICRMS data.

GC–MSanalysesofCH2Cl2extractshowsabundantpeaksintwo differentregionsinthechromatogram:(i)from6to18minand(ii) from30to38min.Ingeneral,fourteencompoundswere identi-fied,andtheirproposedstructures,molecularionsandfragments, retentiontime,andabundancerelativevaluesaresummarizedin Table2.

Inthefirstregion(approximatelybetween13.0and15.0min), themajor fatty acids were as follows: methyl palmitate, ethyl palmitate,palmiticacid,stearicacid,ethylstearate,linoleicacid methyl ester and linolenic acid methyl ester (Table 2). How-ever,in thesecond region(32–38min), steroids(sitosterol and

stigmasterol) and triterpenoids (␤-amyrin, ␣-amyrin, ␤-amyrin acetate,␣-amyrinacetateandlupeol)canbeseenaslessvolatile substancesofthechromatogram.Theywerepreviouslyidentified inChrysanthemummorifolium(TakahashiandSato,1979).The rel-ativeabundancesofthetwomainclassesofidentifiedcompounds were8.42%forfattyacidsand64.23%fortriterpenoidsandsteroids. AsshowninTable2,triterpenoidsandsteroidsarethemajor compoundsinthelipophilicextractofD.grandiflorum.Theywere alsodescribedtooccurinotherChrysanthemumspecies,suchasC. indicum,C.macrocarpumaswellasC.morifolium(D.grandiflorum) cultivars(TakahashiandSato,1979;Akihisaetal.,2005;Kumar etal.,2005).

Larvicidalactivity

LC50valuesforMeOHandCH2Cl2extractswere5.02ppmand 5.93ppm,respectively(Table3).

Attheconcentration1␮g/ml,temephos(TradeName:Abate®), aspositivecontrol,killedallthetestedlarvae.SincetheCH2Cl2 extractwasobtainedasthesecondproductfromthecrudeMeOH extract,itisreasonabletothinkthatthelarvicidalactivityofthe flowersisconcentratedinthemorelipophiliccompoundsofthe

Table3

LarvicidalefficacyofextractsfromDendranthemagrandiflorumflowersagainstAedesaegypti.

Samples LC50(ppm)(LCL/UCL) LC95(ppm)(LCL/UCL) LC99(ppm)(LCL/UCL)

Dichloromethaneextract 5.9322

(5.1476/6.7862)

12.5650 (11.0297/14.9183)

15.3131 (13.3070/18.4474)

Methanolextract 5.0220

(3.6004/6.3780)

14.5585 (12.1309/18.8137)

18.5096 (15.2542/24.3771)

Temephos nd nd 1.0

(4)

plant.Infact,fromotherstudiedplants,ourgrouphasidentified larvicidalcompoundswiththatnonpolarcharacteristic,including terpenesandalkamides(Simasetal.,2004,2007,2013),although more polarcompounds,like saponins(Amin et al.,2011), have alsobeendescribedaslarvicides.Lipophiliccompoundsaremore active larvicidesbased ontheir easiertransport through insect cellwallandcytoplasmicmembrane(MannandKaufman,2012). FromtheCH2Cl2extractofD.grandiflorum,severallipophilic com-poundswerefound,includingfattyacids,steroidsandtriterpenes. Palmiticacidwasthemajorfattyacididentified.Rahumanetal. (2000)testedpalmiticacidasalarvicide againstCulex quinque-fasciatus,Aedes stephensi and A. aegypti.The LC50 values found were129,79and57ppm,respectively.Thesteroidssitosteroland stigmasterol werealso identified.Sitosterol, isolated from Abu-tilonindicum(L.)Sweet,wasactiveatLC5011.5,3.5and26.7ppm, respectively,againstA.aegypti,A.stephensiandC. quinquefascia-tuslarvae(Ghosh,2013;Rahumanetal.,2008).Triterpenesseem tobethemostactiveofallthecompoundsidentified.Oneofthe triterpenesinD.grandiflorum,␣-amyrinacetate,showedeffective activityagainstallfourlarvalgrowthstages(LC500.01–0.02ppm) andpupa(LC500.005ppm)of themosquitoAnophelesstephensi (Kuppusamyetal.,2009).Cholesterolisoneofthemostimportant nutrientsforA.aegyptilarvaldevelopment.TheproteinAeSCP-2 isusedbymosquitoesforthetransportof cholesterol. Inactiva-tionofitkillsthelarvae.Kumaretal.(2010)biocomputationally evaluatedtheabilityoftriterpenestoinactivatethisprotein,and

␣-amyrinwasstructurallyconsideredtobethemosteffective larvi-cidewiththisparticularmechanismofaction.Themostabundant compoundsintheCH2Cl2 extractoftheflowerswere␣-amyrin (22%),alongwith␤-amyrin(13.5%)andsitosterol(13.47%).

Khanetal.(2014)comparedthelarvicidalactivityofextracts of C. morifolium leaves(LC50 1.5ppm) withextracts of Parthe-niumhysterophorusL.leaves(LC50 1.02ppm)and foundslightly betterefficiencyofthelatteragainstAedesalbopictusthirdinstar mosquitolarvae.Unfortunately,theydidnotdescribethe chemi-calcompositionofthecomparedplants.Bothplantsbelongtothe Asteraceaefamily;therefore,someclassesofcompoundsare simi-lar.P.hysterophorusisasourceofsesquiterpenelactones(Dattaand Saxena,2001),compoundswithhighinsecticidal,cytotoxic, antitu-mor,allergenic,antifeedantandphytotoxicactivity,andtheplant isconsidereda noxiousweedthatthreatensbiodiversity(Patel, 2011).Littleevidencesupportsthepresenceofsesquiterpene lac-tonesinC.morifolium,thechrysanthemumofflorists(Schulzetal., 1975),althoughalantolactonewasdescribedtooccurinthisspecies (Sertoli et al., 1985). Also no environmentaldamage hasbeen reportedforC.morifolium.Pyrethrinesterscompriseanother com-poundclasswithhighinsecticidalactivity.Thesecompoundsare formedbycombiningtwoacids(chrysanthemicacidandpyrethric acid)withthreealcohols(pyrethrolone,cineroloneandjasmolone). Theyare,however,restrictedtoChrysanthemumcinerariaefolium

Vis. (Nagar et al., 2015).Using the techniques described, both sesquiterpenelactonesandpyrethrinswereinvestigated,butnot found,inD.grandiflorum.

InaNuclearMagneticResonance(NMR)-basedmetabolomics

study,Leissetal.(2009)wereabletocomparethemetabolome ofthrips-resistantandthrips-susceptiblechrysanthemums.They concludedthattheresistancewasassociatedwithhigheramounts ofchlorogenicacid,amonocaffeoylquinicacid,inthrips-resistant species.Phenylpropanoidsareknownfortheirinhibitoryeffecton herbivoresandpathogens.Thepossibletoxicityofchlorogenicacid toinsectsresultsfromitsoxidationproduct,chloroquine(Felton etal.,1991).Tunónetal.(1994)testedanethanolextractof Achil-lea millefolium L. for antifeedant activity against the mosquito

A.aegypti.Afterfractionationoftheextract,chlorogenicacidat 1.2mg/cm2wasoneofthemostactivecompoundsasamosquito repellent,causing100%larvalmortality.Flavonoidsandfattyacids,

atthesameconcentration,wereactive,butwithlower percent-ageofmortality.ThegreaterlarvicidalactivityofMeOHextractof

D.grandiflorum,whencomparedCH2Cl2extract,whichoriginates fromit,could,therefore,resultfromthepresenceofcaffeoylquinic acidsandotherphenolics,apartfromthetriterpenoids,steroids and fattyacids,aspreviously discussed.Basedontheresultsof thepresentstudy,itmaybespeculatedthatthecompounds,when

combined,mightactasapotentphytocomplexwithsynergistic

effect,butthisneedstobeconfirmedinfuturestudies.

D.grandiflorumhybridcanbeasourceoflarvicidalcompounds easilyextractedwithmethanol.Ornamentalplantsareabundantly cultivatedinBrazilianhighlands;however,afteraging,theyare dis-carded.Yet,theresultsofthepresentstudydemonstratethatsuch discardedplantscouldberecycledfortheirmethanolicextractsand usedtoproposeinnovativeproducts,as,forexample,larvicides, thushelpingtodevelopagribusinessinBrazil.

Authors’contributions

KCVWS(PhDstudent)collectedandidentifiedplantsamples,

ranthelaboratorywork,analyzeddata,anddraftedthepaper.NKS, CESandGRBcarriedoutbiologicalstudies.WRandGVperformed massspectrometryanalysisandSRCStochromatographicanalysis. FGSperformedacriticalreadingofthemanuscript.AGSconducted statisticalanalysis.RMKdesignedthestudy,supervisedthe labo-ratoryworkandofferedcriticalcommentsonthemanuscript.All authorshavereadthefinalmanuscriptandapprovedthe submis-sion.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankCAPESandCNPqforfinancialsupportand

Prof. Sandra Zorat Cordeiro, UNIRIO-RJ, for the plant specimen depositattheherbarium(Prof.JorgePedroPereiraCarauta).

References

Akihisa,T.,Franzblau,S.G.,Ukiya,M.,Okuda,H.,Zhang,F.,Yasukawa,K.,Suzuki, T.,Kimura,Y.,2005.AntitubercularactivityoftriterpenoidsfromAsteraceae flowers.Biol.Pharm.Bull.28,158–160.

Amin,E.,El-Hawary,S.S.,Fathy,M.M.,Mohammed,R.,Ali,Z.,Tabanca,N.,Wedge, D.E.,Becnel,J.J.,Khan,I.A.,2011.Triterpenoidalaaponins:bioactivesecondary metabolitesfromZygophyllumcoccineum.PlantaMed.77,488–491.

Assimoupoulou,A.N.,Papageorgiou,V.P.,2005.GC–MSanalysisofpenta-and tetra-cyclictriterpenesfromresinsofPistaciaspecies.PartI.Pistacialentiscusvar.Chia. Biomed.Chromatogr.19,285–311.

Brackmann,A.,Bellé,R.A.,deFreitas,S.T.,deMello,A.M.,2005.Vaselifeof chrysan-themum(Dendranthemagrandiflorum)ingibberellicacidsolutions.Cienc.Rural 35,1451–1455.

Costa,H.B.,Souza,L.M.,Soprani,L.C.,Oliveira,B.G.,Ogawa,E.M.,Korres,A.M.N., Ven-tura,J.Á.,2014.Monitoringthephysicochemicaldegradationofcoconutwater usingESI-FT-ICRMS.FoodChem.174,139–146.

DaSilvaJunior,A.G.,Perez,R.,Amin,D.,Ferreira,M.A.S.,2011.Designand implemen-tationofflowerexportconsortiuminCearástate,Brazil.In:2011International EuropeanForum,Innsbruck-Igls,Austria.

Datta,S.,Saxena,D.B.,2001.Pesticidalpropertiesofparthenin(fromParthenium hysterophorus)andrelatedcompounds.PestManage.Sci.57,95–101. DeSá,L.Z.C.M.,Castro,O.S.,Lino,F.M.A.,Bernardes,M.J.C.,Viegas,J.C.J.,Dinis,T.C.P.,

Santana,M.J.,Romão,W.,Lião,L.M.,Ghedini,P.C.,Rocha,M.L.,2015.Antioxidant potentialandvasodilatoryactivityoffermentedbeveragesofjabuticababerry (Myrciariajaboticaba).J.Funct.Foods8,169–179.

Felton,G.W.,Donato,K.K.,Broadway,R.M.,Duffey,S.S.,1991.Impactofoxidized plantphenolicsonthenutritionalqualityofdietaryproteintoanoctuid herbi-vore,Spodopteraexigua.J.InsectPhysiol.38,277–285.

(5)

Ghosh,A.,2013.Efficacyofphytosterolasmosquitolarvicide.AsianPac.J.Trop.Dis. 3,252.

Khan,G.Z.,Khan,I.A.,Khan,I.,2014.ExploitingthelarvicidalpropertiesofParthenium hysterophorusL.forcontrolofdenguevector,Aedesalbopictus.Pak.J.WeedSci. Res.20,431–438.

Kim,Y.S.,Kim,S.H.,Sung,S.Y.,Kim,D.S.,Kim,J.B.,Jo,Y.D.,Kang,S.Y.,2015.Genetic relationshipsamongdiversespray-andstandard-typechrysanthemum vari-etiesandtheirderivedradio-mutantsdeterminedusingAFLPs.Hortic.Environ. Biotechnol.56,498–550.

Kumar,A.,Singh,S.P.,Bhakuni,R.S.,2005.SecondarymetabolitesofChrysanthemum

genusandtheirbiologicalactivities.Curr.Sci.89,1489–1501.

Kumar,R.B.,Shanmugapriya,B.,Thiyagesan,K.,Kumar,S.R.,Xavier,S.M.,2010. Asearchformosquitolarvicidalcompoundsbyblockingthesterolcarrying protein,AeSCP-2,throughcomputationalscreeninganddockingstrategies. Pharmacogn.Res.2,247–253.

Kuppusamy,C.,Murugan,K.,Arul,N.,Yasodha,P.,2009.Larvicidalandinsectgrowth regulatoreffectof␣-amyrinacetatefromCatharanthusroseusL.againstthe malariavectorAnophelesstephensiListon(Diptera:Culicidae).Entomol.Res.39, 78–83.

Lin,L.-Z.,Harnly,J.M.,2010.Identificationofthephenolicscomponentsof chrysan-themumflower(ChrysanthemummorifoliumRamat).FoodChem.120,319–326. Leiss,K.A.,Maltese,F.,Choi,Y.H.,Verpoorte,R.,Klinkhammer,P.G.L.,2009. Identi-ficationofchlorogenicacidasaresistancefactorforthripsinChrysanthemum. PlantPhysiol.150,1567–1575.

Liu, N.,2015. Insecticideresistance in mosquitoes:impact, mechanisms, and researchdirections.Annu.Rev.Entomol.60,537–559.

Mann,R.S.,Kaufman,P.E.,2012.Naturalproductpesticides:theirdevelopment, deliveryanduseagainstinsectvectors.Mini-Rev.Org.Chem.9,185–202. Nagar,A.,Chatterjee,A.,UrRehman,L.,Ahmad,A.,Tandon,S.,2015.Comparative

extractionandenrichmenttechniquesforpyrethrinsfromflowersof Chrysan-themumcinerariaefolium.Ind.CropsProd.76,955–960.

Nascimento,I.R.,Costa,H.B.,Souza,L.M.,Soprani,L.C.,Merlo,B.B.,Romão,W.,2015. Chemicalidentificationofcannabinoidsinstreetmarijuanasamplesusing elec-trosprayionizationFT-ICRmassspectrometry.Anal.Methods7,1415–1424. Patel,S.,2011.HarmfulandbeneficialaspectsofPartheniumhysterophorus:an

update.3Biotech1,1–9.

Polanczyk, R.A., Pratissoli, D., Paye, H.S.,Pereira, V.A., Barros, F.L.S., Oliveira, R.G.S.,Passos,R.R.,MartinsFilho,S.,2008.Induc¸ãoderesistênciaàmosca

minadora em crisântemo usando composto silicatado. Hortic. Bras. 26, 240–243.

Rahuman,A.A.,Gopalakrishnan,G.,Ghouse,B.S.,Arumugam,S.,Himalayan,B.,2000. EffectofFeronialimoniaonmosquitolarvae.Fitoterapia71,553–555. Rahuman,A.A.,Gopalakrishnan,G.,Venkatesan,P.,Geetha,K.,2008.Isolationand

identificationofmosquitolarvicidalcompoundfromAbutilonindicum(Linn.) Sweet.Parasitol.Res.102,981–988.

Schulz,K.H.,Hausen,B.M.,Wallhöfer,L.,Schmidt-Löffler,P.,1975. Chrysanthemen-allergie.2.ExperimentelleUntersuchungenzurIdentifizierungderAllergene. Arch.Dermatol.Forsch.251,235–244.

Sertoli,A.,Campolmi,P.,Fabbri,P.,Gelsomini,N.,Panconesi,E.,1985.Eczemacaused bycontactwithChrysanthemummorifoliumRamat.G.Ital.Dermatol.Venereol. 120,365–370.

Simas,N.K.,Lima,E.D.C.,Conceic¸ão,S.D.R.,Kuster,R.M.,deOliveiraFilho,A.M.,Lage, C.L.S.,2004.Naturalproductsfordenguetransmissioncontrol–larvicidal activ-ityofMyroxylonbalsamum(redoil)andofterpenoidsandphenylpropanoids. Quim.Nova27,46–49.

Simas,N.K.,Lima,E.D.C.,Kuster,R.M.,Lage,C.L.S.,DeOliveiraFilho,A.M.,2007. Poten-tialuseofPipernigrumethanolextractagainstpyrethroid-resistantAedesaegypti

larvae.Rev.Soc.Bras.Med.Trop.40,405–407.

Simas,N.K.,Dellamora,E.C.L.,Schripsema,J.,Lage,C.L.S.,Filho,A.M.O., Wessjo-hann,L.,Porzel,A.,Kuster,R.M.,2013.Acetylenic2-phenylethylamidesandnew isobutylamidesfromAcmellaoleracea(L.)R.K.Jansen,aBrazilianspicewith larvicidalactivityonAedesaegypti.Phytochem.Lett.6,67–72.

Spindola,K.C.W.,2015.CassiaaustraliseDendranthemagrandiflorum:plantas orna-mentaiscomo fontede substânciasantivirais einseticidase produtos de inovac¸ão.Tesededoutorado,ProgramadePós-graduac¸ãoemQuímicade Pro-dutosNaturais,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,174pp. Takahashi,M.,Sato,T.,1979.StudiesonthecomponentsofChrysanthemum

mori-foliumRamat.var.sinenseMakinoformaesculentumMakino.II.Componentsof oneofBrands“Mottenohoka”.Yakuga.Zasshi99,90–91.

Tunón,H.,Thorsell,W.,Bohlin,L.,1994.Mosquitopepellingactivityofcompounds occurringinAchilleamillefoliumL.(Asteraceae).Econ.Bot.48,111–120. Uehara, A., Nakata, M., Kitajima,J., Iwashina,T., 2012. Internal and external

flavonoidsfromtheleavesofJapaneseChrysanthemumspecies(Asteraceae). Biochem.System.Ecol.41,142–149.

Imagem

Fig. 1. ESI(-)FT-ICR mass spectrum of MeOH extract of Dendranthema grandiflorum flowers.

Referências

Documentos relacionados

We find that the generalised hyperbolic distribution is a better fit than the normal inverse Gaussian as it better estimates the probability at the tails, especially the left

Desta forma, a dispensa deve respeitar não apenas a validação e cedência da terapêutica prescrita pelo médico, como também assegurar o fornecimento das

The statistical analysis of the results showed that there were no significant differences in the values of cholesterol, total lipids, fatty acids and substances relative to

Changes in the trends of fatty acids profile (palmitic, oleic, linoleic and linolenic acids), some of mineral elements (Fe, Mg, Ca and P) and chlorophyll contents were similar

The variables considered during reflux extraction process including 80% methanol and ultrapure water were tested for the extraction of polyphenols from rachis, leaflets and fruits

Esta conceção, inicialmente elaborada por Umberto Eco na obra Apocalípticos e Integrados, suscitou desde logo um profundo debate: os últimos viam a cultura de massas como

En la valoración sobre la conformidad de estas medidas con el precepto convencional protector de la vida familiar, el Tribunal averigua, designadamente, si dichas

Uma limitação do método de análise de componentes principais é que ele não pode ser utilizado para variáveis aleatórias simbólicas, por exemplo, em dados de