• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número6"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia26(2016)759–762

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Short

communication

Spermidine

alkaloid

from

Banara

parviflora

Maria

Izabel

G.

Moritz

a

,

Lara

A.

Zimmermann

a

,

Sérgio

A.L.

Bordignon

b

,

Miguel

S.B.

Caro

c

,

Gabriela

M.

Cabrera

d

,

Jorge

A.

Palermo

d

,

Eloir

P.

Schenkel

a,∗

aDepartamentodeCiênciasFarmacêuticas,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

bCursodeCiênciasBiológicas,CentroUniversitárioLaSalle,Canoas,RS,Brazil

cDepartamentodeQuímica,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

dDepartamentodeQuímicaOrgánicayUMYMFOR,FacultaddeCienciasExactasyNaturales,UniversidaddeBuenosAires,BuenosAires,Argentina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17November2015 Accepted7June2016 Availableonline20July2016

Keywords:

Banaraparviflora

N1,N8-dibenzoylspermidinyl-N4-acetamide

Spermidinealkaloids

a

b

s

t

r

a

c

t

Banaraparviflora(A.Gray)Benth.isaspeciesthatbelongstoSalicaceaefamilyandisnativetoSouthern Brazil.FractionationoftheethanolicextractfromBanaraparvifloraleavesafforded,anewcompound iden-tifiedasN1,N8-dibenzoylspermidinyl-N4-acetamide,aspermidinealkaloid.Thestructurewaselucidated

byspectroscopicmethods(IR,MS,1H,13Cand2-DNMR).

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

TheSalicaceaefamilyhasacosmopolitandistribution, includ-ingabout50generaand1000species.MostgeneraofSalicaceae occurringinBrazilcompriseonlyafewspeciesandhavearestricted distribution,exceptforthespeciesofthegenusCaseariaandBanara

(SouzaandLorenzi,2005).ThegenusBanaraAubl.wasoriginally describedbyAubletin1775andwasinitiallyclassifiedas Flacour-tiaceae(Sobraletal.,2006).InChaseetal.(2002)approximately two-thirds of all Flacourtiaceae genera, including Banara Aubl., wereincludedin theSalicaceae family basedonmorphological andmolecularstudies(Chaseetal.,2002;Mosaddiketal.,2007). Thegenuscomprisesabout64species,mainlydistributedinSouth America.ThespeciesBanaraparviflora(A.Gray)Benth.ispopularly knowninRioGrandedoSulas“farinha-seca”,meaning“dryflour” (Sobraletal.,2006).OtherspeciesofFlacourtiaceaenowclassified asSalicaceaefamily,presentsmainlyphenylpropanoids, sesquiter-penesandclerodanediterpenesintheirconstitution(Vieira-Júnior etal.,2011;Xiaetal.,2015).Otherwise,wedidnotdetect diter-penescompoundsintheinvestigationofB.parviflora.Amongthe scarcechemicalstudiestothegenusBanara,thereisonescreening studythatindicatesthepresenceofacyanogenicglycosidefromB. parviflora(SpencerandSeigler,1985).

This paper describes the isolation and identification of the flavoneorientinandalsotheisolationandstructuralelucidation

Correspondingauthor.

E-mail:eloir.schenkel@ufsc.br(E.P.Schenkel).

ofanewderivativeofspermidinefromB.parvifloraleavesand con-tributeswithcompletespectraldatatocharacterizethiskindof alkaloid.

Materialsandmethods

Theinfrared spectra(IR)wereobtainedin anIRPrestige-21 FTIR-8400S(Shimadzu)usingKBr.TheNMRspectrawereobtained onanapparatusBrukerAvance2(1H:500MHz,13C:125MHz)in CDCl3.Chemicalshiftsaregivenin ı(ppm)usingTMSas inter-nalstandard.The 2Dexperiments(HSQC,HMBC,COSY,NOESY) were performed using standard Brukerpulse sequences. High-resolutionAPPI(MSandMS2)massspectrawereobtainedona BrukerspectrometerMicrOTOF-QII,inpositiveionmode.During theisolationprocedures,chromatographicseparationswere per-formedonsilicagel60columns(0.04–0.063mm,0.063–0.2mm), activatedcharcoal (Nuclear®)and gelpermeationonmolecular SephadexLH-20(GEHealthcare®).ForTLCanalysis,silicagel60 F256(Merck®)plateswereused.Thesubstances weredetected byultravioletabsorptionat254and366nm,andalsoby spray-ingwithDragendorffreagentanddiphenylboryloxy-ethylamine1% inmethanol(NaturalReagent).ForHPLCanalysis,aSCL-10A Shi-madzuchromatographwasused,consistingofa LC-10ADpump andNT-10AVultravioletdetector.HPLCgrademethanol, acetoni-trile and acetic acid were provided by MTedia®. The purified waterMilli-Q(Millipore®)wasalsousedasmobilephase.A Shim-packpreparativeHPLCcolumn(ODS10mm,250mm×21.2mm)

was used for the separations and 0.45␮m Nylon membranes http://dx.doi.org/10.1016/j.bjp.2016.06.003

(2)

760 M.I.Moritzetal./RevistaBrasileiradeFarmacognosia26(2016)759–762

(Millipore®)forthefiltrationof themobilephase andsamples. Theflavonoidorientin(3′,4,5,7-tetrahydroxyflavone-8-glucoside,

≥98.0%)purchasedfromExtrasynthèsewasusedasstandard.

Theplantmaterial(B.parviflora(A.Gray)Benth.,Salicaceae)was identifiedbyoneofus(SALB)andwascollectedinJanuaryof2009 inTaquarí,RioGrandedoSul.Voucherspecimens(ICN189972) weredepositedattheHerbariumofDepartmentofBotany,UFRGS. Thefreshleaves(400g)weregroundandextractedwithethanol 96◦C for seven daysat roomtemperature. Theextract was

fil-teredand concentrated ona rotaryevaporatorattemperatures below40◦C resultinginthecrude ethanolextractof theleaves

ofB.parviflora(15g).Thedriedethanol extract(15g)was frac-tionatedby Sigel vacuumliquid chromatography,using a step gradientfromhexanetoethylacetateandthenethylacetateto methanol as mobilephase, 200ml of each fraction. Eight frac-tionswereobtained.ThelastfractionH,whichhadthegreatest yield(9g),wasmostly composedofchlorophyllsand wasused to perform furtherfractionation on activated charcoal and sil-ica (1:1) using 200ml of methanol and methanol:acetonitrile (50:50, v/v) as mobile phase. The methanol fraction yielded 234mg whilethemethanol:acetronitrile fractionyielded45mg. Themethanolfraction(234mg)waspermeatedthroughSephadex LH-20 in methanol resulting mainly in two fractions (PS20-25: 8.2mg and PS60: 4.6mg) that were subsequently purified bypreparativeHPLC(mobilephase:acetonitrile:methanol:Milli-Q water(30:30:40,v/v/v),flowrate3ml/min,detectionat230nm) resultinginsubstances1and2.Theyieldofthesubstance1inthe

leaveswas0.004%(w/w)ofthedriedleaves.

Resultsanddiscussion

Asaninitialapproachtothechemicalcompositionoftheleaves, theethanolcrudeextractwasfirstanalyzedbyTLC,using differ-entsprayreagentsasDragendorff,EhrlichandNaturalReagentand twomajorcompoundsweredetected.Thefractionsandsubstances wereanalyzedbythinlayerchromatographytomonitorthe isola-tion.Theorientinstandardwasusedinbothtests,TLCandHPLC (injectedinthesameconditionswiththesubstance2)toconfirm theidentityofthecompound2.Thesubstance1waspositiveto Dragendorffreagent.Thesubstance2wasobtainedasyellowish

powderandshowedanUVspectrumsimilartoflavonoid deriva-tives.Afterwards,itwasidentifiedasorientinbyUV,TLCandHPLC comparisonwithanauthenticsample.

Substance1wasobtainedintheformofawhiteviscousoilthat aftersuccessivepurificationprocedureswaselucidatedby spectro-scopicanalysis(UV,IR,MSandNMR).Theultravioletmaximum absorptionwasobserved at232nm and 276nm (methanol).IR spectrumshowedacharacteristicabsorptionin3410vcm−1(>NH)

andat1643and1635vcm−1(>C O)suggestingthepresenceofan

aromaticamidederivative.Theatmosphericpressure photoioni-zation(APPI)highresolutionmassspectrumexhibiteda[M+H]+ion peakatm/z396.22623,thereforeamolecularformulaC23H29N3O3 wasdeduced,inaccordancewiththeNMRdata.

The13CNMRspectrumandtheDEPTexperimentsrevealedthe presenceof23carbonatoms,threeofwhicharecarbonyls(ıC171.8, 168.0and167.6),12carbonscorrespondtoaromaticrings,while theremainingcarbonscorrespondtosevenCH2andonlyoneCH3 group.Thismethylgroupwasattributedtoasingletmethyl reso-nanceatıH2.13.Somesignalsofthe1HNMRspectrum,namelyıH 6.85andıH7.92(broaddd),showednocorrelationsinthe HSQC-DEPT135spectrumandwereassignedtoNHprotons,takinginto accounttheinformationobtainedbyIRandMS.TheCOSY spec-trumclearlyshowedcorrelationsbetweentheabovementioned amideprotonswiththealiphaticmethylenehydrogensatıH3.47 and3.37.ThesemethylenehydrogensandtheotherCH2hydrogens

Table1

13Cand1HNMRdataofcompound1(1H,500MHz;13C,125MHz;CDCl 3,ppm).

Position 1

ıCa ıHb(multiplicity,JinHz)

1 36.2(CH2) 3.37(m,6.0;6.8)

2 27.1(CH2) 1.78(m,6.2;6.8)

3 42.5(CH2) 3.46(dd,6.2)

5 48.4(CH2) 3.32(dd,7.1)

6 26.0(CH2) 1.68(m)

7 27.0(CH2) 1.65(m)

8 39.1(CH2) 3.47(m)

9 171.8(C) –

10 21.3(CH3) 2.13(s)

8C-NH 6.85(dd,6.0;7.2)

1C-NH 7.93(dd,6.1;7.1)

1′ 167.6(C)

2′ 134.2(C)

3′;7127.0(CH) 7.87(dd,7.1;1.7)

4′;6128.5(CH) 7.43(dd,7.1;1.7)

5′ 131.3(CH) 7.48(m,7.1)

1′′ 168.0(C) –

2′′ 134.3(C)

3′′;7′′ 126.8(CH) 7.77(dd,7.2;1.5)

4′′;6′′ 128.5(CH) 7.43(dd,7.2;1.5)

5′′ 131.5(CH) 7.50(m,7.2)

a125MHz,CDCl 3. b500MHz,CDCl

3.

couldbesequentiallyassignedbyCOSYcorrelations.Twochains couldbedistinguished,onewith3carbonsandtheotherwith4 carbonsseparatedbya NH group,characterizingaspermidine derivative(Table1).

DetailedexaminationoftheHMBCcorrelationsallowed estab-lishingtheconnectivityasshowninFig.1,mainlythehydrogens of both monosubstituted aromatic rings and their correlations. Thus, the high-resolution mass spectra and its fragmentation pattern (Scheme 1), together with the NMR (1H, 13C and 2-D NMR) dataallowed us topropose thestructure of 1 asN1,N8 -dibenzoylspermidinyl-N4-acetamide.

This is the first report of the occurrence of this sub-stance in the literature, however, a similar structure, N1,N8 -dibenzoylspermidine,wasreportedbyAlemayehuetal.(1988)as a constituentof Cassiafloribunda Cav., Fabaceae.Theadditional acetamide couldbeincludedin thestructure byan acetylation usingacetyl-CoA(Dewick,2002).The1Hand13CNMRdataofthe compoundN1,N8-dibenzoylspermidine,providedintheliterature, werecomparedtothesubstance1data,herecharacterized,andthe

similarityofthesignalsallowedustoconfirmthestructure eluci-dation.Otherderivativesofspermidinehavealsobeenreported fromother plants,suchas N1,N10-di-dihydrocaffeoylspermidine fromextractsofIochromacyaneum,Solanaceae,anda feruloylsper-midineofCorylusavellanaL.,Betulaceae(Meureretal.,1986;Sattar

N H N O O H NH O H H H H H H H H H H H H H 3" 4" 5" 6" 7"

2" 1" 8 7 6 5 9 10 3 2 1 3' 7' 6' 5' 4' 1' 2'

(3)

M.I.Moritzetal./RevistaBrasileiradeFarmacognosia26(2016)759–762 761

N H

N

O O

NH

O

H

m/z396.2262 = [M+H]+= C 23H30N3O3

N H H2N

O

H

N O

N H HN

OH

H

N O

m/z336.2 = C21H26N3O

-C11H16N2O

N H O

m/z162.0923 = C10H12NO

H N

N O

O N

H OH

H N

N O

O N

H OH

-C7H7NO

H N

O

O

m/z275.1776 = C16H23N2O2

Scheme1.ProposedfragmentationpatternandthemainfragmentionsinhighresolutionMS/MSspectrumofthecompound1.

et al., 1990) as wella siderephore (iron transport compound), parabactinAanditsderivatives,fromMicrococcusdenitrificansand alsoexcretedbythesoilbacteriumParacoccusdenitrificans, fea-turingironchelatorproperties,thissubstanceactslikeatransport systemtoassimilateironinthemicroorganismwithahigh affin-ity totheferric l-parabactin receptor in membranes(Bergeron

etal.,1980,1988).Additionally, asiderophorealsoverysimilar tothesubstance1,agrobactinwasidentifiedasaconstituentof

Agrobacteriumtumefaciens(Ongetal.,1979).Consideringthefact thatthesiderophoresareirontransportcompoundsandcommonly theyarefoundonlyinmicroorganismsandinsomegraminaceous plants,thereisapossibilityofthesubstance1hadbeenisolated fromsomeendophyticmicroorganisms(AhmedandHolmström, 2014).

According to the methodologies described by Bianco et al. (2013), the antimicrobial (against Staphylococcus aureus and

Enterococcus faecalis), antiprotozoal (Leishmania braziliensis and

Trypanosoma cruzi)and antiviral (HerpesSimplex Virus type1) activitieswereevaluatedforthesubstance1,whichdidnotshow activityinthismodels,attheconcentrationtested.

N1,N8-dibenzoylspermidinyl-N4-acetamide(1):whiteoil,R f:

0.45(ethylacetate,waterandformicacid90:5:5).IR(KBr):3410, 1643,1635,1456,1309,615cm−1.UV/vis

max(MeOH):232nm; 273.3nm; 526.3nm. 1H and 13C NMR: Table 1. APPI MS: m/z 396.22623 ([M+H]+ (100), (calc. for C23H30N3O3+ 396.22817); MS/MSexperiment(CE15eV,Argon)on[M+H]+m/z396.23:m/z 354.21752[M+H-CH2CO]+(calc.forC21H28N3O2354.21760);m/z 336.20720[M+H-CH2CO-H2O]+,(calc.forC21H26N3O336.20704);

m/z275.17766[M+H-C7H7NO]+(calc.forC16H23N2O2275.17540);

m/z233.16654[m/z275-CH2CO]+(calc.forC14H21N2O233.16484) andm/z162.09237(calc.forC10H12NO162.09134).

Authors’contributions

MIGMcontributedwithlaboratorywork,structuralelucidation, analysisofthedataandwritingthemanuscript.LAZcontributed withtheextractionandisolationofthecompoundsfromB. parv-iflora.SALBsuggestedtheinvestigation,contributedincollecting theplant, identificationand herbarium deposit. JAP,MSBC and GMCparticipatedinthestructuralelucidationandspectroscopic analysisandtocriticalreadingthemanuscript.EPSsupervisedthe work,collectedtheplant,andcontributedwritingthemanuscript. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgment

Theauthorsgratefullythankthefinancialsupportofthisstudy andalsotheresearchstipendsfromtheCNPqtoMIGM,LAZand EPS.

References

Ahmed,E.,Holmström,S.J.M.,2014.Siderophoresinenvironmentalresearch:roles andapplications.Microb.Biotechnol.7,196–208.

Alemayehu,G.,Abegaz,B.,Snatzke,G.,Duddeck,H.,1988.Bianthraquinonesanda spermidinealkaloidfromCassiafloribunda.Phytochemistry27,3255–3258. Bergeron,R.J.,McGovern,K.A.,Channing,M.A.,Burton,P.S.,1980.Synthesisof

N4-acylatedN1,N8-bis(acyl)spermidines:anapproachto thesynthesisof

(4)

762 M.I.Moritzetal./RevistaBrasileiradeFarmacognosia26(2016)759–762

Bergeron,R.J.,Weimar,W.R.,Dionis,J.B.,1988.Demonstrationofferricl -parabactin-bindingactivityintheoutermembraneofParacoccusdenitrificans.J.Bacteriol. 170,3711–3717.

Bianco,E.M.,Oliveira,S.Q.,Rigotto,C.,Tonini,M.L.,Guimarães,T.R.,Bittencourt, F.,Gouvêa,L.P.,Aresi,C.,Almeida,M.T.A.,Moritz,M.I.G.,Martins,C.D.L., Sch-erner,F.,Carraro,J.L.,Horta,P.A.,Reginatto,F.H.,Steindel,M.,Simões,C.M.O., Schenkel,E.P.,2013.Anti-infectiveofmarineinvertebratesandseaweedsfrom theBraziliancoast.Molecules18,5761–5778.

Chase,M.W.,Zmarzty,M.D.,Lledo,K.J.,Wurdack,K.J.,Swensen,S.,Fay,F.,2002.When indoubtputitinFlacourtiaceae:amolecularphylogeneticanalysisbasedon plastidrbcLDNAsequences.KewBull.57,141–181.

Dewick,P.M.,2002.MedicinalNaturalProducts.ABiosyntheticApproach,2nded. JohnWiley&Sons,NewYork,pp.342.

Meurer,B.,Wray,V.,Grotjahn,L.,Wiermann,R.,Strack,D.,1986.Hydroxycinnamic acidspermidineamidesfrompollenofCorylusavellanaL.Phytochemistry25, 433–435.

Mosaddik,M.A.,Foster,P.I.,Booth,R.,Waterman,P.G.,2007.Phenolicglycosidesfrom someAustralianspeciesofFlacourtiaceae(Salicaceaesensulato).Biochem.Syst. Ecol.35,166–168.

Ong,S.A.,Peterson,T.,Neilands,J.B.,1979.Agrobactin,asiderophorefrom Agrobac-teriumtumefaciens.J.Biol.Chem.256,1860–2865.

Sattar,E.A.,Glasl,H.,Nahrstedt,A.,Hilal,S.H.,Zaki,A.Y.,El-Zalabani,S.M.H.,1990. HydroxycinnamicacidamidesfromIochromacyaneum.Phytochemistry29, 3931–3933.

Sobral,M.,Jarenkow,J.Á.,Brack,P.,Irgang,B.,Larocca,J.,Rodrigues,R.S.,2006. Flora Arbórea e Arborescente do Rio Grande do Sul. São Carlos: RiMa, 147–149.

Souza,V.C.,Lorenzi,H.,2005.BotânicaSistemática:guiailustradoparaidentificac¸ão dasfamíliasangiospermasdaflorabrasileira.InstitutoPlantarum,NovaOdessa, pp.333.

Spencer,K.C.,Seigler,D.S.,1985.Cyanogenicglycosidesandthesystematicsofthe Flacourtiaceae.Biochem.Syst.Ecol.13,421–431.

Vieira-Júnior,G.M.,Dutra,L.A.,Ferreira,P.M.P.,Moraes,M.O.,CostaLotufo,L.V., Pes-soa,C.O.,Torres,R.B.,Boralle,N.,Bolzani,V.S.,Cavalheiro,A.J.,2011.Cytotoxic clerodanediterpenesfromCaseariarupestris.J.Nat.Prod.74,776–781. Xia,L.,Guo,Q.,Tu,P.,Chai,X.,2015.ThegenusCasearia:aphytochemicaland

Imagem

Fig. 1. H–C correlations by HMBC experiments for substance 1.

Referências

Documentos relacionados

Esses medicamentos fazem parte dos chamados Anti-inflamatórios não esteroidais (AINES), uma classe de fármacos utilizados principalmente no tratamento da inflamação, dor e edema,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

trabalho do 63° Batalhão de Infantaria, Organização Militar do Exercito Brasileiro. Para a realização deste estudo foi aplicado um questionário entre todos os

Em sua pesquisa sobre a história da imprensa social no Brasil, por exemplo, apesar de deixar claro que “sua investigação está distante de ser um trabalho completo”, ele

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Entretanto, pesquisas apontam lacunas sobre o cenário geral dessas práticas, de modo que Ruela, Moura, Grasim, Stefanello, Iunes & Prado (2018), ao analisarem

INDEX TERMS: Poisonous plants, plant poisoning, Melia azedarach, Meliaceae, cattle.. 1 Accepted for publication on January

The aim of this study was to evaluate the spray deposition on leaves of coffee plants and the chemical control of the leaf miner provided by the application of