• Nenhum resultado encontrado

Rev. Bras. Reumatol. vol.55 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Reumatol. vol.55 número1"

Copied!
7
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

REUMATOLOGIA

ww w . r e u m a t o l o g i a . c o m . b r

Review

article

Possible

changes

in

energy-minimizer

mechanisms

of

locomotion

due

to

chronic

low

back

pain

-

a

literature

review

Alberito

Rodrigo

de

Carvalho

a,b,∗

,

Alexandro

Andrade

c

,

Leonardo

Alexandre

Peyré-Tartaruga

a

aUniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil bUniversidadeEstadualdoOestedoParaná,Cascavel,PR,Brazil cUniversidadedoEstadodeSantaCatarina,Florianópolis,SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23November2013

Accepted28January2014

Availableonline5January2015

Keywords:

Lowerbackpain

Humanlocomotion

Walk Biomechanics

Energyconsumption

a

b

s

t

r

a

c

t

Onegoalofthelocomotionistomovethebodyinthespaceatthemosteconomicalway

possible.However,littleisknownaboutthemechanicalandenergeticaspectsoflocomotion

thatareaffectedbylowbackpain.Andincaseofoccurringsomedamage,littleisknown

abouthowthemechanicalandenergeticcharacteristicsofthelocomotionaremanifestedin

functionalactivities,especiallywithrespecttotheenergy-minimizermechanismsduring

locomotion.Thisstudyaimed:a)todescribethemainenergy-minimizermechanismsof

locomotion;b)tocheckiftherearesignsofdamageonthemechanicalandenergetic

char-acteristicsofthelocomotionduetochroniclowbackpain(CLBP)whichmayendangerthe

energy-minimizermechanisms.Thisstudyischaracterizedasanarrativeliteraturereview.

Themaintheorythatexplainstheminimizationofenergyexpenditureduringthe

loco-motionistheinvertedpendulummechanism,bywhichtheenergy-minimizermechanism

convertskineticenergyintopotentialenergyofthecenterofmassandvice-versaduringthe

step.Thismechanismisstronglyinfluencedbyspatio-temporalgait(locomotion)

parame-terssuchassteplengthandpreferredwalkingspeed,which,inturn,maybeseverelyaltered

inpatientswithchroniclowbackpain.However,muchremainstobeunderstoodaboutthe

effectsofchroniclowbackpainontheindividual’sabilitytopracticeaneconomic

loco-motion,becausefunctionalimpairmentmaycompromisethemechanicalandenergetic

characteristicsofthistypeofgait,makingitmorecostly.Thus,thereareindicationsthat

suchchangesmaycompromisethefunctionalenergy-minimizermechanisms.

©2014ElsevierEditoraLtda.Allrightsreserved.

Correspondingauthor.

E-mail:alberitorodrigo@gmail.com(A.R.d.Carvalho).

http://dx.doi.org/10.1016/j.rbre.2014.01.005

(2)

Possíveis

alterac¸ões

no

mecanismo

minimizador

de

energia

da

caminhada

em

decorrência

da

dor

lombar

crônica

-

revisão

de

literatura

Palavras-chave:

Dorlombar

Locomoc¸ãohumana

Caminhada Biomecânica

Consumodeenergia

r

e

s

u

m

o

Umdosobjetivosdamarchaédeslocarocorponoespac¸odaformamaiseconômica

pos-sível.Porém,poucosesabecomoosaspectosmecânicoseenergéticosdacaminhadasão

afetadospeladorlombar.Ainda,casohajaprejuízos,épequenooconhecimentodecomo

ascaracterísticasmecânicaseenergéticasdacaminhadasemanifestamnasatividades

funcionais,principalmentenosmecanismosminimizadoresdeenergiadalocomoc¸ão.Este

estudoteveporobjetivos:a)descreverosprincipaismecanismosminimizadoresdeenergia

dalocomoc¸ão;eb)verificarseháindicativosdeprejuízosnascaracterísticasmecânicas

eenergéticasdacaminhadadecorrentesda dorlombarcrônica(DLC)quepossam

com-prometerosmecanismosminimizadores.Estudocaracterizadocomorevisãonarrativade

literatura.Aprincipalteoriaqueexplicaaminimizac¸ãododispêndioenergéticodurantea

caminhadaéadopênduloinvertidopeloqualomecanismominimizadorconverte

ener-giacinéticaemenergiapotencialdocentrodemassaevice-versaduranteapassada.Esse

mecanismoéfortementeinfluenciadoporparâmetrosespac¸os-temporaisdamarcha,tais

comocomprimentodepassoevelocidadepreferidadacaminhada,que,porsuavez,podem

estarseveramentealteradosempacientescomdorlombarcrônica.Contudoaindahámuito

queseentendersobreosefeitosdadorlombarcrônicasobreacapacidadedoindivíduode

praticarumamarchaeconômica,poisosprejuízosfuncionaispodemcomprometer

carac-terísticasmecânicaseenergéticasdessamodalidadedemarchaetorná-lamaisdispendiosa.

Desta forma,háindicativosde quetaismudanc¸asfuncionaispossamcomprometeros

mecanismosminimizadoresdeenergia.

©2014ElsevierEditoraLtda.Todososdireitosreservados.

Introduction

The adoption of locomotion on two legs as an exclusive

formofmarchwas animportantmarker ofhuman

evolu-tion,and energysaving, inthis type oflocomotion,is one

ofthemainreasonsfortheestablishmentofbipedalism.1–3

However,the bipedallocomotioncannotalways be

consid-eredasasimpletask.Thetrunk,essentiallyunstableforits

multijointcharacteristics,maintainsits stabilityby

muscu-laractionthatconstantlymodifiesitselftoensuretheneeded

posturetomovements.4Therefore,theabilityoflocomotion

depends on a complex interaction of patterns of

coordi-natedmovementsofthehip,pelvisandlumbarspine,which,

whenharmonic,determinethenormalbiomechan-icalgait

pattern.1,5

Walkingisaformoflocomotionthatstandsoutby

influenc-ingmultipleaspectsinthephysical,socialandevolutionary

spheresofhumanexistence.6Ananthropologicaland

evolu-tionaryvisionmakesusthinkthat, ifthemodernmancan

walkquietlyandusethisabilitytoperformhisdailyactivities,

inthepastperhapsthiswasnotsosimpleforourancestors

-probablybipedallocomotionwasusedforescape,producing

tirednessandfatigue.Bipedallocomotionwasusedtopermit

man’sflight,causinggreaterexhaustionandfatigue.

Through-outtheevolutionaryperiod,certainanatomicalchangeswere

occurringslowly over thousandsof years,toallowthe

fix-ationofthis modeofmarchandpromotingadaptationsof

humanlocomotorsystemthatprovideuswithperspectives

on musculoskeletal disorders found in the current clinical

scenario.7

The biped march encompasses many aspects that go

beyondasimpleactofplacingoneleginfrontoftheother.

It can be understood as a cyclic movement with loss and

recoveryofthebalance,duetotheconstantchangeof

posi-tion ofthe bodycenterofmasspromotingbody instability.

Suchinstabilityiscompensatedbylegmovements,ranging

fromastancephase,whichcanbesingle-legorbipedal,and

a swingphase, inwhichthe legisfreeintheair. Thus,at

the end ofthe swing phase, the center ofmass lies in a

posteriorrelationtotheanteriorlyextendedlegandbegins

to rise, due to the kinetic energy,at the beginning of the

stance phase, after the heel contact with the ground (i.e.,

heel-strike). During the first half of the step, the kinetic

energy decreases asthe center ofmass gains height,with

consequent increase ofpotential energy which reaches its

peak in the middle of the one-leg support phase. In the

second half ofthe step, theopposite occurs; the centerof

masslosesheightandthepotentialenergyisconvertedinto

kinetic energy. The reconversion between the mechanical

energies connected to the center of mass during walking

plays a crucial role in the individual’s ability to walk as

economicallyaspossible,andisinfluencedbyanumberof

spatio-temporalgaitvariables,suchassteplengthandgait

speed.8–11

Theimpairmentofthenormalgaitcycleandthelossof

characteristicsofenergyconservationbetweentrunkandlimb

movementsresultingreaterenergyexpenditure.Patientswith

diseasesthatcompromisetheabilitytowalktendtodevelop

compensatorygaitpatternstominimizetheadditionalenergy

(3)

Lowbackpainisacommonsyndromeworldwide,

generat-ingrelevantsocioeconomiccosts.Accordingtoestimates,80%

ofpeoplewillexperienceanepisodeofthiskind ofpainat

somepointintheirlife.Lowbackdisordersaremultifactorial;

and pathologic, physical, neurophysiological, psychological

andsocialfactors haveadifferentimpacton each

individ-ual,andinabout90%ofcasesitisnotpossibletopinpoint

thecause ofthe dysfunction,whichcharacterizesthe

non-specific low back pain picture. Despite the limitations to

establishtherelationshipamongclinicalcharacteristicsand

theconditionscausinglowbackpainwiththeeffectiveness

oftreatmentprocedures,it is observedthatbiomechanical

andphysiologicallossestendtofollowchroniccasesoflow

backpain.Many oftheselossesare identifiedinthe

litera-ture,suchasdecreasedspeedofacomfortablegait,decreased

steplengthandswingtime,12,13 decreasedmaximalaerobic

capacity,14decreasedresistanceofthelumbarextensorswith

consequentanteriordisplacementofthecenterofmass,poor

posturalcontrol,15,16incoordinationofthepelvicandthoracic

rotations,17 delayintheplanned activationofthe

transver-susabdominis,andimpairedrelaxationphenomenonduring

trunkanteflexion.18,19

Ina study thatidentified the mainactivitiesperformed

withdifficultyintheperceptionofpatientswithchroniclow

backpain,itwasobservedthat56%of101volunteersreported

lowtoleranceto walkingas oneofthe fiveactivities more

poorlyperformed,thisbeingthemostprevalentiteminthat

sample.20However,ourknowledgeitisstilllimitedabouthow

themechanical and energeticaspectsoflocomotion,

espe-ciallywithrespecttogait,areaffectedbylowbackpainand

howthedamagesresultingfromitsoccurrencearemanifested

in functional activities, mainly with regard to the

energy-minimizer mechanisms of locomotion. The understanding

ofthese issueswouldbeanimprovementtoexplainifthe

changesobservedduringwalkinginthispopulationaredue

totheinabilityofthebodytoprovideaneconomicalgait,orif

theyexistpreciselytopreservetheseenergy-minimizer

mech-anisms.

Thus,this studyaimed: a)todescribe themain

energy-minimizermechanismsoflocomotion;b)tocheckifthereare

signsofdamageformechanicalandenergeticcharacteristics

ofgaitduetochroniclowbackpain,whichmayendangerthe

energy-minimizermechanisms.

Method

Thisstudywascharacterizedasanarrativereviewof

litera-ture.Weconductedaliteraturesearchinelectronicdatabases:

Capes,PubMedand SciELOarticles,writteninEnglish,

Por-tugueseandSpanishlanguages,listedfromtheintersection

ofthefollowingkeywordsinEnglish(lowbackpain,human

locomotion, walking,biomechanics, gait, energy

consump-tion)andtheirequivalents inPortugueseidiom(dorlombar;

locomoc¸ãohumana;caminhada,biomecânica,marcha,consumode energia) in a search period delimited from 1998 to March

2013; as well as classic articles related to the subject,

cited in the references of those previously selected

arti-cles.

Energy-minimizer

mechanisms

of

human

locomotion

Thenormalhumangaitcanbedefinedasthemarchmodality

thathumansusetomoveatlowspeeds.Thegaitcyclecanbe

understoodasthetimeperiodbetweentwoidenticalevents

inthewalkingprocess,andthisfullcycleisdividedintotwo

phases:stanceandswingphases.21

Thestance phasebeginswiththefirst contactofafoot

(usuallytheheel)withtheground,endingwiththelast

con-tactofthesamefootwiththeground,correspondingtohallux

take-off.Theswingphasebeginswiththelastcontactofthe

footwiththeground,endingwiththefirstcontralateralfoot

contactwiththe ground.Duringthefirsthalfofthe stance

phase,thereisadecreaseinthevelocityofthecenterofmass

untilthemidpointisreached;ontheotherhand,inthe

sec-ondhalfthecenterofmassincreasesitsspeedagain.During

thestancephase,thelegremainsextendedandthemidpoint

ofthisphasecoincideswiththehighestpointofthetrajectory

ofthecenterofmass.8–10

Complexphenomena,suchasgait,inwhichmany

vari-ablescontributetotheiroccurrence(someofthemdifficultto

quantify),maynotalwaysbeamenabletostudiesinreal

con-ditions.However,insomefieldssuchasbiomechanics,these

phenomenaaresimplifiedintheformofmodels,whichcanbe

mathematical,physicalorconceptualones;andsuchmodels

allowustounderstandthephenomenonmorebroadly.22,23

Although contradictory, thereare two theories(models)

reportedinstudieswithrespecttomarchthatseektoexplain

themechanismsbywhichthisphenomenoncanbemore

eco-nomical:thetheoryofsixdeterminantsofgaitandthetheory

ofinvertedpendulum.Themaindifferencebetweenthetwo

theoriesresidesinthetrajectoryofthecenterofmass.23

Thelessacceptedisthetheoryofsixdeterminants,which

proposesthatasetofkinematicfeatures,suchaskneeflexion

atthetimeofstanceandpelvicrotations,amongothers,are

usedstrategicallytopermitthatthecenterofmassofthebody

describeastraighttrajectoryduringwalking.Theargument

forsuchbehavioristhattheverticaloscillationsofthecenter

ofmassgenerateanadditionalenergyexpenditure,duetothe

needformusclecontractiontospeeditupandliftitagainst

gravity.Themaincriticismofthismodelisthat,tominimize

theenergyexpenditureassociatedwiththeoscillationsofthe

centerofmass,itcreatesaneedforthelegsremainingbent

inthemostpartofthestep,andthat thishasmorecostly

energeticconsequences,incomparisonwiththeoscillations

ofthecenterofmass.23

On the other hand,the theory ofinverted pendulumis

the more accepted, being usedin the studies.Thehuman

march,onlevelgroundandunderabiomechanical

perspec-tive,resemblesa“rollingegg”oraninvertedpendulum;these

analogiesdescribethebehavioroftheenergychangesrelated

tothecenterofmassofthebody.Mechanicalmodelsthat

rep-resentthebehaviorofthebodycenterofmass,understoodas

theexternalworkdonetoraise/loverandaccelerate/delaythe

centerofmassinrelationtotheenvironment,havebeenused

toexplainhoweachtypeofgaitemploysandsaves

(4)

canalso beseen asarigid segment model),when applied

togait, the kineticand potentialenergies change interms

ofphaseopposition(whileoneofthemreachesaminimum

value,theother reachesa maximumvalue) duringcontact

withthe ground in the unipodal phase, allowingan

inter-changebetweenthetwoenergies.Thismodelproposesthat

themasscenterdescribesacurvilineartrajectoryduringthe

step(similartoapendulumpositionedupsidedown)andthat

thelower limbthatsupportstheweightbehavesasarigid

segment.Inaddition,thismechanismofenergyfluctuation

reducesthemechanicalworkimposedbythemuscular

sys-tem,thankstotheenergyconservation;and thisreduction

isproportionaltothebody’sabilitytoreconvertoneenergy

typeintoanother(i.e.,kineticenergyintopotentialenergy,and

vice-versa)–amechanicalfeatureknownasrecovery.8,10,24,25

Thus,the actofwalking withthe kneeextendedinthe

stancephaseappearstoresultintwoadvantages:inaddition

toprovidingtheverticaldisplacementofthecenterofmass,

facilitatingenergyconservationthroughexchangesbetween

kineticandpotentialenergy,alsoallowsthattheactionline

(vector)ofthebodyweightpassnearthelowerlimbjoints,so

thatthereislittleneedformuscleactiontopreventthatthese

jointssufferfromtheirimposedloads.Thesetwoconditions

favorenergyconservation.26

Thependulum transductionbetweenkineticand

poten-tialenergiesreducestheexpenditureofchemicalenergyfrom

both the positive muscle work (that required to increase

potentialandkineticenergy)andnegativemusclework(that

requiredtoreducepotentialandkineticenergy).Thefraction

of reconverted mechanical energy due to pendular

trans-duction (recovery – %R) is defined mathematically as: %

R=100 (W+

f+W+v – W+ext) / (W+f+W+v) whereW+f is the

positiveworkcalculatedfromthesum,throughoutthestep

cycle, of the positive increments promoted by the

previ-ousdisplacementduetohorizontalkineticenergy(CEh=0,5

MVh2,whereM=massofthebodyandVh=theinstantaneous

horizontal velocityof the center of mass); W+

v represents

thepositivework calculatedfrom thesum,throughoutthe

step cycle, of the positive increments promoted by the

verticaldisplacement dueto gravitational potential energy

(PE=Mgh, whereM=body mass,g=the accelerationdue to

gravity and h=the instantaneous height of the center of

mass);+Wextisthepositiveexternalworkcalculatedfrom

the sum, throughoutthe step cycle, ofthe positive

incre-mentspromotedbythetotalmechanicalenergyofthecenter

of mass (Emtot=PE+CEh+CEv, where PE=potential energy,

CEh=horizontal kinetic energy, and CEv=vertical kinetic

energy).CEv(CEv=0,5MVv2,whereMv=instantaneous

verti-calspeed)hasbeenneglectedinthiscalculation,becauseit

doesnotinfluenceW+

v,sincetheverticalvelocityiszeroatthe

topandatthevalleyofthepotentialenergycurve.Thus,the

recoveryrepresentsthemaximumfractionofpositiveenergy

incrementslinkedtothecenterofmassthatarereconverted

bythependulummechanismthroughoutthestepcycle.10,27

Inanidealpendulum,the energyexchangeiscomplete

(energyrecovery=100%).Nevertheless,inthehumangait,the

energyrecoveryismoderatelyhigh(upto60%)anddependson

thesteplengthandwalkingspeed.Recentliteraturesuggests

somecontributionofelasticenergytothemarchmechanisms,

bystoringthisenergyanditsreleasingintheAchillestendon

andpossiblythroughthearchofthefoot.Theparticipation

of elastic energyduring gait isaccepted by someauthors,

althoughthiskindofenergyhasanapparentlymoredecisive

participationintheraceactivity.10,28,29

Duringthelocomotion,thegaitparametersareadjusted

sothattheforce,work,powerand/orenergyexpenditureare

minimized.Thus,duringgaittheaveragemechanicalpower

isminimal,whenthesubjectiswalkingonastepfrequency

closetothatfreelychosen(self-selectedspeed).

Correspond-ingly,theoxygenconsumptionisalsominimizedatthesame

frequency.30

Undernormalconditions,thepowerconsumptionofgait

(metabolicpower–consumptionofoxygenperkilogramof

bodyweightduringagiventime)isrelatedtotheintensityof

effort,andcanbeaffectedbychangesinspeed.Thus,speed

isacrucialmeasure,beingdeterminanttoenergy

expendi-tureinwalkingtests.Theinfluenceofspeedissorelevantto

energyconsumptionthattheoxygencostpermeterwalked

(aconceptcalledthetransportationcost)isobtainedbythe

ratiobetweenmetabolicpowerandspeedofwalking,being

indicativeofthequalityofthewalk.9,31

Transportationcostisameasureoftheeconomyof

loco-motion and represents the amount of metabolic energy

consumed tomove onekilogramofbody massper unitof

distance, beingexpressed as J.kg-1.m-1 10,32 and provides a

metabolicinformationofgaitquality.Putmoresimply,

trans-portationcostcanbedefinedastheforcerequiredtomovea

unitofmassbyaunitofdistance.

Thetransportationcostvariesdependingonthespeedwith

whichthemarchisheld,beingusuallylowerinself-selected

speedsforeachgaittype.Basedonthis,Margaria,inthelate

1930s,proposedthatthecurvesoftransportationcostinterms

ofspeedtooktheformof“U”,becausethefartherthe

stud-iedspeedwithrespecttothatself-selectedspeed,thegreater

thetransportationcost.10,33Infact,theoptimalwalkingspeed

has been defined insome studies asthat speed in which,

simultaneously,thereisoptimizationofthecontributionof

mechanicalparameterscharacteristicofthistypeofgaitand

alowermetaboliccost.34

walking at higher speeds than the self-selected one

requiresanincreaseintheactivityofthosemusclesinvolved

inpropellingthebodyforward,beingalsoassociatedwitha

greatersteplength,whichincreasestheactivitybothofthe

musclesthatcontributetolegswingasofthosethatcontribute

totheverticalcontrol,sincetheverticalexcursionofthe

cen-ter ofmassofthebody alsoincreases. Conversely,walking

atlowerspeedsbecomesmechanicallylessefficient,because

thereisgreaterneedforstabilization,andonecanrelylesson

theelasticenergyofthemuscleandtendonunits.35

Consequently,onemightthinkthatthereisaparallelism

betweenenergeticandmechanicaspectsofhuman

locomo-tion.However,becauseofitscomplexity,manyfactorsmustbe

takenintoconsideration.TaylorandHeglund36showedthat

observed changesinmetabolic power,dueto thevariation

ofspeedandbodyweight,didnotresultinparallelchanges

inthemechanicalworkdonebymuscles.Theseauthorsalso

suggestthatthemetaboliccostofgeneratingmuscularforce

during the foot-and-ground contact, regardlessof whether

the mechanical work (product offorce bydisplacement) is

(5)

concentrations),iswhatdeterminestherateatwhichenergy

isconsumed.ShiandStuhmiller37concludedthat,formany

activities,thereisarelationshipbetweenmetaboliccostand

themagnitudeandfrequencyofforceapplication,linkedto

theeffectivecontacttimeofthefootwiththeground.

Verydifferentchanges instepfrequency,incomparison

withthatconsiderednatural,caninducesignificantchanges

in energy-minimizer mechanisms in walking. At a given

speed,therecoverypercentagetendstoincreasewhenthe

steplengthisgreaterthanthatobservedinthenaturalgait

and,conversely,tendstodecrease whenthe steplengthis

smallerthanthatfreelychosen.38

Thetrunkcoordinationduringthehumanmarchhasalso

been a focus of study.In normal subjects, the increase in

walkingspeedchangesthephasicrelationshipbetweenthe

rotations of the trunk and pelvis in the horizontal plane,

sothatatlowerspeeds thesetwosegmentstendtohavea

moresynchronousbehavior(in phase),that becomesmore

andmoreasynchronous(outofphase)asthespeedincreases.

Thus,inabriskmarch,theoscillatorymovementsofthetrunk

inrelationtothepelvisbecomemoreevident.Althoughthe

mechanismsthatgovernsuchcoordinationarestillnot

com-pletelyunderstood,eveninnormalsubjects,insomedisease

conditions–suchasinlowbackpain–thereisalossofthis

coordinativemovementinawaythat,evenforhigher

walk-ingspeeds,bothsegments(trunk andpelvis)tendtomove

synchronously,forcingamore“enbloc”styleofwalking.39,40

Mechanicalandenergylossesduringgaitarisingfromlow backpain

Whilenormalsubjectsselecttheirlengthandfrequencyof

stepsinorder tomakethe mosteconomicalgaitfrom the

pointofviewofenergy,thosewithdiseasesinvolvingthe

loco-motorsystemchangethatstrategy.Largesteplengthsinduce

changes inthe system ofcoordination between trunkand

pelvis,implyinglargerrotationsbetweenthesesegments

dur-ingwalking.Inpathologicalmarches,thereisatrendtoavoid

largeoscillationsofthecolumn,andtheseindividualscando

thisinseveralways;astochroniclowbackpainpatients,they

tendtowalkmoreslowly,decreasingthelengthand

increas-ing,toalesserextent,thefrequencyoftheirsteps.40

Subjectswith lowback painexhibit several adaptations

duringwalkingasaresultofpain,suchas:alterationof

pro-prioceptiveposturalcontrol;stiffertrunkandbodystrategy,

leadingtotheadoptionoftheanklestrategy;increased

activ-ityoflumbarmusclesduringallstepperiodsand,secondarily,

lessrelativerelaxationduringswingperiods,comparedwith

double-stanceperiods;adecreaseoftheverticalcomponent

ofgroundreactionforcesinthoseindividualswhosepainis

radiatingtothelowerlimbs;adecreaseinpreferredwalking

speed;adecreasedthorax-pelviccoordinationinthe

trans-verseplane,inducinga morerigidbehaviorbetweenthese

segments; a shorter step length, among others. Moreover,

patientswithnonspecificchroniclowbackpain,whenasked

toincreasetheir walkingspeed,tend toincreasemorethe

cadence,ratherthanthelength,ofthesteps,unlike

individ-ualsfreeofpain.15,41-45

Lamothet al.44 observedthatindividuals withlowback

painwhowalkedinthesamerelativespeed(110%ofpreferred

speed)ofsubjectswithoutlowbackpainshowedsteplength,

walkingspeedandsteplengthvariabilitysignificantlylower,

butthiswasnotobservedwhenthestepfrequencywas

eval-uated.Elbazetal.46observedthatpatientswithnonspecific

chroniclowbackpainshowedasymmetryintheirone-foot

supportandinswingandstancephases,inadditiontoalower

walkingspeed.Theseauthorssuggestthat,inthesepatients,

thedecreaseinwalkingspeedcanbeunderstoodasa

protec-tivemechanismattributedtoanattempttoreducetheground

reactionforcesandtominimizetheoverloadinthecolumn

andavoidpain.

Thepain,atleastwhenitcomestowalking,seemstoplay

amoreimportantroleinacuteepisodes.Moe-Nilssen,

Ljung-grenandTorebjork47triedtofindoutifthemeasurementof

thelumbarspineacceleration,quantifiedbyanaccelerometer,

couldindicatechangesinmotorbehaviorduringwalking,as

aresultofatransientlowbackpainexperimentallyinduced

byaninjectionofhypertonicsalineintothelongissimusdorsi

muscle.Theseauthorsfoundadynamicinteractionbetween

pain and adaptation in motor performance, when

observ-ing reduction of lumbar acceleration during the period of

maintenanceofinducedpain,assumingthatthischangewas

processedbythevegetativenervoussystem.

Taylor,EvansandGoldie48comparedagroupofvolunteer

subjectswithacutelowbackpainsevendaysaftertheonsetof

painandsixweekslater,whenthepainhaddisappeared,and

alsoevaluatedsubjectswithoutlowbackpain.Ineach

assess-mentall participantswalkedattheself-selectedspeed and

atanintensity40%fasterthantheself-selectedspeed.These

authorsobservedthat,athigherspeeds,duringtheperiodof

exacerbationthelumbargroupexhibitedsignificant

adjust-mentsinthewayofwalking,suchasincreasesinpelvictilt,

inlateralflexionofthelumbarspineandinthesteplength

ver-suspost-testevaluation.However,nodifferencesinrelationto

thecontrolgroupwerefound.Thesefindingssuggestthatthe

paincancausechangesinwalkingstyle.

In chronic pain conditions, an understanding of the

adaptative processesbecomes amuchmorecomplex task.

Accordingly, otherstudies alsoshift thefocus ofpain asa

determinantvariableinthepopulationofchroniclowback

painpatients,attheexpenseofthefunctionalpicture.The

evidencesuggestingthatsupraspinalchanges

(neurodegen-erationofdorsolateral portionofprefrontalcortex; gradual

decrease in neocortical, prefrontal cortex and thalamus

graymattervolume,amongothers)presentinpatientswith

chronicnonspecificlowbackpainmay containthe

mecha-nismsthatjustifytheclinicalfindingsisincreasing,although

still without consensus about this supposition. Thus, it is

believedthatthisreorganizationwithinthebrainiscapableof

generatingapictureofpersistentpain,evenintheabsenceof

physicalchange,andthisincludesthecortical

neurodegener-ationanddescendinginhibition,producinganabnormalstate

ofsensitivity;memoryofpain;andgenerationofcentralpain

asaresultofsensorimotorincongruence,whenthepatient

ismoving. Therefore,the motorchangesobservedinthese

individualswouldhaveacentral,ratherthanperipheral,

ori-gin,andthisknowledgeimposestheneedtorethinkboththe

natureoftheproblemasthebestwaytoapproachit,because,

byallaccounts,thephysicalchangesceasetobethecause

(6)

representationandintheattemptsofthepatienttomaintain

the same functionality,even inthe presenceofa changed

bodyimage.49

Otherstudieshavealsoconfirmedthechangesinvolume

anddensityofthecortexaswellasofthewhitematteramong

patientswithchroniclowbackpain.50-52Thesechangeswere

observedinseveralcorticalareas,includingthoserelatedwith

thespeedofgaitprocessing,asthecorpuscallosum,which

alsoseemstobeassociatedwithpoorphysicalfitnessand

durationofpain.51Thestructuralandfunctionalchangesthat

occur inthe brainoflow backpain patients, suggestedby

thesestudies, giveduecredit tothe hypothesis that these

individualsareless abletoadapttheirspatio-temporalgait

parameters,incomparisonwithpain-freeindividuals.

Con-sequently, as the gait kinematics plays an important role

inenergy-minimizermechanisms,thehypothesisproposing

thatthesepatientsarealsoless economicalbecomesmore

robust.

Thus,itisimportanttoidentifywhetherthechanges

dur-ing gait, observed in this population, arise also from the

inabilityofthebodytoprovideaneconomicalgait,orifthey

existpreciselytopreservetheeconomyofgait.

Atleastwithrespecttothescopeofthisliteraturereview,

nostudiescorrelatingthemotorlossesinlocomotion(widely

describedamongchroniclowbackpainpatients)with

energy-minimizermechanismsofwalkingwerefound.Therefore,this

suggeststheneedforstudiesthatseektounderstandwhether

ornotthereisalossofthesemechanismsinthispopulation.

Final

considerations

The main theory explaining the minimization of energy

expenditureduringwalkingistheinvertedpendulum

mech-anism,andtheenergy-minimizermechanismofthistheory

would be the reconversion that occurs during the march,

among the mechanical energies linked to the body

cen-ter of mass (kinetic and potential energies). However, this

energy-minimizer mechanism is strongly influenced by

spatio-temporal parametersofgait which, inturn, may be

severelyalteredinthoseindividualswithchronicbackpain.

Thus, there isevidence that such functional changes may

compromisetheenergy-minimizermechanisms.

Conflict

of

interests

Theauthorsdeclarenoconflictofinterests.

r

e

f

e

r

e

n

c

e

s

1. SkoylesJR.Humanbalance,theevolutionofbipedalismand dysequilibriumsyndrome.MedicalHypotheses.

2006;66:1060–8.

2. PontzerH,RaichlenDA,SockolMD.Themetaboliccostof walkinginhumans,chimpanzees,andearlyhominins. JournalofHumanEvolution.2009;56:43–54.

3. LeHuecJC,SaddikiR,FrankeJ,RigalJ,AunobleS.Equilibrium ofthehumanbodyandthegravityline:thebasics.European SpineJournal.2011;20Suppl5:558–63.

4.WilligenburgNW,KingmaI,VanDieënJH.Howisprecision regulatedinmaintainingtrunkposture?ExperimentalBrain Research.2010;203:39–49.

5.FranzJR,PayloKW,DicharryJ,RileyPO,KerriganDC.Changes inthecoordinationofhipandpelviskinematicswithmodeof locomotion.Gait&Posture.2009;29:494–8.

6.Harcourt-SmithWEH,AielloLC.Fossils,feetandthe evolutionofhumanbipedallocomotion.JournalofAnatomy. 2004;204:403–16.

7.LovejoyCO.Thenaturalhistoryofhumangaitandposture. Part1SpineandpelvisGait&Posture.2005;21:95–112.

8.LeeCR,FarleyCT.Determinantsofthecenterofmass trajectoryinhumanwalkingandrunning.Journalof ExperimentalBiology.1998;201:2935–44.

9.WatersRL,MulroyS.Theenergyexpenditureofnormaland pathologicgait.Gait&Posture.1999;9:207–31.

10.SaibeneF,MinettiAE.Biomechanicalandphysiological aspectsofleggedlocomotioninhumans.EuropeanJournalof AppliedPhysiology.2003;88:297–316.

11.SchuchCP,BalbinotG,BoosM,Peyré-TartarugaL,SustaD. Theroleofanthropometricchangesduetoagingonhuman walking:mechanicalwork,pendulumandefficiency.Biology ofSport.2011;28:165–70.

12.CallaghanJP,PatlaAE,McGillSM.Lowback

three-dimensionaljointforces,kinematics,andkinetics duringwalking.ClinicalBiomechanics.1999;14:203–16.

13.NewellD,VanDerLaanM.Measuresofcomplexityduring walkinginchronicnon-specificlowbackpainpatients. ClinicalChiropractic.2010;13:8–14.

14.DuqueI,ParraJ-H,DuvalletA.Physicaldeconditioningin chroniclowbackpain.JournalofRehabilitationMedicine. 2009;41:262–6.

15.BrumagneS,JanssensL,JanssensE,GoddynL.Altered posturalcontrolinanticipationofposturalinstabilityin personswithrecurrentlowbackpain.Gait&Posture. 2008;28:657–62.

16.VanDaeleU,HagmanF,TruijenS,VorlatP,VanGheluweB, VaesP.Differencesinbalancestrategiesbetweennonspecific chroniclowbackpainpatientsandhealthycontrolsubjects duringunstablesitting.Spine.2009;34:1233–8.

17.LamothCJC,BeekPJ,MeijerOG.Pelvis-thoraxcoordinationin thetransverseplaneduringgait.Gait&Posture.

2002;16:101–14.

18.HodgesPW.Istherearolefortransversusabdominisin lumbo-pelvicstability?Manualtherapy.1999;4:74–86.

19.MarshallP,MurphyB.Therelationshipbetweenactiveand neuralmeasuresinpatientswithnonspecificlowbackpain. Spine.2006;31:E518–24.

20.AndrewWalshD,JaneKellyS,SebastianJohnsonP,Rajkumar S,BennettsK.Performanceproblemsofpatientswithchronic low-backpainandthemeasurementofpatient-centered outcome.Spine.2004;29:87–93.

21.RacicV,PavicA,BrownjohnJMW.Experimentalidentification andanalyticalmodellingofhumanwalkingforces:Literature review.JournalofSoundandVibration.2009;326:1–49.

22.AlexanderRM.Modellingapproachesinbiomechanics. PhilosophicalTransactionsoftheRoyalSocietyofLondon. SeriesB,BiologicalSciences.2003;358:1429–35.

23.KuoAD.Thesixdeterminantsofgaitandtheinverted pendulumanalogy:Adynamicwalkingperspective.Human MovementScience.2007;26:617–56.

24.NeptuneRR,ZajacFE,KautzSA.Musclemechanicalwork requirementsduringnormalwalking:theenergeticcostof raisingthebody’scenter-of-massissignificant.Journalof Biomechanics.2004;37:817–25.

(7)

26.MassaadF,LejeuneTM,DetrembleurC.Theupanddown bobbingofhumanwalking:acompromisebetweenmuscle workandefficiency.TheJournalofPhysiology.

2007;582:789–99.

27.CavagnaGA,WillemsPA,LegramandiMA,HeglundNC. Pendularenergytransductionwithinthestepinhuman walking.JournalofExperimentalBiology.2002;205:3413–22.

28.FukunagaT,KuboK,KawakamiY,FukashiroS,KanehisaH, MaganarisCN.Invivobehaviourofhumanmuscletendon duringwalking.ProceedingsoftheRoyalSocietyBiological Sciences.2001;268:229–33.

29.IshikawaM,KomiPV,GreyMJ,LepolaV.BruggemannG-P Muscle-tendoninteractionandelasticenergyusagein humanwalking,JournalofAppliedPhysiology.2005;99:603–8.

30.CavagnaGA,MantovaniM,WillemsPA,MuschG.The resonantstepfrequencyinhumanrunning.PflugersArchiv EuropeanJournalofPhysiology.1997;434:678–84.

31.DalU,ErdoganT,ResitogluB,BeydagiH.Determinationof preferredwalkingspeedontreadmillmayleadtohigh oxygencostontreadmillwalking.Gait&Posture.2010;31: 366–9.

32.CunninghamCB,SchillingN,AndersC,CarrierDR.The influenceoffootpostureonthecostoftransportinhumans. TheJournalofExperimentalBiology.2010;213:790–7.

33.BuncV,DlouháR.Energycostoftreadmillwalking.Journalof SportsMedicineandPhysicalFitness.1997;37:103–9.

34.LeursF,IvanenkoYP,BengoetxeaA,CebollaA-M,DanB, LacquanitiF,etal.Optimalwalkingspeedfollowingchanges inlimbgeometry.TheJournalofExperimentalBiology. 2011;214:2276–82.

35.NeptuneRR,SasakiK,KautzSA.Theeffectofwalkingspeed onmusclefunctionandmechanicalenergetics.Gait& Posture.2008;28:135–43.

36.TaylorCR,HeglundNC.Energeticsandmechanicsof terrestriallocomotion.AnnualReviewofPhysiology. 1982;44:97–107.

37.SihBL,StuhmillerJH.Themetaboliccostofforcegeneration. Medicine&ScienceinSports&Exercise.2003;35:623–9.

38.CavagnaGA,FranzettiP.Thedeterminantsofthestep frequencyinwalkinginhumans.TheJournalofPhysiology. 1986;373:235–42.

39.LamothCJC,MeijerOG,WuismanPIJM,VanDieënJH,Levin MF,BeekPJ.Pelvis-thoraxcoordinationinthetransverse planeduringwalkinginpersonswithnonspecificlowback pain.Spine.2002;27:E92–9.

40.HuangY,MeijerOG,LinJ,BruijnSM,WuW,LinX,etal.The effectsofstridelengthandstridefrequencyontrunk coordinationinhumanwalking.Gait&Posture.2010;31:444–9.

41.LamothCJC,MeijerOG,DaffertshoferA,WuismanPIJM,Beek PJ.Effectsofchroniclowbackpainontrunkcoordinationand backmuscleactivityduringwalking:changesinmotor control.EuropeanSpineJournal.2006;15:23–40.

42.LeeCE,SimmondsMJ,EtnyreBR,MorrisGS.Influenceofpain distributionongaitcharacteristicsinpatientswithlowback pain:part1:verticalgroundreactionforce.Spine.

2007;32:1329–36.

43.BrumagneS,JanssensL,KnapenS,ClaeysK,

Suuden-JohansonE.Personswithrecurrentlowbackpain exhibitarigidposturalcontrolstrategy.EuropeanSpine Journal.2008;17:1177–84.

44.LamothCJC,StinsJF,PontM,KerckhoffF,BeekPJ.Effectsof attentiononthecontroloflocomotioninindividualswith chroniclowbackpain.JournalofNeuroEngineeringand Rehabilitation.2008;5:13.

45.SungPS,ParkH-S.Genderdifferencesingroundreaction forcefollowingperturbationsinsubjectswithlowbackpain. Gait&Posture.2009;29:290–5.

46.ElbazA,MirovskyY,MorA,EnoshS,DebbiE,SegalG,etal.A novelbiomechanicaldeviceimprovesgaitpatterninpatient withchronicnonspecificlowbackpain.Spine.

2009;34:E507–12.

47.Moe-NilssenR,LjunggrenAE,TorebjörkE.Dynamic

adjustmentsofwalkingbehaviordependentonnoxiousinput inexperimentallowbackpain.Pain.1999;83:477–85.

48.TaylorNF,EvansOM,GoldiePA.Theeffectofwalkingfaster onpeoplewithacutelowbackpain.EuropeanSpineJournal. 2003;12:166–72.

49.WandBM,O’ConnellNE.Chronicnon-specificlowbackpain

-sub-groupsorasinglemechanism?BMCMusculoskeletal

Disorders.2008;9:11.Availablefrom:

http://dx.doi.org/10.1186/1471-2474-9-11

50.BuckalewN,HautMW,MorrowL,WeinerD.Chronicpainis associatedwithbrainvolumelossinolderadults:preliminary evidence.PainMedicine.2008;9:240–8.

51.BuckalewN,HautMW,AizensteinH,MorrowL,PereraS, KuwabaraH,etal.Differencesinbrainstructureandfunction inolderadultswithself-reporteddisablingandnon-disabling chroniclowbackpain.PainMedicine.2010;11:1183–97.

Referências

Documentos relacionados

Chronic low back pain in patients with systemic lupus erythematosus: prevalence and predictors of back muscle strength and its correlation with

El plan de búsqueda se dividió en cuatro etapas. En la primera etapa, se iden- tificaron 197 publicaciones potencialmente elegibles para revisión. Luego, en la se- gunda etapa,

Tekur et al., 2008 Effect of short-term intensive yoga program on pain, functional disability and spinal flexibility in chronic low back pain: a randomized control study

This pilot study compared stabilization exercises with strengthening exercises for the trunk and hips in women with chronic lower back pain in terms of their effects on pain,

Para promover a modalidade do ténis entre os atletas foram realizados vários torneios internos e sociais, que tinham como objetivo não só a prática do desporto mas também

Sob esse aspecto, tentamos mostrar que não trata – se somente de uma mudança física em outra pessoa, mas uma mudança vital, da qual depende sua sanidade mental

Deste modo, identificámos e analisámos o espólio documental elaborado por Pedro Álvares Seco entre 1530 e 1581, num total de 15 obras: Começo e preâmbulo do tombo dos bens,

The article is structured in four topics, which aims to clarify points and difficulties raised in research that were carried out in recent years on teaching and learning of flat