• Nenhum resultado encontrado

A ring-theoretic characterisation of Oz spaces

N/A
N/A
Protected

Academic year: 2022

Share "A ring-theoretic characterisation of Oz spaces"

Copied!
65
0
0

Texto

(1)

A ring-theoretic characterisation of Oz spaces

Oghenetega Ighedo

Department of Mathematical Sciences

University of South Africa (UNISA) Talk given at

STW-2013 ( São Sebãstiao, Brazil )

12th August 2013 ( joint work with Themba Dube )

Oghenetega Ighedo (UNISA) Oz-spaces 1 / 16

(2)

Ozspaces

A subsetS of a topological spaceX isz-embeddedinX in case each zero-set ofSis the restriction toSof a zero-set ofX.

In the article

Spaces in which special sets arez-embedded,Can. J. Math.,28(1976), 673–690,

Blair calls a Tychonoff spaceX anOz spaceif every open set ofX is z-embedded.

A useful characterisation is thatX is anOzspaceif and only if every regular-closed subset ofX is a zero-set.

Oghenetega Ighedo (UNISA) Oz-spaces 2 / 16

(3)

Ozspaces

A subsetS of a topological spaceX isz-embeddedinX in case each zero-set ofSis the restriction toSof a zero-set ofX.

In the article

Spaces in which special sets arez-embedded,Can. J. Math.,28(1976), 673–690,

Blair calls a Tychonoff spaceX anOz spaceif every open set ofX is z-embedded.

A useful characterisation is thatX is anOzspaceif and only if every regular-closed subset ofX is a zero-set.

Oghenetega Ighedo (UNISA) Oz-spaces 2 / 16

(4)

Ozspaces

A subsetS of a topological spaceX isz-embeddedinX in case each zero-set ofSis the restriction toSof a zero-set ofX.

In the article

Spaces in which special sets arez-embedded,Can. J. Math.,28(1976), 673–690,

Blair calls a Tychonoff spaceX anOz spaceif every open set ofX is z-embedded.

A useful characterisation is thatX is anOzspaceif and only if every regular-closed subset ofX is a zero-set.

Oghenetega Ighedo (UNISA) Oz-spaces 2 / 16

(5)

Frames

Aframeis a complete latticeLin which the distributive law a∧_

S=_

{a∧x |x ∈S}

holds for alla∈LandS⊆L.

Frame homomorphismsare maps that preserve the frame structure.

An example of a frame is the lattice of open subsetsOX of a topological spaceX.

Oghenetega Ighedo (UNISA) Oz-spaces 3 / 16

(6)

Frames

Aframeis a complete latticeLin which the distributive law a∧_

S=_

{a∧x |x ∈S}

holds for alla∈LandS⊆L.

Frame homomorphismsare maps that preserve the frame structure.

An example of a frame is the lattice of open subsetsOX of a topological spaceX.

Oghenetega Ighedo (UNISA) Oz-spaces 3 / 16

(7)

Frames

Aframeis a complete latticeLin which the distributive law a∧_

S=_

{a∧x |x ∈S}

holds for alla∈LandS⊆L.

Frame homomorphismsare maps that preserve the frame structure.

An example of a frame is the lattice of open subsetsOX of a topological spaceX.

Oghenetega Ighedo (UNISA) Oz-spaces 3 / 16

(8)

Frames

An elementaofLisrather belowan elementb, writtena≺b, in case there is an elements, called aseparatingelement, such that a∧s =0ands∨b=1.

The frameLisregularifa=W

{x ∈L|x ≺a}for eacha∈L.

An elementaiscompletely belowb, writtena≺≺b, if there are elements(xr)indexed by rational numbersQ∩[0,1]such that a=x0,x1=bandxr ≺xs forr <s.

The frameLiscompletely regularifa=W

{x ∈L|x ≺≺a}for eacha∈L.

Oghenetega Ighedo (UNISA) Oz-spaces 4 / 16

(9)

Frames

An elementaofLisrather belowan elementb, writtena≺b, in case there is an elements, called aseparatingelement, such that a∧s =0ands∨b=1.

The frameLisregularifa=W

{x ∈L|x ≺a}for eacha∈L.

An elementaiscompletely belowb, writtena≺≺b, if there are elements(xr)indexed by rational numbersQ∩[0,1]such that a=x0,x1=bandxr ≺xs forr <s.

The frameLiscompletely regularifa=W

{x ∈L|x ≺≺a}for eacha∈L.

Oghenetega Ighedo (UNISA) Oz-spaces 4 / 16

(10)

Frames

An elementaofLisrather belowan elementb, writtena≺b, in case there is an elements, called aseparatingelement, such that a∧s =0ands∨b=1.

The frameLisregularifa=W

{x ∈L|x ≺a}for eacha∈L.

An elementaiscompletely belowb, writtena≺≺b, if there are elements(xr)indexed by rational numbersQ∩[0,1]such that a=x0,x1=bandxr ≺xs forr <s.

The frameLiscompletely regularifa=W

{x ∈L|x ≺≺a}for eacha∈L.

Oghenetega Ighedo (UNISA) Oz-spaces 4 / 16

(11)

Frames

An elementaofLisrather belowan elementb, writtena≺b, in case there is an elements, called aseparatingelement, such that a∧s =0ands∨b=1.

The frameLisregularifa=W

{x ∈L|x ≺a}for eacha∈L.

An elementaiscompletely belowb, writtena≺≺b, if there are elements(xr)indexed by rational numbersQ∩[0,1]such that a=x0,x1=bandxr ≺xs forr <s.

The frameLiscompletely regularifa=W

{x ∈L|x ≺≺a}for eacha∈L.

Oghenetega Ighedo (UNISA) Oz-spaces 4 / 16

(12)

Frames

CozLis the cozero part ofL, and is theregular sub-σ-frame consisting of all the cozero elements ofL.

βLis theStone- ˇCech compactificationofLand it is the frame of regular ideals ofCozL. We denote byjL:βL→Lthe join map J 7→W

J, and the right adjoint ofjLis here denoted byrL. By apointof a frame we mean a prime element, that is, an elementp<esuch that for anyaandb in the frame,a∧b≤p impliesa≤p orb≤p. We denote byPt(L)the set of all points of L.

Oghenetega Ighedo (UNISA) Oz-spaces 5 / 16

(13)

Frames

CozLis the cozero part ofL, and is theregular sub-σ-frame consisting of all the cozero elements ofL.

βLis theStone- ˇCech compactificationofLand it is the frame of regular ideals ofCozL.We denote byjL:βL→Lthe join map J 7→W

J, and the right adjoint ofjLis here denoted byrL. By apointof a frame we mean a prime element, that is, an elementp<esuch that for anyaandb in the frame,a∧b≤p impliesa≤p orb≤p. We denote byPt(L)the set of all points of L.

Oghenetega Ighedo (UNISA) Oz-spaces 5 / 16

(14)

Frames

CozLis the cozero part ofL, and is theregular sub-σ-frame consisting of all the cozero elements ofL.

βLis theStone- ˇCech compactificationofLand it is the frame of regular ideals ofCozL. We denote byjL:βL→Lthe join map J 7→W

J, and the right adjoint ofjLis here denoted byrL. By apointof a frame we mean a prime element, that is, an elementp<esuch that for anyaandb in the frame,a∧b≤p impliesa≤p orb≤p. We denote byPt(L)the set of all points of L.

Oghenetega Ighedo (UNISA) Oz-spaces 5 / 16

(15)

Frames

CozLis the cozero part ofL, and is theregular sub-σ-frame consisting of all the cozero elements ofL.

βLis theStone- ˇCech compactificationofLand it is the frame of regular ideals ofCozL. We denote byjL:βL→Lthe join map J 7→W

J, and the right adjoint ofjLis here denoted byrL. By apointof a frame we mean a prime element, that is, an elementp<esuch that for anyaandb in the frame,a∧b≤p impliesa≤p orb≤p. We denote byPt(L)the set of all points of L.

Oghenetega Ighedo (UNISA) Oz-spaces 5 / 16

(16)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(17)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(18)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(19)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(20)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(21)

Frames

An elementaof a frameLis calledLindelöfwhenevera=W S impliesa=W

T for some countableT ⊆S, andLis Lindelöf whenevere∈Lis Lindelöf.

For any sublatticeAof a frameL, an idealJ ⊆Ais called

1 σ-properifW

S6=efor any countableSJ, and

2 completely properifW J 6=e,

the joins understood inL.

A frameLisrealcompactif anyσ-propermaximal ideal inCozLis completely proper.

A topological spaceX isrealcompactiff it can be embedded as a closed subset of a product of copies of the real lineR.

Oghenetega Ighedo (UNISA) Oz-spaces 6 / 16

(22)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(23)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(24)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(25)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(26)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(27)

Ozframes

Oz framesare the natural pointfree counterpart ofOz spaces.

B. Banaschewski, T. Dube, C. Gilmour, J. Walters-Wayland,Oz in pointfree topology

Quaestiones Mathematicae32(2009), 215–227.

They define a frameLto be anOz frameif everya∈Lis coz-embedded.

Example

Every Boolean frameLisOz.

IfL=OX, thenLis anOz frame iffX is anOz space.

Oghenetega Ighedo (UNISA) Oz-spaces 7 / 16

(28)

Pointfree ringRL

Throughout, by “ring" we mean a commutative ring with identity. For a ringAanda∈A, we let letMax(A)denote the set of maximal ideals of A. We set

M(a) ={M∈Max(A)|a∈M} and M(a) =\ M(a).

In the article

G. Mason,z-Ideals and Prime Ideals,J. Alg.26(1973), 280-297,

Mason calls an idealIofAaz-idealif for anyaandb inA, a∈I and M(a) =M(b) ⇒ b ∈I.

Oghenetega Ighedo (UNISA) Oz-spaces 8 / 16

(29)

Pointfree ringRL

Throughout, by “ring" we mean a commutative ring with identity. For a ringAanda∈A, we let letMax(A)denote the set of maximal ideals of A. We set

M(a) ={M∈Max(A)|a∈M} and M(a) =\ M(a).

In the article

G. Mason,z-Ideals and Prime Ideals,J. Alg.26(1973), 280-297,

Mason calls an idealIofAaz-idealif for anyaandb inA, a∈I and M(a) =M(b) ⇒ b ∈I.

Oghenetega Ighedo (UNISA) Oz-spaces 8 / 16

(30)

Pointfree ringRL

Throughout, by “ring" we mean a commutative ring with identity. For a ringAanda∈A, we let letMax(A)denote the set of maximal ideals of A. We set

M(a) ={M∈Max(A)|a∈M} and M(a) =\ M(a).

In the article

G. Mason,z-Ideals and Prime Ideals,J. Alg.26(1973), 280-297,

Mason calls an idealIofAaz-idealif for anyaandb inA, a∈I and M(a) =M(b) ⇒ b ∈I.

Oghenetega Ighedo (UNISA) Oz-spaces 8 / 16

(31)

Pointfree ringRL

Throughout, by “ring" we mean a commutative ring with identity. For a ringAanda∈A, we let letMax(A)denote the set of maximal ideals of A. We set

M(a) ={M∈Max(A)|a∈M} and M(a) =\ M(a).

In the article

G. Mason,z-Ideals and Prime Ideals,J. Alg.26(1973), 280-297,

Mason calls an idealIofAaz-idealif for anyaandb inA, a∈I and M(a) =M(b) ⇒ b ∈I.

Oghenetega Ighedo (UNISA) Oz-spaces 8 / 16

(32)

Pointfree ringRL

LetLbe a completely regular frame, andRL be the ring of real-valued continuous functions onLwithRLas the subring of its bounded elements.

ForI∈βL,

MI ={α∈ RL|rL(cozα)⊆I} and OI ={α∈ RL|rL(cozα)≺I}.

For anya∈Lwe abbreviateMrL(a)asMa, and remark that

Ma={α∈ RL|cozα≤a}.

The maximal ideals ofRLare precisely the idealsMI,forI∈Pt(βL).

Oghenetega Ighedo (UNISA) Oz-spaces 9 / 16

(33)

Pointfree ringRL

LetLbe a completely regular frame, andRL be the ring of real-valued continuous functions onLwithRLas the subring of its bounded elements.

ForI∈βL,

MI ={α∈ RL|rL(cozα)⊆I} and OI ={α∈ RL|rL(cozα)≺I}.

For anya∈Lwe abbreviateMrL(a)asMa, and remark that

Ma={α∈ RL|cozα≤a}.

The maximal ideals ofRLare precisely the idealsMI,forI∈Pt(βL).

Oghenetega Ighedo (UNISA) Oz-spaces 9 / 16

(34)

Pointfree ringRL

LetLbe a completely regular frame, andRL be the ring of real-valued continuous functions onLwithRLas the subring of its bounded elements.

ForI∈βL,

MI ={α∈ RL|rL(cozα)⊆I} and OI ={α∈ RL|rL(cozα)≺I}.

For anya∈Lwe abbreviateMrL(a)asMa, and remark that

Ma={α∈ RL|cozα≤a}.

The maximal ideals ofRLare precisely the idealsMI,forI∈Pt(βL).

Oghenetega Ighedo (UNISA) Oz-spaces 9 / 16

(35)

Pointfree ringRL

LetLbe a completely regular frame, andRL be the ring of real-valued continuous functions onLwithRLas the subring of its bounded elements.

ForI∈βL,

MI ={α∈ RL|rL(cozα)⊆I} and OI ={α∈ RL|rL(cozα)≺I}.

For anya∈Lwe abbreviateMrL(a)asMa, and remark that

Ma={α∈ RL|cozα≤a}.

The maximal ideals ofRLare precisely the idealsMI,forI∈Pt(βL).

Oghenetega Ighedo (UNISA) Oz-spaces 9 / 16

(36)

Pointfree ringRL

LetLbe a completely regular frame, andRL be the ring of real-valued continuous functions onLwithRLas the subring of its bounded elements.

ForI∈βL,

MI ={α∈ RL|rL(cozα)⊆I} and OI ={α∈ RL|rL(cozα)≺I}.

For anya∈Lwe abbreviateMrL(a)asMa, and remark that

Ma={α∈ RL|cozα≤a}.

The maximal ideals ofRLare precisely the idealsMI,forI∈Pt(βL).

Oghenetega Ighedo (UNISA) Oz-spaces 9 / 16

(37)

Pointfree ringRL

It is shown in

T. Dube,Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova,123(2010), 37–53.

that annihilator ideals inRLare precisely the idealsMa, fora∈L. In particular, for anyα∈ RL, Ann(α) =M(cozα).

For any Tychonoff spaceX, the ringsC(X)andR(OX)are isomorphic.

B. Banaschewski,The real numbers in pointfree topology,

Textos de Matemática Série B, Departamento de Matemática da Universidade de Coimbra, 1997.

Oghenetega Ighedo (UNISA) Oz-spaces 10 / 16

(38)

Pointfree ringRL

It is shown in

T. Dube,Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova,123(2010), 37–53.

that annihilator ideals inRLare precisely the idealsMa, fora∈L. In particular, for anyα∈ RL, Ann(α) =M(cozα).

For any Tychonoff spaceX, the ringsC(X)andR(OX)are isomorphic.

B. Banaschewski,The real numbers in pointfree topology,

Textos de Matemática Série B, Departamento de Matemática da Universidade de Coimbra, 1997.

Oghenetega Ighedo (UNISA) Oz-spaces 10 / 16

(39)

Pointfree ringRL

It is shown in

T. Dube,Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova,123(2010), 37–53.

that annihilator ideals inRLare precisely the idealsMa, fora∈L. In particular, for anyα∈ RL, Ann(α) =M(cozα).

For any Tychonoff spaceX, the ringsC(X)andR(OX)are isomorphic.

B. Banaschewski,The real numbers in pointfree topology,

Textos de Matemática Série B, Departamento de Matemática da Universidade de Coimbra, 1997.

Oghenetega Ighedo (UNISA) Oz-spaces 10 / 16

(40)

Pointfree ringRL

It is shown in

T. Dube,Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova,123(2010), 37–53.

that annihilator ideals inRLare precisely the idealsMa, fora∈L. In particular, for anyα∈ RL, Ann(α) =M(cozα).

For any Tychonoff spaceX, the ringsC(X)andR(OX)are isomorphic.

B. Banaschewski,The real numbers in pointfree topology,

Textos de Matemática Série B, Departamento de Matemática da Universidade de Coimbra, 1997.

Oghenetega Ighedo (UNISA) Oz-spaces 10 / 16

(41)

Pointfree ringRL

It is shown in

T. Dube,Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova,123(2010), 37–53.

that annihilator ideals inRLare precisely the idealsMa, fora∈L. In particular, for anyα∈ RL, Ann(α) =M(cozα).

For any Tychonoff spaceX, the ringsC(X)andR(OX)are isomorphic.

B. Banaschewski,The real numbers in pointfree topology,

Textos de Matemática Série B, Departamento de Matemática da Universidade de Coimbra, 1997.

Oghenetega Ighedo (UNISA) Oz-spaces 10 / 16

(42)

Characterisation

An ideal of a ringAis aprincipalz-idealif it is of the formM(a)for somea∈A.

Corollary

An ideal ofRLis an intersection of maximal ideals iff it is of the form MI, for someI∈βL.

In the ringRL, principalz-idealshave the following description.

Lemma

Principal z-ideals ofRL are precisely the idealsMc for c ∈CozL.

Oghenetega Ighedo (UNISA) Oz-spaces 11 / 16

(43)

Characterisation

An ideal of a ringAis aprincipalz-idealif it is of the formM(a)for somea∈A.

Corollary

An ideal ofRLis an intersection of maximal ideals iff it is of the form MI, for someI∈βL.

In the ringRL, principalz-idealshave the following description.

Lemma

Principal z-ideals ofRL are precisely the idealsMc for c ∈CozL.

Oghenetega Ighedo (UNISA) Oz-spaces 11 / 16

(44)

Characterisation

An ideal of a ringAis aprincipalz-idealif it is of the formM(a)for somea∈A.

Corollary

An ideal ofRLis an intersection of maximal ideals iff it is of the form MI, for someI∈βL.

In the ringRL, principalz-idealshave the following description.

Lemma

Principal z-ideals ofRL are precisely the idealsMc for c ∈CozL.

Oghenetega Ighedo (UNISA) Oz-spaces 11 / 16

(45)

Characterisation

An ideal of a ringAis aprincipalz-idealif it is of the formM(a)for somea∈A.

Corollary

An ideal ofRLis an intersection of maximal ideals iff it is of the form MI, for someI∈βL.

In the ringRL, principalz-idealshave the following description.

Lemma

Principal z-ideals ofRL are precisely the idealsMc for c ∈CozL.

Oghenetega Ighedo (UNISA) Oz-spaces 11 / 16

(46)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(47)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(48)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(49)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(50)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(51)

Characterisation

Proof.

We recall thatM(α) =T

{M ∈Max(RL)|α∈M}.

PutP ={I∈Pt(βL)|α∈MI}, then

P ={I∈Pt(βL)|rL(cozα)≤I}.

SinceβLis spatial, VP =V

{I∈Pt(βL)|rL(cozα)≤I}=rL(cozα). So,

M(α) = \

{M∈Max(RL)|α∈M}

= \

{MI |I∈ P}

= M∧Pand by the Corollary,

= MrL(cozα)

= M(cozα).

Oghenetega Ighedo (UNISA) Oz-spaces 12 / 16

(52)

Characterisation

We say a ring is anOz-ringif every annihilator ideal of the ring is a principalz-ideal.

Proposition

A completely regular frameLis anOz-frameiffRLis anOz-ring.

Proof.

SupposeLis anOz-frame, and letQbe an annihilator ideal ofRL.

Then there is ana∈Lsuch thatQ=Ma. SinceLis anOz-frame, a ∈CozL, henceQis a principalz-ideal, and thereforeRLis an Oz-ring.

Conversely, supposeRLis anOz-ring. For anya∈L,Ma is an annihilator ideal, and so, by hypothesis, there is ac ∈CozLsuch that Ma=Mc, so thata=c. ThereforeLis anOz-frame.

Oghenetega Ighedo (UNISA) Oz-spaces 13 / 16

(53)

Characterisation

We say a ring is anOz-ringif every annihilator ideal of the ring is a principalz-ideal.

Proposition

A completely regular frameLis anOz-frameiffRLis anOz-ring.

Proof.

SupposeLis anOz-frame, and letQbe an annihilator ideal ofRL.

Then there is ana∈Lsuch thatQ=Ma. SinceLis anOz-frame, a ∈CozL, henceQis a principalz-ideal, and thereforeRLis an Oz-ring.

Conversely, supposeRLis anOz-ring. For anya∈L,Ma is an annihilator ideal, and so, by hypothesis, there is ac ∈CozLsuch that Ma=Mc, so thata=c. ThereforeLis anOz-frame.

Oghenetega Ighedo (UNISA) Oz-spaces 13 / 16

(54)

Characterisation

We say a ring is anOz-ringif every annihilator ideal of the ring is a principalz-ideal.

Proposition

A completely regular frameLis anOz-frameiffRLis anOz-ring.

Proof.

SupposeLis anOz-frame, and letQbe an annihilator ideal ofRL.

Then there is ana∈Lsuch thatQ=Ma. SinceLis anOz-frame, a ∈CozL, henceQis a principalz-ideal, and thereforeRLis an Oz-ring.

Conversely, supposeRLis anOz-ring. For anya∈L,Ma is an annihilator ideal, and so, by hypothesis, there is ac ∈CozLsuch that Ma=Mc, so thata=c. ThereforeLis anOz-frame.

Oghenetega Ighedo (UNISA) Oz-spaces 13 / 16

(55)

Characterisation

The property of being anOz-ringis preserved by ring isomorphisms.

SinceX is anOz-spaceif and only ifOX is anOz-frame, and since C(X)∼=R(OX), we have the following result.

Corollary

A Tychonoff spaceX is anOz-spaceiffC(X)is anOz-ring. A realcompact space isOz iff its Stone- ˇCech compactification isOz.

Definition

A subspaceSof a topological spaceX isC-embeddedinX if every function inC(S)can be extended to a function inC(X).

An onto frame homomorphismh:L→Mis aC-quotientmap if for every frame homomorphismγ:OR→M there is a frame

homomorphismδ:OR→Lsuch thath◦δ=γ.

Oghenetega Ighedo (UNISA) Oz-spaces 14 / 16

(56)

Characterisation

The property of being anOz-ringis preserved by ring isomorphisms.

SinceX is anOz-spaceif and only ifOX is anOz-frame, and since C(X)∼=R(OX), we have the following result.

Corollary

A Tychonoff spaceX is anOz-spaceiffC(X)is anOz-ring. A realcompact space isOz iff its Stone- ˇCech compactification isOz.

Definition

A subspaceSof a topological spaceX isC-embeddedinX if every function inC(S)can be extended to a function inC(X).

An onto frame homomorphismh:L→Mis aC-quotientmap if for every frame homomorphismγ:OR→M there is a frame

homomorphismδ:OR→Lsuch thath◦δ=γ.

Oghenetega Ighedo (UNISA) Oz-spaces 14 / 16

(57)

Characterisation

The property of being anOz-ringis preserved by ring isomorphisms.

SinceX is anOz-spaceif and only ifOX is anOz-frame, and since C(X)∼=R(OX), we have the following result.

Corollary

A Tychonoff spaceX is anOz-spaceiffC(X)is anOz-ring. A realcompact space isOz iff its Stone- ˇCech compactification isOz.

Definition

A subspaceSof a topological spaceX isC-embeddedinX if every function inC(S)can be extended to a function inC(X).

An onto frame homomorphismh:L→Mis aC-quotientmap if for every frame homomorphismγ:OR→M there is a frame

homomorphismδ:OR→Lsuch thath◦δ=γ.

Oghenetega Ighedo (UNISA) Oz-spaces 14 / 16

(58)

Characterisation

The property of being anOz-ringis preserved by ring isomorphisms.

SinceX is anOz-spaceif and only ifOX is anOz-frame, and since C(X)∼=R(OX), we have the following result.

Corollary

A Tychonoff spaceX is anOz-spaceiffC(X)is anOz-ring. A realcompact space isOz iff its Stone- ˇCech compactification isOz.

Definition

A subspaceSof a topological spaceX isC-embeddedinX if every function inC(S)can be extended to a function inC(X).

An onto frame homomorphismh:L→Mis aC-quotientmap if for every frame homomorphismγ:OR→M there is a frame

homomorphismδ:OR→Lsuch thath◦δ=γ.

Oghenetega Ighedo (UNISA) Oz-spaces 14 / 16

(59)

Characterisation

In Lemma 2 of the article

B. Banaschewski,On the function ring functor in pointfree topology,Appl. Categ.

Structures13(2005), 305-328,

Banaschewski shows that a frame homomorphismh:L→Mis dense if and only if the ring homomorphismRh:RL→ RMis one-one.

Consequently,Rh:RL→ RM is an isomorphism if and only if

h:L→M is a denseC-quotientmap. This yields the following results.

Corollary

A frameLis anOz-frameiffλLis anOz-frameiffυLis anOz-frame. A Tychonoff spaceX is anOz-spaceiffυX is anOz-space.

Corollary

Every denseC-embeddedsubspace of anOz-spaceisOz. If a space has a denseC-embeddedsubspace which isOz, then the space itself isOz.

Oghenetega Ighedo (UNISA) Oz-spaces 15 / 16

(60)

Characterisation

In Lemma 2 of the article

B. Banaschewski,On the function ring functor in pointfree topology,Appl. Categ.

Structures13(2005), 305-328,

Banaschewski shows that a frame homomorphismh:L→Mis dense if and only if the ring homomorphismRh:RL→ RMis one-one.

Consequently,Rh:RL→ RM is an isomorphism if and only if

h:L→M is a denseC-quotientmap. This yields the following results.

Corollary

A frameLis anOz-frameiffλLis anOz-frameiffυLis anOz-frame. A Tychonoff spaceX is anOz-spaceiffυX is anOz-space.

Corollary

Every denseC-embeddedsubspace of anOz-spaceisOz. If a space has a denseC-embeddedsubspace which isOz, then the space itself isOz.

Oghenetega Ighedo (UNISA) Oz-spaces 15 / 16

(61)

Characterisation

In Lemma 2 of the article

B. Banaschewski,On the function ring functor in pointfree topology,Appl. Categ.

Structures13(2005), 305-328,

Banaschewski shows that a frame homomorphismh:L→Mis dense if and only if the ring homomorphismRh:RL→ RMis one-one.

Consequently,Rh:RL→ RM is an isomorphism if and only if

h:L→M is a denseC-quotientmap. This yields the following results.

Corollary

A frameLis anOz-frameiffλLis anOz-frameiffυLis anOz-frame. A Tychonoff spaceX is anOz-spaceiffυX is anOz-space.

Corollary

Every denseC-embeddedsubspace of anOz-spaceisOz. If a space has a denseC-embeddedsubspace which isOz, then the space itself isOz.

Oghenetega Ighedo (UNISA) Oz-spaces 15 / 16

(62)

Characterisation

In Lemma 2 of the article

B. Banaschewski,On the function ring functor in pointfree topology,Appl. Categ.

Structures13(2005), 305-328,

Banaschewski shows that a frame homomorphismh:L→Mis dense if and only if the ring homomorphismRh:RL→ RMis one-one.

Consequently,Rh:RL→ RM is an isomorphism if and only if

h:L→M is a denseC-quotientmap. This yields the following results.

Corollary

A frameLis anOz-frameiffλLis anOz-frameiffυLis anOz-frame. A Tychonoff spaceX is anOz-spaceiffυX is anOz-space.

Corollary

Every denseC-embeddedsubspace of anOz-spaceisOz. If a space has a denseC-embeddedsubspace which isOz, then the space itself isOz.

Oghenetega Ighedo (UNISA) Oz-spaces 15 / 16

(63)

Characterisation

In Lemma 2 of the article

B. Banaschewski,On the function ring functor in pointfree topology,Appl. Categ.

Structures13(2005), 305-328,

Banaschewski shows that a frame homomorphismh:L→Mis dense if and only if the ring homomorphismRh:RL→ RMis one-one.

Consequently,Rh:RL→ RM is an isomorphism if and only if

h:L→M is a denseC-quotientmap. This yields the following results.

Corollary

A frameLis anOz-frameiffλLis anOz-frameiffυLis anOz-frame. A Tychonoff spaceX is anOz-spaceiffυX is anOz-space.

Corollary

Every denseC-embeddedsubspace of anOz-spaceisOz. If a space has a denseC-embeddedsubspace which isOz, then the space itself isOz.

Oghenetega Ighedo (UNISA) Oz-spaces 15 / 16

(64)

ACKNOWLEDGEMENT

A

CKNOWLEDGEMENT

I wish to acknowledge financial assistance from the UNISA Topology and Category Theory Research Chair.

T

HANK YOU FOR YOUR ATTENTION

.

Oghenetega Ighedo (UNISA) Oz-spaces 16 / 16

(65)

ACKNOWLEDGEMENT

A

CKNOWLEDGEMENT

I wish to acknowledge financial assistance from the UNISA Topology and Category Theory Research Chair.

T

HANK YOU FOR YOUR ATTENTION

.

Oghenetega Ighedo (UNISA) Oz-spaces 16 / 16

Referências

Documentos relacionados

Após aplicação da atividade, a assessora pedagógica realizou uma entrevista com os professores envolvidos na pesquisa, em que se pretendeu analisar aspectos como: avaliação

Embora os princípios gerais que estiveram subjacentes à Reorganização Curricular do Ensino Básico (Dec. Lei nº 6/2001) dos finais dos anos 90, retomem uma concepção de currículo

Desta forma, a questão de pesquisa que conduz este trabalho é: Como propor uma estrutura sistemática do PWC para um sistema de compressão de gás de uma plataforma de produ¸cão

Uma vez que a infraestrutura física e humana foi detalhada, resta- nos saber como acontece a articulação entre ela e a escola. Nesse eixo, pretendemos analisar como é pensada

1.os homogêneos que são um conjunto de informações de um mesmo tipo, como os vetores em VISUALG, e em C/C++ os arrays unidimensional

Fazer uma análise em forma de gráfico do fluxo de carga e FPO para tensão nas barras, perdas nas linhas, perdas totais e geração (ativa e reativa) das barras slack e PV. O trabalho

A proposta do Sepé Tiarajú ser um PDS gerou, no início do assentamento, uma parceria com a Embrapa Meio Ambiente e a Associação Ecológica e Cultural Pau Brasil para a implantação

reserva para atender as necessidades do Governo do Estado do Acre no âmbito de duas secretarias, autarquias e fundações, referente ao Processo Seletivo Simplificado