• Nenhum resultado encontrado

Structural of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF7 breast cancer cells

N/A
N/A
Protected

Academic year: 2018

Share "Structural of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF7 breast cancer cells"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Biological

Macromolecules

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

Structural

characterization

of

two

isolectins

from

the

marine

red

alga

Solieria

filiformis

(Kützing)

P.W.

Gabrielson

and

their

anticancer

effect

on

MCF-7

breast

cancer

cells

Renata

Pinheiro

Chaves

a

,

Suzete

Roberta

da

Silva

a

,

Luiz

Gonzaga

Nascimento

Neto

a,b

,

Romulo

Farias

Carneiro

a

,

André

Luis

Coelho

da

Silva

c

,

Alexandre

Holanda

Sampaio

a

,

Bruno

Lopes

de

Sousa

d

,

Maria

Guadalupe

Cabral

e

,

Paula

Alexandra

Videira

f

,

Edson

Holanda

Teixeira

b

,

Celso

Shiniti

Nagano

a,∗

aLaboratóriodeBiotecnologiaMarinhaBioMar-Lab,DepartamentodeEngenhariadePesca,UniversidadeFederaldoCeará,CampusdoPicis/n,bloco

871,60440-900Fortaleza,Ceará,Brazil

bLaboratórioIntegradodeBiomoléculasLIBS,DepartamentodePatologiaeMedicinaLegal,UniversidadeFederaldoCeará,MonsenhorFurtado,s/n,

60430-160Fortaleza,Ceará,Brazil

cLaboratóriodeBiotecnologiaMolecularLabBMol,DepartamentodeBioquímicaeBiologiaMolecular,UniversidadeFederaldoCeará,CampusdoPici,

bloco907,60440-900,Fortaleza,Ceará,Brazil

dFaculdadedeFilosofiaDomAurelianoMatos,UniversidadeEstadualdoCeará,Av.DomAurelianoMatos,2060,LimoeirodoNorte,CE,62930-000,Brazil eCEDOC,NOVAMedicalSchool,UniversidadeNOVAdeLisboa,1150-082,Lisbon,Portugal

fUCIBIO,DepartamentodeCiênciasdaVida,FaculdadedeCiênciaseTecnologia,UniversidadeNOVAdeLisboa,2829-516,Caparica,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received21July2017 Accepted28September2017 Availableonline29September2017

Keywords: Marinealga Lectin Anticancereffect

a

b

s

t

r

a

c

t

Asdescribedintheliterature,Solieriafiliformislectin(SfL)fromthemarineredalgaS.filiformiswasfound tohaveantinociceptiveandanti-inflammatoryeffects.Inthisstudy,wecharacterizedtwoSfLvariants, SfL-1andSfL-2,withmolecularmassof27,552Daand27,985Da,respectively.Theprimarystructures ofSfL-1andSfL-2consistoffourtandem-repeatproteindomainswith67aminoacidseach.SfL-1and -2showedhighsimilaritytoOAAH-familylectins.3DstructurepredictionrevealedthatSfL-1and-2are composedoftwo␤-barrel-likedomainsformedbyfiveantiparallel␤-strands,whichareconnectedbya shortpeptidelinker.Furthermore,themixtureofisoforms(SfLs)showedanticancereffectagainstMCF-7 cells.Specifically,SfLsinhibited50%ofviabilityinMCF-7cellsaftertreatmentat125␮g.mL−1,while theinhibitionofHumanDermalFibroblasts(HDF)was34%withthesametreatment.Finally,24hafter treatment,25%ofMCF-7cellswereinearlyapoptosisand35%inlateapoptosis.Evaluationofpro-and anti-apoptoticgeneexpressionofMCF-7cellsrevealedthatSfLsinducedcaspase-dependentapoptosis within24h.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Lectins,whichareubiquitouscarbohydrate-bindingproteinsor glycoproteins,havereceivedspecialattentionincancerprognosis, diagnosis,andtreatmentbytheirbiologicalactivities.Lectinscanbe usedastoolstoidentifyaberrantglycansonthemembranesurface ofneoplasiccellsandasantitumormoleculestoinduceapoptosis andautophagythroughvariousmechanisms[1,2].

∗ Correspondingauthorat:BioMar-Lab,DepartamentodeEngenhariadePesca, UniversidadeFederaldoCeara,Av.HumbertoMontes/n,60440-900,Fortaleza, Ceara,Brazil.

E-mailaddress:naganocs@gmail.com(C.S.Nagano).

Marine algaeare good sources of newlectins. Algae lectins possess unique molecular structures and important biological activities.Inparticular,theirhighspecificityforcomplex carbohy-dratesandglycoconjugatesmakesthemusefulforbiochemicaland biologicalapplications[3,4].Biochemicalstudiesrevealthatmany lectinsisolatedfrommarineredalgaesharecommonproperties withprokaryotelectins[5].Theselectinscouldbegroupedintoa familyoflectinsknownasOscillatoriaagardhiiagglutinin homo-logue(OAAH)lectinfamily,amongwhichisalectinisolatedfrom thecyanobacteriumO.agardhii[6].

OAA, which contains 132 residues with two tandem-repeat domains[7],issimilartoPFAfromthebacteriumPseudomonas fluo-rescens[8].Ontheotherhand,BOAfromthebacteriumBurkholderia oklahomensis EO147[9],MBHA fromthebacteriumMyxococcus

(2)

Xanthus[10],ESA-2fromthemarinealgaEucheumaserra[11], EDA-2fromthemarinealgaEucheumadenticulatum[12],KSA-2from themarinealgaKappaphycusstriatum[13],andKAA-1/-2fromthe marinealgaKappaphycusalvarezii[14]allcontainfour tandem-repeatsequences246–269residuesinlength.

OAAH-family members share high identity of amino acid sequenceandpossessduplicateorquadruplicatedomainsintheir sequencesthatleadtosingular␤-barrel-liketopologyinvolvedin thetightbindingtooligomannosides[7,15].Interestingly,amino acidsequencesofOAAHlectinsarecompletelydistinctfromother highmannose-bindinglectins.

SolieriafiliformisisamarineredalgafoundalongtheBrazilian northeastcoast.Itslectin,SfL,at29kDawasisolatedbyBenevides andcollaborators[16].Abreuandcoauthors[17]showedthatSfL enhancestheproductionofIL-6athighlevels,butwithno cyto-toxicactivityonsplenocytes,thuspromotinganti-inflammatory effect.Inaddition,SfLseemstohaveimportantinvivo antinocicep-tiveactivityandcouldrepresentapotentialtherapeuticagentfor invitroandinvivoimmunomodulatoryeffects[18].However,other biologicalactivitieshavenotbeenexploited,includingthislectin’s antitumoractivity.

Breastcancer,theforemostcauseofdeathinwomen,isa het-erogeneousdiseasecharacterizedbya varietyofmolecularand geneticalterationsthatinducegrowthandsurvival[19,20]. Cur-rently,chemotherapyisthemostcommonlyusedmethodtotreat cancer.However,chemotherapeutictechniquesarelimitedbytheir highcellulartoxicity,aswellastheoccurrenceofsideeffects[21]. Therefore,selectivebiologicaltreatmentshaveemergedtotreat certaintypesofcancersortotargetspecificdeterminantsexpressed bymanydifferenttumors[22].

Inthiswork,weidentifiedandthenconductedstructuralstudies ontwoisolectinsofthemarineredalgaS.filiformis:SfL-1and SfL-2.Theirprimarystructuresweredetermined,theirtridimensional structureswerepredicted,andmoleculardockingwasperformed. ThecytotoxiceffectoftheisolectinsonMCF-7cellswasalso eval-uated.

2. Methods

2.1. Algaecollection

SpecimensfromthemarineredalgaSolieriafiliformis(Kützing) P.W.GabrielswerecollectedintheintertidalzoneofPachecoBeach, Ceará,Brazil.Algaeweretransportedtothelaboratoryiniceand keptat−20◦C untiluse. Asmall portionof thespecimens was storedat−80◦CforRNAextraction.Collectionswereauthorized

andcertifiedbyresponsibleenvironmentalinstitutions(SISBIOID: 33913-8).

2.2. Purificationoflectin

ThelectinfromthemarineredalgaS.filiformis(SfL)waspurified followingtheprotocoldescribedbyBenevidesandcollaborators [16]withminormodifications.Frozenalgaeweregroundtoafine powderbymortarandpestleinthepresenceofliquidnitrogen. Thepowderwasstirred(1:3w/v)with20mMphosphatebuffer, pH7.0,containing150mMNaCl(PBS),for4hatroomtemperature. Insolublealgaematerialwasremovedbycentrifugationat5000×g for30minat4◦C.Thesupernatant(crudeextract)wascollectedand assayedforhemagglutinatingactivityand proteinconcentration [23].

Thecrude extract wassubmitted toprecipitation withsolid ammoniumsulfate(70%ofsaturation)for4handcentrifugedat 5000×gfor30minat4◦C.Theresultingprecipitate(F0/70)was recoveredinPBSanddialyzedagainstdeionizedwaterandthen

against20mMphosphatebuffer,pH7.0(PB).Aftercentrifugation, F0/70wasappliedtoaDEAE-SephacelColumn(1.0cm×3.0cm)

previouslyequilibratedwithPB.Thecolumnwaswashedwiththe samebufferataflowrateof1mLmin−1untilthatcolumn’s

efflu-entshowedabsorbanceat280nm<0.02(P1).Theadsorbedfraction

(P2)waseluted withPBcontaining1MNaCl.Two-mLfractions

werecollectedandtestedforhemagglutinatingactivityagainst3% trypsin-treatedrabbiterythrocytes.Fractionsshowing hemagglu-tinatingactivity(P1)werepooled,dialyzedagainstdistilledwater,

andfreeze-dried.

2.3. Molecularmassdetermination

The isotopicaveragemolecularmass of SfLwasdetermined byliquidchromatographycoupledtoElectrosprayionization-mass spectrometry(LC-ESI–MS)usingahybridSynaptHDMSmass spec-trometer (Waters Corporation, MA, USA). Two ␮g of SfL were appliedtoaC-18nanocolumn(75␮m×100mm)andelutedwith

gradientof10% to85% ofACNcontainingformicacid(FA)0.1% ataflowrateof0.6␮Lmin−1.Eluatesweredirectlyinfusedinto themassspectrometerusingananoAcquitysystemconnectedtoa nanoelectrospraysource.

The instrument was calibrated with [Glu1]-fibrinopeptide-B collision-induceddissociation(CID)fragments.Massspectrawere acquiredbyscanningatm/zrangingfrom800to3000at1scan s−1.Themassspectrometerwasoperatedinpositivemode,using asourcetemperatureof363Kandcapillaryvoltageat3.5kV.Data collectionandprocessingwerecontrolledbyMassLynx4.1 soft-ware (WatersCorporation,MA, USA).The deconvolution of ESI massspectrawasperformedusingtheMaxEnt1algorithminthe MassLynxsoftware.

2.4. Primarystructuredetermination

2.4.1. N-terminalaminoacidsequencing

The N-terminal aminoacidsequence of SfLwasdetermined by Edmandegradation ina Shimadzu model PPSQ-31Aprotein andpeptidesequencer(ShimadzuCorp.,Japan).PTH-aminoacids fromtheN-terminussequencewereseparatedona2.0×250mm

WakosilODS column(WakoPureChemicalCorp.,Osaka,Japan) connectedtoamodelLC-20ATpump.Theabsorbancewasdetected at269nmwithaUV–visSPD-20Adetector.

The sequence similarity of the N-terminus was evaluated online (http://www.ncbi.nlm.nih.gov/BLAST/), and homologous sequenceswereidentifiedwiththebasiclocalalignmentsearch toolprogram(BLAST)usingPROTEINBLASTfromtheNational Cen-terforBiotechnologyInformation(NCBI).

2.4.2. Tandemmassspectrometry(MS/MS)ofpeptides

SDSPAGEwasperformedasdescribedbyLaemmli[24].After staining, SfL spots were excised as described by Shevchenko and collaborators [25]. Discolored spots were subjected to digestion withtrypsin (Promega, Madison, WI, USA). Digestion was performed in ammonium bicarbonate 25mM at 1:50w/w (enzyme/substrate).Thedigestionwasmaintainedat37◦Cfor16h and then was stopped with2␮L of FA2%. The peptides were extracted,separatedbyreversephasechromatographyinaC-18 column,asdescribed above,and directlyinjectedintothemass spectrometer.

(3)

evaluatedonlinebyPROTEINBLASTfromNCBItoidentify homol-ogoussequences.

2.4.3. RapidamplificationofcDNAends(RACE)

TotalcellularRNAfromS.filiformiswasisolatedwithAxyPrep MultisourceTotalRNAMiniprepkit(AxygenBiosciences,CA,USA), accordingtothemanufacturer’sprotocol.First-strandcDNAwas synthesized from total RNA using MMLV RT (Moloney Murine LeukaemiaVirusReverseTranscriptase;Sigma-Aldrich,MO,USA) andadaptorQt(5′-CCAGTGAGCAGAGTGACGAGGACTCGAGCT

CAAGCT(T)16-3′(Sigma-Genosys,TX,USA),accordingtothe

man-ufacturer’sinstructions.

cDNAwasPCR-amplifiedusingone-tenthoftheRTreactionas atemplate.Adegenerateprimerwasdesigned(primer-SfL3′;5 -GTICAGAATCARTGGGGIGG-3′)basedontheaminoacidsequences obtainedbyMS/MS:VQNQWGG.PCRforamplificationof3′RACE (rapidamplificationcDNA3′ ends)wascarriedoutbyusingTaq DNApolymerase(ThermoScientific,MA,USA).Thereaction con-sistedofatotalvolumeof25␮L,containing2␮LofcDNA,0.4␮M ofeachprimer,0.4mMofdNTPmix(ThermoScientific,MA,USA), and1Uofenzymein1XPCRBufferwith3mMofMgCl2.PCRwas

performedwithprimer-SfL3′andQi(5 -GAGGACTCGAGCTCAAGC-3′).Amplificationprotocolincludedaninitialdenaturationstepat 95◦Cfor5min,followedby35cyclesofdenaturationat95Cfor 30s,annealingat50◦Cfor30s,extensionat72Cfor1min,and thefinalextensionstepat72◦Cfor5min.Then,thereactionwas quenchedto4◦Candanalyzedbyagarosegelelectrophoresis.

ThePCRproductwaspurifiedbyillustraTMGFXPCRDNAand

GelBand Purification kit (GE Healthcare, IL,USA). Purified PCR productwascloned intopGEM-T-easy vector, transformedinto Escherichiacoli strainDH5␣(Novagen,Germany), and screened with blue-white selection in LB agar, containing 100␮gmL−1

ampicillin (Thermo Scientific, MA, USA), 0.5mM IPTG (Iso-propyl␤- D D-1-thiogalactopyranoside; Thermo Scientific, MA, USA), and 80␮gmL−1 X-Gal (5-bromo-4-chloro-3-indolyl--d

-galactopyranoside;ThermoScientific,MA,USA).Thecloningwas performedinabiosafetylaboratorycertifiedinaccordancewith governmentalrequirements(CQB:R007-2016).Therecombinant plasmidswereextractedbyillustraTMplasmidPrepMiniSpinkit

(GEHealthcare,IL,USA)and confirmedbydigestionwithEcoRI (Promega,WI,USA).

Finally, constructions were sequenced in an automatic sequencer(MegaBACE;GEHealthcare,IL,USA),usingtheprimers T7promoter(5′-TAATACGACTCACTATAGGG-3)andSP6(5-ATT TAGGTGACACTATAG-3′).Sequencingwasperformedwithatleast tenclonesfromPCRamplification.Thereadswereanalyzedbythe Phred-Phrap-Consedprogram[26–28].Thecontigsformedwere translatedwiththeExpasytranslationtool(http://web.expasy.org/ translate/).Aminoacidsequencealignmentswereperformedusing MultAlin[29]andESPript2.2[30].ThesequencesimilarityofSfL wasevaluatedonlinebyNCBI’sPROTEINBLAST.

2.5. StructuralanalysisofSfLisoforms

2.5.1. Proteinmodeling

StructuralpredictionofisoformsIandIIfromS.filiformislectin (SfL-1andSfL-2)wasperformedintheMODELLERprogram,suite v.9.16,usingthestructureofB.oklahomensisagglutininasthe tem-plate(BOA,PDBID4GK9)[9,31].Forstructuralmodeling ofSfL isoforms,MODELLERdefaultparameterswereused,andsequence alignmentcorrectionsweremanuallyedited.Initially,20 theoreti-calmodelsforeachisoformweregenerated,whichwereranked basedontheirDOPE(discreteoptimizedproteinenergy)scores [32].

The best modelswere then selected and analyzed for their stereochemicalproperties(Ramachandranplots, stericoverlaps,

Fig.1. Differentbranchedoligosaccharides.Oligosaccharidesselectedonthebasis ofpreviouslyreporteddataforhomologouslectins.Thecirclesrepresentmannosyl residues.

C␤deviationparameters,rotamers,andbondanglequality)with theMolProbityServer[33].Afterwards,thefinalstructureswere manuallyinspectedusingPyMolMolecularGraphicsSystem, Ver-sion1.8(Schrödinger,LLC).

2.5.2. Moleculardockingcalculations

BindingofSfLisoformstodifferentbranchedoligosaccharides wasanalyzedbymoleculardocking calculations.Toaccomplish this, seven branched oligosaccharides were selected based on previouslyreporteddataonalgallectins,whichsharethesame mannopentosecore,varyingbyextramannoseresiduesat differ-entbranches(Fig.1)[7,12].Thecarbohydratestructureswerebuilt throughthewebserverSWEETII[34,35].

CalculationswereperformedwithAutoDockVina,version1.1.2, whichappliesaniteratedlocalsearchglobaloptimizerforthe opti-mizationprocedure,wherethesuccessionofeachstepconsistsof amutationandlocaloptimization,withtheacceptancedecisions made according to the Metropolis criterion. It uses the effi-cientquasi-NewtonmethodBroyden–Fletcher–Goldfarb–Shanno (BFGS)forlocaloptimization[36].TheAutodockgraphicalinterface AutoDockTools,version1.5.6,wasusedtokeeppolarhydrogens and add partial charges to the proteins and ligands using the KollmanUnitedcharges[37].Theproteinand carbohydrate lig-andsweretreatedasrigidandflexiblemolecules,respectively.The searchspaceforthedockingcalculations,selectedbasedonthe lengthofmucinfragments,wasdefinedbya20Å×20Å×20Åcube

centredontheconservedcarbohydratebindingsites. Exhaustive-nesswassetto15,andallotherparameterswereusedasdefault. Foreachdocking,thetentop-rankedgenerationsbasedonthe pre-dictedbindingaffinity(inkilocalories permole)wereanalyzed. Thesolutionswerefirstchosenbasedonthecoordinationofthe mannopentosecoreco-crystallizedwithOAAandBOA.Themost suitableresultswerefurtherrankedbasedonthetheoretical bind-ingenergy,whichisgivenasanegativescoreinkcal/mol.

(4)

theroot-mean-squaredeviation(RMSD)ofheavyatompositions betweenthedockedconformationandthecrystalstructurewas usedtoassesstheaccuracyofdockingpredictions.Basedon previ-ouslyreportedanalysis,wedefinedasolutionthathadamaximum RMSDvalueof2.0Åasanacceptabledockedresult[38,39].RMSD analysiswasperformedwiththeVisualMolecularDynamics(VMD) software[40].

2.6. Anticancereffect

2.6.1. Celllineandcultureconditions

Humanbreastadenocarcinomacellline(MCF-7)andprimary Human Dermal Fibroblasts (HDF) were both purchased from American Type Culture Collection (ATCC, USA). The cells were maintainedinT-25flaskscontainingDulbecco’smodifiedEagle’s medium (DMEM; Gibco®, TX, USA) supplemented with 10% of heat-inactivatedFetalBovineSerum(FBS;Gibco®

,TX,USA),1%ofl

-glutamine,100UmL−1penicillinand100gmL−1streptomycinat

37◦Cinahumidifiedatmospherecontaining5%CO2.Mediumwas routinelychangedevery3rdday,andcellsat90%confluencewere subculturedbytrypsinization(0.025%trypsin/0.1% EDTA).Inall experiments,cellswereusedbetweenthe3rdand14thpassage.

2.6.2. Cellviabilityassay

CellviabilitywasdeterminedusingCellTiter96®

AqueousMTS ReagentPowder(Promega,WI,USA),followingthemanufacturer´ıs instructions.Briefly,cells(2×104/200␮L/well)wereseededinto a96-well flatbottom microtiterplateinDMEMcontaining10% FBS and incubated overnight.Afterwards, the supernatant was removedandreplacedbyDMEMsupplementedwith2%FBS con-tainingdifferentconcentrationsofSfL.MTSassaywasperformed during24hforMCF-7cellsandHDF.

Fourindependentexperiments wereperformed intriplicate. Theopticaldensitywasreadat490nmonamicroplatereader.The viabilitywascalculatedas:

Cellviability (%)= averageOD490nm (control)averageOD490nm (H3) ∗100

2.6.3. AnnexinVassay

CellapoptosisandnecrosiswereassessedwiththeAPCAnnexin V ApoptosisDetectionKitwith7-AADdouble staining method. Briefly,MCF-7cells(2.25×105/well)wereseededin6-wellplates

containingDMEMsupplementedwith10%(v/v)FBS andgrown for 24h. Then, cells wereharvested and incubated withSfL at 125␮gmL−1 inDMEM containing2%FBSfor 24h. Controlcells wereincubatedwithDMEMsupplementedwith2%FBSonly.After treatmentwithSfLintheaforementionedperiods,thecellswere detachedbytrypsinizationandthencentrifuged(206g/5min)and washedtwicewithphosphatebufferedsaline(PBS;pH7.4).The cells were resuspended in binding buffer (PBS,pH 7.4, 25mM CaCl2),and5LofannexinV-APC(ImunoTools,Germany)and5L

of7AAD(InvitrogenTM,CA,USA)wereaddedtoeach well.Cells

wereincubatedinthedarkfor20minatroomtemperatureand thenthepro-apoptoticpotentialofSfLwasdeterminedbyflow cytometry(FCM).

2.6.4. mRNAextractionandqRT-PCR

Thequantificationofrelativegeneexpressionwasperformed byquantitativereversetranscriptase-realtimepolymerasechain reaction(qRT-PCR)aspreviouslydescribed[41].Briefly,after24h of treatmentwithSfL, MCF-7(106 cells) were trypsinized,and

totalmRNAwasextractedusingGenEluteMammaliantotalRNA Purificationkit(SigmaAldrich,MO, USA),andDNAse treatment wasperformedtoeliminateDNA(Nzytech,Lisboa,POR).Then,1␮g oftotal mRNAwasreversetranscribedusing theHighCapacity

cDNA Reverse Transcription kit (Applied Biosystems, CA,USA). qRT-PCRwasperformedina 7500FastSystem(Applied Biosys-tems, CA, USA), using TaqMan Fast Universal PCR Master Mix. PrimersandTaqManprobeswereacquiredfromApplied Biosys-tems and used following the manufacturer´ıs instructions. The analyzedgeneswereBAX(Hs00180269m1),BCL-2(Hs00608023), CASP 3(Hs00234387m1), CASP 8(Hs01018151m1), CASP 9(Hs00609647m1), and TP53(Hs01034249m1). Each reac-tionwasperformedinduplicate.Allgenes,includingendogenous controls (␤-actin and GAPDH) and treated or untreated cells, werealwaysanalyzedin thesame runtoexcludebetween-run variations.

Therelative expression for eachgene wascalculated by the 2−Ctmethodaspreviouslyreported[42].Theamplification

effi-ciencyforeachprimer/probewasabove95%.

2.6.5. Statisticalanalysis

Allresultswereconfirmedbyatleastthreeindependent exper-iments.Statisticsarepresentedasthemean±SEM.Experimental

datawereanalyzedbyStudent´ıst-testandone-wayANOVA fol-lowedbyTukey´ıspost-hoc.P<0.01andP<0.05wereadoptedas thelevelofsignificance.TheIC50valueswerecalculatedbyusing thesoftwareGraphPadPrism®

5tofitavariable sigmoidal-dose-responsecurve.

3. Results

3.1. PurificationSfL

Thelectinwaspurifiedbyacombinationof(NH4)2SO4

precipita-tionandion-exchangechromatographyonDEAE-SephacelColumn, asdescribedbyBenevidesandcollaborators[16].Apureproteinof relativemolecularmassof28kDawasobservedinSDSPAGE12.5% (datanotshown).

3.2. N-terminalaminoacidsequence

ThefirstfifteenaminoacidsofSfLweredeterminedbyEdman degradation.Heterogeneitieswereobservedinpositions4and5, indicatingtheexistenceofisoforms.ThrandAsnwereobserved in position 4, whereas Ala and Val were observed in position 5.Theresidue inposition13couldnotbeidentified.Therefore, theN-terminal ofSfL wasGRY(T/N)(A/V)QNQWGGSXAP.Search forsimilarityintheNCBIPROTEINBLASTshowedhighsimilarity betweenSfLandESA-2(P84331.1).

3.3. MolecularmassandaminoacidsequencingbyMS/MS

LC–MSshowedadistinctionseriesrelatedtoSfL(Fig.2).The majorionof27,553Daagreesverywellwiththeapparent molecu-larmassof28kDaobservedinSDS-PAGE.Othermolecularmasses wereobservedindeconvolutedspectra,indicatingthepresenceof isoformsinSfLpreparations.Smallvariationsaroundthese molec-ular masses were observed, suggesting the presence of adduct formations.

(5)

Fig.2. MolecularmassdeterminationofSfL.ESI–MSdeconvolutedmassspectraofLC–MSofSfLs.Insert.Zoomofregionofmassbetween27,900and28,100onthe deconvolutedmassspectra.

Fig.3.AminoacidsequencesofSfL-1(A)andSfL-2(B).Primarystructureswere determinedbycDNAcloningsequence,N-terminaldeterminationandTandemmass spectrometryoftrypticpeptides(T).Molecularmassofpeptides,asdeterminedby massspectrometry,isinparentheses.

3.4. PrimarystructuredeterminationofSfL-1andSfL-2

ThesequencingofthePCR3′RACEproductrevealedapartial aminoacidsequencefrom5to268,indicatingtwoisolectins,SfL-1 andSfL-2.TheprimarystructureofSfL-1andSfL-2wasdetermined byoverlap of sequencesobtainedby cDNA cloning,N-terminal determinationbyEdmandegradationandpeptidessequencedby MS/MS(Fig.3).

Thecalculated molecularmasses of thededucedaminoacid sequencesofSfL-1andSfL-2were27,552Daand27,985Da, respec-tively,whichwereconsistentwithions27,553Daand27,988Da, asdeterminedbyESI–MS.

The primary structure of SfL-1 and SfL-2 has four tandem-repeatdomains,consistingof67aminoacidseach.InSfL-1,the domainsshareatleast53.7%ofidentityeachother,whereasin SfL-2,identityamongdomainswasatleast44.7%(Fig.4).SfLisoforms sharedsequencesimilaritywithseverallectins(Fig.5),including OAA(P84330),PFL(WP016985694),BOA(WP010112459),MBHA

Table1

Theoreticalbindingenergy(kcal/mol)basedondockingcalculations.

Oligosaccharide SfL-1 Site SfL-2 Site

1 −10.7 I −9.8 I

1 −9.1 II −10.1 II

1 −9.9 III −9.9 III

1 −8.7 IV −10.5 IV

2 −6.5 I −4 IV

3 −8.3 I −6 IV

4 −6.9 I −5.8 IV

5 −9.5 I −7.8 IV

6 −7.4 I −7.3 IV

7 −10.5 I −9.7 IV

(WP 011556980),ESA-2(P84331),EDA-2(BAR91516)andKSA-2 (BAR91206).

3.5. Structuralmodeling

ThestructureofB.oklahomensisagglutinin(BOA,PDBID:4GK9) presentedthehighestrankingstructuralsimilaritytoSfL-1,withan identityof63%,accordingtoPSI-BLASTsearchfortemplateproteins onPDB(63%identity,74%positivity,and1%gaps).Therefore,the three-dimensionalstructureofSfLisoformsbuiltthrough compar-ativemodelingusingBOAstructureastemplatewasdeterminedto besuitableforstructuralandbindinganalysis(Fig.6).Theamino acidsequenceofBOAcrystalstructurecoversthefulllengthofSfL isoforms,exceptforthefirstfiveaminoacidsintheNterminus.

TheRamachandranplotforSfL-1showedthat100%ofresidues wereplacedinallowedregionswith98.11%onthefavoredzone. ForSfL-2,99.7%ofresidueswereplacedinallowedregionswith 98.11%onthefavoredzone,aswell.Asareference,thetemplate crystalstructureofBOAhad100%and98.0%residuesinthefavored andallowedzones,respectively.ThesedataindicatethatbothSfL modelledstructures,SfL-1andSfL-2,shouldbestableandreliable foranalyzingSfL-oligosaccharidebindingmodesthrough molecu-lardocking.

3.6. Docking

Dockingsystem(AutodockVina)suitabilityforcomplexligands, suchasoligosaccharides,wasanalyzedbasedonaredocking calcu-lationinvolvingthecrystalstructureofthecomplexbetweenBOA and␣3-␣6-mannopentaose[9].ThecalculatedRMSDbetweenthe bestdockingresultandthecrystalstructurewas1.3,whichattests tothereliabilityoftheadoptedsystemforthecurrentpurpose, despitetheconsiderableamountofrotatablebondspresentinthe usedoligosaccharides.

(6)

Fig.4.AlignmentoftherepeateddomainsofSfL-1(A)andSfL-2(B).Blackandwhiteboxesrepresentidenticalandnon-identicalaminoacids,respectively.

Fig.5. AlignmentofSfL-1andSfL-2andotherOAAH-familymembers.TheaminoacidsequencesofSfL-1and-2werealignedwithEucheumaserraagglutinin(ESA-2), Kappaphycusstriatusagglutinin(KSA-2),Eucheumadenticulatumagglutinin(EDA-2),Myxococcusxanthusagglutinin(MBHA),BurkholderiaoklahomensisEO147agglutinin (BOA),Oscillatoriaagardhiiagglutinin(OAA)andPseudomonasfluorescensPf0-1lectin(PFL).ResiduesunderlinedareaminoacidsofthebindingsiteaccordingtoWhitley etal.[9].Blackandwhiteboxesrepresentidenticalandnon-identicalaminoacids,respectively.

Fig.6. TheoverallstructureofSfL-1(A)andSfL-2(B).I,II,IIIandIVrepresentthecarbohydrate-bindingsites.

theothersixligands.For SfL-1,site Ipresentedthebestresult, whilesiteIVwasselectedforSfL-2.Despitethepresenceof con-servedresidues,subtledifferences inthecompositionof amino acidsdirectlyinvolvedinligandcoordinationamongthesitesin eachisoformandbetweenthem,beyondavariableloop structura-tion,mayinfluencethebindingspecificityofeachsite(Fig.7).

3.7. EffectofSfLonMCF-7cellviabilityandcellapoptosis

ToassesstheeffectofSfLoncellviability,weincubatedHDFand MCF-7cellswithincreasingdosesofthelectinat24h.Asshownin Fig.8,SfLdecreasedtheviabilityofMCF-7cells.Significantlosses of43.40%,58.27%and61.20%inviabilitywereobservedatdoses of62.5,250and500␮g.mL−1,respectively(*P<0.05).However,in

HDFcells,treatmentwithSfLdidnotcausereductionofmorethan

50%ofthecellpopulation.TheviabilityofHDFcellstreatedwith SfLat125and250␮gmL−1wasdecreasedbyonly34%and40.2%, respectively.At500␮gmL−1,aslightincreaseinthepopulation offibroblastswasobserved,suggestingthatthelectincan stimu-latecytoproliferationinlargerdoses.Afterwards,theconcentration that promoted50% inhibition of tumorcell viability(IC50)was

established,revealingthattreatmentwith125␮gmL−1 resulted

in50%inhibitionofMCF-7viability.

InordertoevaluatetheapoptoticpotentialofSfL,MCF-7cells weredoublestainedwithannexinV-APC/7AAD.Twenty-fourhours aftertreatmentwithSfLat125␮gmL−1,resultsshowedthat33.87%

(7)

Fig.7. Analysisofligand7bindingtositeIonSFL-1andSFL-2.AandC–SurfacerepresentationofSfL-1andSfL-2,respectively,highlightingthebindingsitegrooveand ligandstructuration.BandD–Residuesinvolvedinthecoordinationofligand7onSfL-1andSfL-2(siteI),respectively,arerepresentedassticks,whilehydrogenbondsare presentedasdashedlines.Ligandsarerepresentedassticks.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

Fig.8. EffectofSfLonproliferationandcellviability.Humandermalfibroblasts andMCF-7cellsweretreatedwithserialconcentrationsofSfLduring24h.The cellviability(%)wasmeasuredbyMTSassay.(n=3,Mean±SEM).(*P<0.05and** P<0.01).

3.8. EffectofSfLonpro-apoptoticgeneexpression

TheeffectofSfLontheexpressionofpro-andanti-apoptotic genesofMCF-7cellswasanalyzed24haftertreatment.The rel-ativeexpressionofCASP3,CASP8,CASP9,BCL-2,BAX,andTP53 wasevaluatedbyreal-timePCR.MCF-7cells24haftertreatment withSfLwerecomparedwithuntreatedcells.AsshowninFig.10, after24h,theanti-apoptoticgeneBcl-2wasdownexpressed. How-ever,pro-apoptoticgenes,suchasBax,underwentover-expression. Interestingly,theexpressionofCASP3,-8and-9,whichareinvolved inintrinsicandextrinsicapoptosispathways,wereoverexpressed at24h(P=0.0139).These resultsindicatethat Solieriafiliformis

lectininducedcaspase-dependentapoptosiswherecaspase-8and -9arestronglyactivated.

4. Discussion

Inthecurrentstudy,wehaveisolatedanddeterminedthe pri-marystructureoftwoisolectinsfromS.filiformis,SfL-1andSfL-2. Weperformedastructuralpredictionforbothsequencesand ana-lyzedtheiranticancereffectonMCF-7breastcancercells.

Thedeterminedsequencesofbothisoforms,SfL-1andSfL-2, presentfourtandem-repeatdomainswithapproximately67amino acids,thuspresentinghighsequenceidentitytootherlectinsfrom theOAAH-family.SfL-1showed83%,83%,82%,62%and62%of iden-titywithESA-2,KSA-2,EDA-2,MBHAandBOA,respectively.SfL-2 showed80%,79%,78%,60%and60%ofidentitywithESA-2,KSA-2, EDA-2,MBHAandBOA,respectively.SfL-1andSfL-2showed82% ofidentitywitheachother.

Moreover,structuralmodelingandthebindinganalysis demon-stratethatSfL-1andSfL-2exhibitstructuralfeaturesandbinding specificitysimilartothelectinsoftheOAAH-family,indicatingthat SfL-1and-2couldbegroupedintothislectinfamily.

SimilartoBOA,SfL-1andSfL-2presentedstructurescomposed oftwo␤-barrel-likedomainsformedbyfiveantiparallel␤-strands, whichareconnectedbyashortpeptidelinker[9].Thelectin’sability tospecificallybindto3␣,6␣mannopentoseoligosaccharideswas assessedbymoleculardocking calculations,andfavorable bind-ingenergiesweredetectedforbothlectinisoforms,SfL-1(siteI) andSfL-2(siteIV),suggestingthesamespecificitytohigh-mannose oligosaccharidesasthatpresentedbylectinsoftheOAAH-family. Theaminoacidcompositioninvolved inthecarbohydrate bind-ingofSfL-1(siteI)wasW9G10G11N17D18S94R95E123G124P125

I126.InSfL-2(siteIV),itwasW211G212G213N219P220D161 R162

(8)

Fig.9.SfLcausedapoptosisinductioninMCF-7cells.MCF-7cellswereincubated with125␮g/mlSfLfor24h.AnnexinV-APC/7-AADdoublestainingwasperformed andanalyzedbyflowcytometry.(A)Dotblotsshowstagesofapoptosis/necrosis. R1(necroticcells),R2(lateapoptosis),R3(viablecells)andR4(apoptotic).(B) SfLinducesapoptosisinMCF-7cellswhencomparedtountreatedcells.(n=4, Mean±SEM).(*P<0.05).

Fig.10.SfLupregulatesmRNAexpressionofpro-apoptoticgenes.MCF-7cellswere treatedwithSfLataconcentrationof125␮g/mlfor24h.ThemRNAwasextracted andconvertedintocDNA.AnalysisofthemRNAlevelrelativetountreatedcellswas determinedbyreal-timePCR,usingthe2−Ctmethod.(**P<0.01).

residuesW152G153G154,R236andE264G265P266areinvolvedinthe

structurationofcarbohydratebindinginsiteIVinBOA.Theseamino acidsarehighlyconservedbetweendomainsandprimary struc-turesoflectinsfromtheOAAH-family.TheyarepresentinSfL-1 andSfL-2,participatingdirectlyincarbohydratebinding,as sug-gestedbymoleculardockingcalculations,pointingoutthesame specificityforSfLandtheOAAH-family.

Thedifferenceintheoreticalbindingenergyamongthesites betweentheisoformsoccursasaresultofminorchangesinthe

compositionandstructureofeachsite.SitesIandIIIofSfL-1and SfL-2havethesameaminoacidcomposition;however,inSfL-2, siteIisnarrower.SitesIIandIVaresimilarinstructureand vol-ume,buttheypresentadifferentaminoacidcomposition,suchas S26andA86insiteIIofSfL-1andG26andP86insiteIIofSfL-2.On

theotherhand,siteIVpresentsD161forSfL-1andS161forSfL-2.

Forthesimulationsinvolvingtheremainingoligosaccharides, the terminal GlcNAc residues were removed in order to avoid previously detected steric hindrances. Differently, the addition ofterminalmannoseresiduesonMan-7,Man-8andMan-9was accompanied by a decreased binding energy. These resultsare corroboratedby previousdataobtained forhomologous lectins [7,9,11,43,44].

LectinsfromtheOAAH-familyareknowntopresentantiviral andanticanceractivities,asreportedintheliterature[7–9,43,45]. Regarding theanticancer effect,SfL presented significant activ-ity, inhibiting 50% of MCF-7 cell viability with a treatment of 125␮gmL−1. Recently, increasing interest has been shown in marine lectins becauseof their pro-apoptotic,cytotoxic and antiproliferation effects over differentcell lines [46–49]. These lectinspresenthighspecificityforcomplexcarbohydrates. Con-sequently, their interaction with malignant, as compared to non-malignantcells,isbetterinviewofthelargenumberof glyco-proteinreceptorsontumorcellmembranes[50,51].Thus,theeffect ofSfLonnon-malignantcellsindicatesagreaterselectivityofSfL forMCF-7cells.Thisisaveryimportantpoint,sincemany anti-cancerdrugsgenerallydonotdifferentiatebetweennormaland malignantcells[52].Thepresentdatacorroboratewithpreviously reportedresultsforsimilarlectins,whichshowactivitiesagainst othercancercelllines[8,45].

Sugaharaandcollaborators[45]verifiedthatESAinducedcell death against Colo201 (Human Colon Cancer) and HeLa cells (humancervixcancer)atconcentrationsabove1.2␮gmL−1.

Nev-ertheless,MCF-7cellsshowedrelativelyhightolerancetoESA.The deathofColo201cellswasinvestigatedbyDNAladderdetection andcaspase-3activity,indicatingthatESAisabletoinduce apo-ptosisincancercellsafter3days.Thepro-apoptoticpotentialof SfLoverMCF-7cellswasanalyzedafter24h.SfLinducedthedeath of60.23%ofthecellpopulation,betweenearlyandlate apopto-sis,althoughmostcellswerein lateapoptosis.Manyterrestrial lectinshavetheabilitytoprovokecelldeath[53].However,littleis knownabouthowmarinelectinsinducenecrosisorapoptosis.To addressthisquestion,quantitativePCRassayswereperformedto verifyifthemechanismunderlyingcelldeathinducedbySfLtakes placebyintrinsicorextrinsicpathways.TheeffectofSfLafter24h ontheexpressionofpro-andanti-apoptoticgenesinMCF-7cells showedacaspase-dependentmechanismrelyingonCASP-8and -9,whichareproteinsrelatedtobothapoptosispathways.These datacorroboratethereportthatlectinswhichspecificallybindto N-glycancarbohydratemoietiesoncancercellsmayactaspotential therapeuticagentsviaapoptosisinduction[51].

Satoetal.[8]verifiedthatPFLpresentedasignificanteffecton decreasingthecellviabilityofMKN28cells(HumanGastricCancer) post-treatmentof0.5␮M(approximately6.94␮gmL−1)orhigher by72h,whichwasaccompaniedbythelossofcelladhesion,inturn triggeringasignalingpathwaythatinducedanoikis-likecelldeath. Furthermore,treatmentwithlow doses(0.1–0.3uM)stimulated theproliferationofMKN28cells.

(9)

carbo-hydrateligands[8,45].Therefore,thatfactthatSfLisalsoableto specificallybindtohigh-mannoseoligosaccharidespresentinthe MCF-7cellsstronglysuggeststhatitcanpotentiallyexertantitumor activity.However,togainabetterunderstandingofthatpotential, weneedtoundertakeindependentstudiesofeachisoform.

Acknowledgments

ThisworkwassupportedbytheBrazilianagenciesCNPq (Con-selho Nacional de Desenvolvimento Científico e Tecnológico), FUNCAP(Fundac¸ãoCearensedeApoioaoDesenvolvimento Cientí-ficoeTecnológico)andFINEP(FinanciadoradeEstudoseProjetos). TheauthorsaregratefultoProfessorDavidMartinforhelpingwith textediting.A.H.S., C.S.N.,and E.H.T.aresenior investigators of CNPq.

References

[1]R.S.Singh,S.R.Thakur,P.Bansal,Algallectinsaspromisingbiomoleculesfor biomedicalresearch,Crit.Rev.Microbiol.41(1)(2015)77–88.

[2]H.P.Singh,Mushroomlectinsaspromisinganticancersubstances,Curr. ProteinPept.Sci.17(8)(2016)797–807.

[3]C.S.Nagano,H.Debray,K.S.Nascimento,V.P.T.Pinto,B.S.Cavada,S. Saker-Sampaio,W.R.L.Farias,A.H.Sampaio,J.J.Calvete,HCAandHMLisolated fromtheredmarinealgaeHypneacervicornisandHypneamusciformisdefinea novellectinfamily,ProteinSci.14(8)(2005)2167–2176.

[4]K.S.Nascimento,C.S.Nagano,E.V.Nunes,R.F.Rodrigues,G.V.Goersch,B.S. Cavada,J.J.Calvete,S.Saker-Sampaio,W.R.Farias,A.H.Sampaio,Isolationand characterizationofanewagglutininfromtheredmarinealgaHypnea cervicornis,J.AgardhBiochem.CellBiol.84(1)(2006)49–54.

[5]K.Hori,K.Matsubara,K.Miyasawa,Primarystructuresoftwohemaglutinins frommarineredalgaHypneajaponica,Biochim.Biophys.Acta1474(2)(2000) 226–236.

[6]L.M.Koharudin,S.Kollipara,C.Aiken,A.M.Gronenborn,Structuralinsights intotheanti-HIVactivityoftheOscillatoriaagardhiiagglutininhomologlectin family,J.Biol.Chem.287(40)(2012)33796–33811.

[7]T.Sato,K.Hori,Cloning,expression,andcharacterizationofanovelanti-HIV lectinfromtheculturedcyanobacteriumOscillatoriaagardhii,FishSci.75(3) (2009)743–753.

[8]Y.Sato,K.Morimoto,T.Kubo,K.Yanagihara,T.Seyama,High

mannose-bindingantivirallectinPFLfromPseudomonasfluorescensPf0-1 promotescelldeathofgastriccancercellMKN28viainteractionwith a2-integrin,PLoSOne7(9)(2012)e45922.

[9]M.J.Whitley,W.Furey,S.Kollipara,A.M.Gronenborn,Burkholderia oklahomensisagglutininisacanonicaltwo-domainOAA-familylectin: structures,carbohydratebindingandanti-HIVactivity,FEBSJ.280(9)(2013) 2056–2067.

[10]J.M.Romeo,B.Esmon,D.R.Zusman,Nucleotidesequenceofthemyxobacterial hemagglutiningenecontainsfourhomologousdomains,Proc.Natl.Acad.Sci. U.S.A.83(17)(1986)6332–6336.

[11]K.Hori,Y.Sato,K.Ito,Y.Fujiwara,Y.Iwamoto,H.Makino,A.Kawakubo,Strict specificityforhigh-mannosetypeN-glycansandprimarystructureofared algaEucheumaserralectin,Glycobiology17(5)(2007)479–491.

[12]L.D.Hung,M.Hirayama,B.M.Ly,K.Hori,Purification,primarystructure,and biologicalactivityofthehigh-mannoseN-glycan-specificlectinfrom cultivatedEucheumadenticulatum,J.Appl.Phycol.27(4)(2015)1657–1669. [13]L.D.Hung,M.Hirayama,B.M.Ly,K.Hori,Biologicalactivity,cDNAcloningand

primarystructureoflectinKSA-2fromthecultivatedredalgaKappaphycus striatum(Schmitz)DotyexSilva,Phytochem.Lett.14(2015)99–105. [14]M.Hirayama,H.Shibata,K.Imamura,T.Sakaguchi,K.Hori,High-mannose

specificlectinanditsrecombinantsfromacarrageenophytaKappaphycus alvareziirepresentapotentanti-HIVactivitythroughhigh-affinitybindingto theviralenvelopeglycoproteingp120,Mar.Biotechnol.18(1)(2016) 144–160.

[15]L.M.I.Koharudin,W.Furey,A.M.Gronenborn,Novelfoldandcarbohydrate specificityofthepotentanti-HIVcyanobacteriallectinfromOscillatoria agardhii,J.Biol.Chem.286(2)(2011)1588–1597.

[16]N.M.B.Benevides,A.M.Leite,A.L.P.Freitas,Atividadehemaglutinantedaalga vermelhaSolieriafiliformis,R.Bras.Fisiol.Veg.8(2)(1996)117–122. [17]T.M.Abreu,L.M.C.M.Silva,E.S.Vanderlei,C.M.deMelo,V.R.Pereira,N.M.B.

Benevides,CytokineproductioninducedbymarinealgaelectinsinBALB/c micesplenocytes,ProteinPept.Lett.19(9)(2012)975–981.

[18]T.M.Abreu,N.A.Ribeiro,H.V.Chaves,R.J.Jorge,M.M.Bezerra,H.S.Monteiro, I.M.Vasconcelos,E.F.Mota,N.M.Benevides,Antinociceptiveand

anti-inflammatoryactivitiesofthelectinfrommarineredalgaSolieria filiformis,PlantaMed.82(7)(2016)596–605.

[19]S.Sameni,M.P.Hande,PlumbagintriggersDNAdamageresponse,telomere dysfunctionandgenomeinstabilityofhumanbreastcancercells,Biomed. Pharmacother.82(2016)256–268.

[20]L.A.Torre,R.L.Siegel,E.M.Ward,A.Jemal,Globalcancerincidenceand mortalityratesandtrends–anupdate,cancerepidemiology,Cancer Epidemiol.Biomark.Prev.25(1)(2016)16–27.

[21]Y.M.Amen,Q.Zhu,M.S.Afifi,A.F.Halim,A.Ashour,K.Shimizu,Newcytotoxic lanostanoidtriterpenesfromGanodermalingzhi,Phytochem.Lett.17(2016) 64–70.

[22]A.M.Scott,J.P.Allison,J.D.Wolchok,Monoclonalantibodiesincancertherapy, CancerImmun.12(2012)14.

[23]M.Bradford,Anal.Biochem.72(1976)248–254.

[24]U.K.Laemmli,Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4,Nature227(5259)(1970)680–685.

[25]A.Shevchenko,H.Tomas,J.Havlis,J.V.Olsen,M.Mann,In-geldigestionfor massspectrometriccharacterizationofproteinsandproteomes,Nat.Protoc.1 (6)(2006)2856–2860.

[26]B.Ewing,L.Hillier,M.C.Wendl,P.Green,Base-callingofautomatedsequencer tracesusingphred.I.Accuracyassessment,GenomeRes.8(3)(1998) 175–185.

[27]B.Ewing,P.Green,Base-callingofautomatedsequencertracesusingphred.II. Errorprobabilities,GenomeRes.8(3)(1998)186–194.

[28]D.Gordon,C.Abajian,P.Green,Consed:agraphicaltoolforsequence finishing,GenomeRes.8(3)(1998)195–202.

[29]F.Corpet,Multiplesequencealignmentwithhierarchicalclustering,Nucleic Acids16(22)(1988)10881–10890.

[30]P.Gouet,E.Courcelle,D.I.Stuart,F.Metoz,ESPript:multiplesequence alignmentsinPostScript,Bioinformatics15(4)(1999)305–308.

[31]B.Webb,A.Sali,ComparativeproteinstructuremodelingusingMODELLER, Curr.Protoc.Bioinform.(2014),47:5.6:5.6.1–5.6.32.

[32]M.Shen,A.Sali,Statisticalpotentialforassessmentandpredictionofprotein structures,ProteinSci.15(11)(2006)2507–2524.

[33]I.W.Davis,A.Leaver-Fay,V.B.Chen,J.N.Block,G.J.Kapral,X.Wang,L.W. Murray,W.B.Arendall,J.Snoeyink,J.S.Richardson,D.C.Richardson, MolProbity:all-atomcontactsandstructurevalidationforproteinsand nucleicacids,NucleicAcidsRes.35(2007)375–383.

[34]M.Frank,S.Schloissnig,Bioinformaticsandmolecularmodelingin glycobiology,CellMol.LifeSci.67(16)(2010)2749–2772.

[35]A.Bohne,E.Lang,C.W.vonderLieth,SWEET–WWW-basedrapid3D constructionofoligo-andpolysaccharides,Bioinformatics15(9)(1999) 767–768.

[36]O.Trott,A.J.Olson,AutoDockvina.improvingthespeedandaccuracyof dockingwithanewscoringfunction,efficientoptimization,and multithreading,J.Comput.Chem.31(2)(2010)455–461.

[37]G.Morris,R.Huey,AutoDock4andAutoDockTools4:automateddockingwith selectivereceptorflexibility,J.Comput.Chem.30(16)(2009)2785–2791. [38]B.Kramer,M.Rarey,T.Lengauer,EvaluationoftheFLEXXincremental

constructionalgorithmforprotein–liganddocking,Proteins37(2)(1999) 228–241.

[39]G.Jones,P.Willett,R.C.Glen,R.Leach,R.Taylor,Developmentandvalidation ofageneticalgorithmforflexibledocking,J.Mol.Biol.267(3)(1997)727–748. [40]J.C.Phillips,R.Braun,W.Wang,J.Gumbart,E.Tajkhorshid,E.Villa,C.Chipot,

R.D.Skeel,L.Kal,K.Schulten,ScalablemoleculardynamicswithNAMD,J. Comput.Chem.26(16)(2005)1781–1802.

[41]P.A.Videira,D.Ligeiro,M.Correia,H.Trindade,Geneexpressionanalysisin superficialbladdercancer:comparasionoftwosuitableendogenous referencegenes,Curr.Urol.1(2007)145–150.

[42]K.J.Livak,T.D.Schmittgen,Analysisofrelativegeneexpressiondatausing real-timequantitativePCRandthe2(-DeltaDeltaC(T))Method,Methods25 (4)(2001)402–408.

[43]Y.Sato,K.Morimoto,M.Hirayama,K.Hori,Highmannose-specificlectin (KAA-2)fromtheredalgaKappaphycusalvareziipotentlyinhibitsinfluenza virusinfectioninastrain-independentmanner,Biochem.Biophys.Res. Commun.405(2)(2011)291–296.

[44]L.D.Hung,Y.Sato,K.Hori,High-mannoseN-glycan-specificlectinfromthe redalgaKappaphycusstriatum(Carrageenophyte),Phytochemistry72(9) (2011)855–861.

[45]T.Sugahara,Y.Ohama,A.Fukuda,M.Hayashi,A.Kawakubo,K.Kato,The cytotoxiceffectofEucheumaserraagglutinin(ESA)oncancercellsandits applicationtomolecularprobefordrugdeliverysystemusinglipidvesicles, Cytotechnology36(1–3)(2001)93–99.

[46]C.S.Bah,E.F.Fang,T.B.Ng,S.Mros,M.McConnell,D.BekhitAel,Purification andcharacterizationofarhamnose-bindingchinooksalmonroelectinwith antiproliferativeactivitytowardtumorcellsandnitricoxide-inducingactivity towardmurinemacrophages,J.Agric.FoodChem.59(10)(2011)5720–5728. [47]R.Matsumoto,Y.Fujii,S.M.Kawsar,R.A.Kanaly,H.Yasumitsu,Y.Koide,I.

Hasan,C.Iwahara,Y.Ogawa,C.H.Im,S.Sugawara,M.Hosono,K.Nitta,J. Hamako,T.Matsui,Y.Ozeki,Cytotoxicityandglycan-bindingpropertiesofan 18kDalectinisolatedfromthemarinespongeHalichondriaokadai,Toxins (Basel)4(5)(2012)323–338.

[48]L.Rabelo,N.Monteiro,R.Serquiz,P.Santos,R.Oliveira,A.Oliveira,H.Rocha, A.H.Morais,A.Uchoa,E.Santos,Alactose-bindinglectinfromthemarine spongeCinachyrellaapion(Cal)inducescelldeathinhumancervical adenocarcinomacells,Mar.Drugs10(4)(2012)727–743.

(10)

[50]G.V.Faheina-Martins,A.L.daSilveira,M.V.Ramos,L.F.Marques-Santos,D.A. Araujo,Influenceoffetalbovineserumoncytotoxicandgenotoxiceffectsof lectinsinMCF-7cells,J.Biochem.Mol.Toxicol.25(5)(2011)290–296. [51]R.C.Cheung,J.H.Wong,W.Pan,Y.S.Chan,C.Yin,X.Dan,T.B.Ng,Marine

lectinsandtheirmedicinalapplications,Appl.Microbiol.Biotechnol.99(9) (2015)3755–3773.

[52]D.FerreiraRda,J.G.Ferreira,M.C.Silva,R.A.Silva-Lucca,R.Mentele,E.J. Paredes-Gamero,T.C.Bertolin,M.T.DosSantosCorreia,P.M.Paiva,A. Gustchina,A.Wlodawer,M.L.Oliva,Crystalstructureofcrataevatapiabark protein(CrataBL)anditseffectinhumanprostatecancercelllines,PLoSOne8 (6)(2013)e64426.

Imagem

Fig. 1. Different branched oligosaccharides. Oligosaccharides selected on the basis of previously reported data for homologous lectins
Fig. 3. Amino acid sequences of SfL-1 (A) and SfL-2 (B). Primary structures were determined by cDNA cloning sequence, N-terminal determination and Tandem mass spectrometry of tryptic peptides (T)
Fig. 6. The overall structure of SfL-1 (A) and SfL-2 (B). I, II, III and IV represent the carbohydrate-binding sites.
Fig. 7. Analysis of ligand 7 binding to site I on SFL-1 and SFL-2. A and C – Surface representation of SfL-1 and SfL-2, respectively, highlighting the binding site groove and ligand structuration
+2

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

In the genome of citrus species, an EST contig whose deduced amino acid sequence shows 71% identity to PHOT2 and four cDNAs with sequences approximately 50% identical to PHOT1

Enzymatic properties and nucleotide and amino acid sequences of a thermostable beta agarase from the novel marine isolate, JAMB-A94. Rapid and Sensitive Sequence

The amino acid sequence of BmLec showed high similarity with sequences of other lectins, such as BjLec (lectin from Bothrops jararacussu), determined by automatic

This study aimed to evaluate the effects of a sulfated polysaccharide from red seaweed Solieria filiformis in classical models of nociception and acute

Uma vez que foi sugerido que o edema de pata induzido pela LSf se dá através da ação de mediadores inflamatórios liberados no metabolismo do ácido araquidônico,

Ao meu esposo Luis Hemílio e meu filho

In Brazil, two genogroups based on the amino acid sequences of the tandem repeat region are circulating and they have different patterns: the Brazilian genogroup (ASVVPEAE) and the