• Nenhum resultado encontrado

A Bayesian joint dispersion model with flexible links

N/A
N/A
Protected

Academic year: 2021

Share "A Bayesian joint dispersion model with flexible links"

Copied!
27
0
0

Texto

(1)

Results

A Bayesian Joint Dispersion Model

With Flexible Links

(2)

Background HIV/AIDS Application Results

Summary

1

Background

Longitudinal studies

Outline

2

HIV/AIDS Application

Data

Exploratory analysis

Joint Model

3

Results

(3)

Results

Questions of interest

Biomarker, Y1

e.g. CD4 counts, collected repeatedly over time (longitudinal data)

time to an event of interest, Y2

e.g. death from any cause (survival data)

Separate Analysis

does treatment affect survival?

are the average longitudinal evolutions different between males

and females?

Joint Analysis

(4)

Background HIV/AIDS Application Results Longitudinal studies Outline

Questions of interest

Biomarker, Y1

e.g. CD4 counts, collected repeatedly over time (longitudinal data)

time to an event of interest, Y2

e.g. death from any cause (survival data)

Separate Analysis

does treatment affect survival?

are the average longitudinal evolutions different between males

and females?

Joint Analysis

what is the effect of the missing information due to drop-out in

assessing the trends of the repeated measures?

what is the effect of the longitudinal evolution of CD4 cell count in

(5)

Results

Questions of interest

Biomarker, Y1

e.g. CD4 counts, collected repeatedly over time (longitudinal data)

time to an event of interest, Y2

e.g. death from any cause (survival data)

Separate Analysis

does treatment affect survival?

are the average longitudinal evolutions different between males

and females?

Joint Analysis

(6)

Background

HIV/AIDS Application Results

Longitudinal studies Outline

Correlated data in longitudinal studies

0 1 2 3 4 5 0.0 2.5 5.0 7.5 10.0 Time Biomar k er v alues Longitudinal Trajectory 0 0.1 0.2 0.3 0.4 0.5 0.0 2.5 5.0 7.5 10.0 Time hazard Hazard Function Latent Structure

Longitudinal Marker (Y1) Time-To-Event (Y2)

If the two processes are associated ⇒ define a model for their joint probability

distribution:

f (y

1

, y

2

)

(7)

Results Joint Model

Analysing HIV/AIDS data through

(8)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Data

network of 88 laboratories located in every state in Brazil during

Jan 2002 – Dec 2006;

Sample: n = 500 individuals; 2757 repeated measurements;

Outcomes:

CD4

+

T lymphocyte counts, Y ,

and

time-to-death, T

;

Covariates:

age

(<50=0, ≥50=1);

sex

(Female=0, Male=1);

PrevOI

(previous opportunistic infection at study entry=1, no

previous infection=0);

measurement times

;

date of diagnosis

;

date of death

;

failure indicator, δ

;

Patients: 34 deaths. 88% between 15 and 49 years old; 60%

males. 61% no previous infection. Initial CD4 median: 269

(9)

Results Joint Model

(10)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Intra-individual variance (dispersion)

0 100 200 300 400 500 0 10 20 30 40

Ordered subjects by std. deviation

C D 4 ●●● ● ● ● ●●● ● ●●●● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●●●● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ●● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ●● ● ● ●● ●● ● ● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●● ●● ● ● ● ●●● ● ●● ●● ● ● ● ●● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ●●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●●● ●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ●● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

lowess smooth of the CD4counts connecting the standard deviations

Individuals values of the

CD4 vs Std. Deviation (ordered) suggests considerable

within-subject variance heterogeneity. Individuals with higher

CD4 values are

associated with a higher variability.

(11)

Results Joint Model

Longitudinal specification

Mixed-effects dispersion model

(McLain et al. 2012)

y

ij

|b

i

, σ

i2

∼ N m

i

(t

ij

), σ

i2



,

j = 1, . . . , n

i

(1)

m

i

(t

ij

) = β

> 1

x

1i

(t

ij

) + b

> 1i

w

1i

(t

ij

),

(2)

σ

i2

= σ

02

exp{ β

> 2

x

2i

(t

ij

) + b

> 2i

w

2i

(t

ij

) },

(3)

y

i

= (y

i1

, . . . , y

ini

) → n

i

observed repeated measures,

CD4

t

i

= (t

i1

, . . . , t

ini

) →

visiting times

x

1i

, x

2i

, w

1i

and w

2i

→ individual covariates (time-dependent?)

β

1

and β

2

→ population parameters

(12)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Longitudinal specification

Mixed-effects dispersion model

(McLain et al. 2012)

y

ij

|b

i

, σ

i2

∼ N m

i

(t

ij

), σ

i2



,

j = 1, . . . , n

i

(1)

m

i

(t

ij

) = β

> 1

x

1i

(t

ij

) + b

> 1i

w

1i

(t

ij

),

(2)

σ

i2

= σ

02

exp{ β

> 2

x

2i

(t

ij

) + b

> 2i

w

2i

(t

ij

) },

(3)

y

i

= (y

i1

, . . . , y

ini

) → n

i

observed repeated measures,

CD4

t

i

= (t

i1

, . . . , t

ini

) →

visiting times

x

1i, x2i, w1i

and w2i

→ individual covariates (time-dependent?)

β

1

and β2

→ population parameters

(13)

Results Joint Model

Longitudinal outcome

CD4

ij

|b

i

, σ

2

i

∼ N m

i

(t

ij

), σ

i

2



Longitudinal mean

m

i

(t

ij

) = β

10

11

sex

i

12

age

i

13

PrevOI

i

14

t

ij

+b

1i,1

+b

1i,2

t

ij

(4)

Dispersion model (3) may assume:

σ

2i

= σ

2

0

exp{β

21

sex + β

22

age + β

23

PrevOI + b

2i

},

(5)

σ

2i

= σ

2 0

exp{b

2i

},

(6)

σ

2i

,

(7)

σ

2i

= σ

2 0

.

(8)

(14)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Longitudinal outcome

CD4

ij

|b

i

, σ

2

i

∼ N m

i

(t

ij

), σ

i

2



Longitudinal mean

m

i

(t

ij

) = β

10

11

sex

i

12

age

i

13

PrevOI

i

14

t

ij

+b

1i,1

+b

1i,2

t

ij

(4)

Dispersion model (3) may assume:

σ

2i

= σ

2

0

exp{β

21

sex + β

22

age + β

23

PrevOI + b

2i

},

(5)

σ

2i

= σ

2 0

exp{b

2i

},

(6)

σ

2i

,

(7)

σ

2i

= σ

2 0

.

(8)

Priors

β

1p

∼ N (0, 100); p = 0, . . . , 4 and β2q

∼ N (0, 100); q = 1, . . . , 3

b

i

|Σ ∼ N

p

(0, Σ);

Σ

−1

∼ Wish(R, ξ)

log(σ0

) ∼ U (−100, 100); or log(σ

i

) ∼ U (−100, 100)

(15)

Results Joint Model

Survival specification

Time-dependent coefficients (Penalized cubic B-Splines)

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

>

3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(9)

C

i

{.} → specifies which components of the longitudinal process

are related to h

i

(.)

Link → Shared parameters

I

b

i

, σ

i

x

3i

→ baseline covariates

β

3

→ population parameters

h

0

(t) →

parametric (e.g. Weibull); P-Splines; Piecewise constant

function.

(16)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Survival specification

Time-dependent coefficients (Penalized cubic B-Splines)

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

>

3

x

3i

+ C

i

{

b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(9)

C

i

{.} → specifies which components of the longitudinal process

are related to h

i

(.)

Link → Shared parameters

I

bi, σi

x

3i

→ baseline covariates

β

3

→ population parameters

h

0

(t) →

parametric (e.g. Weibull); P-Splines; Piecewise constant

function.

g(t) = (g

1

(t), . . . , g

L

(t)) →

suitable vector of smooth functions

(17)

Results Joint Model

Survival specification

Time-dependent coefficients (Penalized cubic B-Splines)

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

>

3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(9)

C

i

{.} → specifies which components of the longitudinal process

are related to h

i

(.)

Link → Shared parameters

I

b

i

, σ

i

x

3i

→ baseline covariates

β

3

→ population parameters

h

0(t) →

parametric (e.g. Weibull); P-Splines; Piecewise constant

function.

(18)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Time-to-death

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

> 3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(10)

all models

β

3

>

x

3i

= β

31sex

i

+ β

32age

i

+ β

33PrevOI

i

(11)

C

i

(.)

may assume:

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)b

2i

(12)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)σ

i

(13)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

(14)

g

1

(t), g

2

(t), g

3

(t) →

Penalized Splines with 19 internal knots.

g

l

(t) =

P

19 q=1

γ

lq

B

lq

(t),

l = 1, 2, 3

γ

l1

∼ N (0, 1000), γ

lq

l2

∼ N (γ

l,q−1

, τ

l2

),

q = 2, . . . , 19

1/τ

2 l

∼ G(0.001, 0.001), l = 0, 1, 2, 3.

3 scenarios for h

0

(t) = log(g

0

(t)) →

Weibull,

Penalized Splines

(19)

Results Joint Model

Time-to-death

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

> 3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(10)

all models

β

3

>

x

3i

= β

31

sex

i

+ β

32

age

i

+ β

33

PrevOI

i

(11)

C

i

(.)

may assume:

C

i

(.) = g1(t)b1i,1

+ g2(t)b1i,2

+ g3(t)b2i

(12)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)σ

i

(13)

C

i

(.) = g1(t)b1i,1

+ g2(t)b1i,2

(14)

g

1

(t), g

2

(t), g

3

(t) →

Penalized Splines with 19 internal knots.

g

l

(t) =

P

19

q=1

γ

lq

B

lq

(t),

l = 1, 2, 3

(20)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Time-to-death

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

> 3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(10)

all models

β

3

>

x

3i

= β

31

sex

i

+ β

32

age

i

+ β

33

PrevOI

i

(11)

C

i

(.)

may assume:

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)b

2i

(12)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)σ

i

(13)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

(14)

g

1(t), g2(t), g3(t) →

Penalized Splines with 19 internal knots.

g

l

(t) =

P

19 q=1

γ

lq

B

lq

(t),

l = 1, 2, 3

γ

l1

∼ N (0, 1000), γ

lq

l2

∼ N (γ

l,q−1

, τ

l2

),

q = 2, . . . , 19

1/τ

2 l

∼ G(0.001, 0.001), l = 0, 1, 2, 3.

3 scenarios for h

0

(t) = log(g

0

(t)) →

Weibull,

Penalized Splines

(21)

Results Joint Model

Time-to-death

h

i

(t|b

i

, σ

i

) = h

0

(t) exp{β

> 3

x

3i

+ C

i

{b

i

, σ

i

; g(t)}} = h

0

(t) exp{%

i

(t)}

(10)

all models

β

3

>

x

3i

= β

31

sex

i

+ β

32

age

i

+ β

33

PrevOI

i

(11)

C

i

(.)

may assume:

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)b

2i

(12)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

+ g

3

(t)σ

i

(13)

C

i

(.) = g

1

(t)b

1i,1

+ g

2

(t)b

1i,2

(14)

g

1

(t), g

2

(t), g

3

(t) →

Penalized Splines with 19 internal knots.

g

l

(t) =

P

19

q=1

γ

lq

B

lq

(t),

l = 1, 2, 3

(22)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Joint likelihood

We consider:

y

i

|b

i

⊥ T

i

|b

i

;

y

ij

|b

i

⊥ y

il

|b

i

, j 6= l

non-informative right censoring

L(θ, b, σ | D) =

N

Y

i=1

n

i

Y

j=1

p(y

i

(t

ij

)|θ, b

i

, σ

2

i

)

p(T

i

, δ

i

|θ, b

i

, σ

i

)

where

D = {D

i

}

N

i=1

= {(y

i

, t

i

, T

i

, δ

i

)}

N

i=1

→ observed data for the N

independent individuals

θ →

other parameters;

(23)

Results Joint Model

Joint likelihood

We consider:

y

i

|b

i

⊥ T

i

|b

i

;

y

ij

|b

i

⊥ y

il

|b

i

, j 6= l

non-informative right censoring

L(θ, b, σ | D) =

N

Y

i=1

n

i

Y

j=1

p(y

i

(t

ij

)|θ, b

i

, σ

2

i

)

p(T

i

, δ

i

|θ, b

i

, σ

i

)

where

p(y

i

(t

ij

) | θ, b

i

, σ

i

2

) =

1

p2πσ

2

i

exp

(

[y

i

(t

ij

) − m

i

(t

ij

)]

2

2

i

)

(24)

Background HIV/AIDS Application Results Data Exploratory analysis Joint Model

Joint likelihood

We consider:

y

i

|b

i

⊥ T

i

|b

i

;

y

ij

|b

i

⊥ y

il

|b

i

, j 6= l

non-informative right censoring

L(θ, b, σ | D) =

N

Y

i=1

n

i

Y

j=1

p(y

i

(t

ij

)|θ, b

i

, σ

2

i

)

p(T

i

, δ

i

|θ, b

i

, σ

i

)

where

p(T

i

, δ

i

| θ, b

i

, σ

i

) =h(T

i

|θ, b

i

, σ

i

)

δi

× S(T

i

|θ, b

i

, σ

i

)

=[h

0

(T

i

) exp{β

>

3

x3i

+ C

i

{b

i

, σ

i

; g(t)}}]

δi

×

exp

(

Z

Ti

0

h

0

(u) exp{β

3

>

x

3i

+ C

i

{b

i

, σ

i

; g(t)}}du

(25)

Results

Models comparison

MCMC simulation within WinBUGS.

Longitudinal model

Survival model

m

i

σ

i2

%

i

(t)

h

0

Weibull P-Spline Piecewise

(4)

(5)

(11) + (12)

14671

12573

14317

(4)

(6)

14700

12848

14483

(4)

(5)

(11) + (13)

14307

12605

13365

(4)

(6)

14452

12917

13571

(4)

(7)

13134

12104 ♣ 12921

(4)

(8)

13956

12887

13533

(4)

(5)

(11) + (14)

14811

13334

14463

(4)

(6)

14923

13688

14599

(4)

(7)

14314

13144

13968

(4)

(8)

14627

13553

14355

(4)

(8)

(11)+g

1

b

1i,1

+g

2

b

1i,2

16984

15779

16383

(26)

Background HIV/AIDS Application

Results

Posterior estimates for the time-dependent coefficients

0 1 2 3 4 5 −3 −2 −1 0 t g0 (t) 0 1 2 3 4 5 −2 −1 0 1 2 3 t g1 (t) 0 1 2 3 4 5 −2 −1 0 1 2 t g2 (t) 0 1 2 3 4 5 −1 0 1 2 3 4 5 t g3 (t)

Figure 1:

Posterior mean estimates, together with the corresponding 95% Credible Bands (CB),

for the selected model ♣. The top left panel shows g

0

= log (h

0

)

and the subsequent panels have

(27)

BREZGER, A.,ANDLANG, S.

Simultaneous probability statements for bayesian p-splines. Statistical Modelling 8, 2 (2008), 141–168.

FAUCETT, C. L.,ANDTHOMAS, D. C.

Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine 15, 15 (Aug 1996), 1663–1685.

IBRAHIM, J. G., CHEN, M. H.,ANDSINHA, D.

Bayesian Survival Analysis. Springer-Verlag, 2001.

LANG, S.,ANDBREZGER, A.

Bayesian p-splines.

Journal of Computational and Graphical Statistics 13, 1 (2004), 183–212.

LUNN, D., THOMAS, A., BEST, N.,ANDSPIEGELHALTER, D.

Winbugs – a bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10 (2000), 325–337.

MCLAIN, A. C., LUM, K. J.,ANDSUNDARAM, R.

A joint mixed effects dispersion model for menstrual cycle length and time-to-pregnancy. Biometrics 68, 2 (Feb 2012), 648–656.

RIZOPOULOS, D.

Joint Models for Longitudinal and Time-to-Event Data With Applications in R. Chapman and Hall/CRC, 2012.

Imagem

Figure 1: Posterior mean estimates, together with the corresponding 95% Credible Bands (CB), for the selected model ♣

Referências

Documentos relacionados

No serviço de Ginecologia tive oportunidade de assistir à consulta externa. de patologia do colo, ginecologia geral, planeamento familiar; internamento e

Todos estes fatores podem ser propícios à emergência de situações competitivas, uma vez que muitas vezes os nativos se sentem ameaçados pelos imigrantes e porque, segundo

A partir daí Lévi-Strauss conclui que dois fenômenos marcantes em relação ao status da arte moderna – de uma parte, a individualização da produção

The effect of the canting of local anisotropy axes on the ground-state phase diagram and magnetization of a ferrimagnetic chain with regularly alternating Ising and Heisenberg spins

Os osteoclastos, responsáveis pela reabsorção óssea, são células multinucleadas, que se localizam na superfície da matriz, sendo ativos no processo de remodelação óssea

Daí que a natureza da resposta fosse por exemplo: «Lisonjeiam-me as expressões dos sentimentos de alma que manifesta e não duvido confessar que eles são em extremo agradáveis

Esta era a forma como a comunicação entre pares era realizada, para que se pudesse ter alguma notícia imparcial, ou pelo menos não viciada pelas ideias pré-concebidas

Essa conexão se completa com os mobility drivers (segurança alimentar, segurança da água, segurança econômica, segurança política, segurança energética, segurança