• Nenhum resultado encontrado

ANATOMICAL AND HISTOCHEMICAL CHARACTERIZATION OF STRYCHNOS PSEUDOQUINA (A. ST. HIL.) LEAVES

N/A
N/A
Protected

Academic year: 2021

Share "ANATOMICAL AND HISTOCHEMICAL CHARACTERIZATION OF STRYCHNOS PSEUDOQUINA (A. ST. HIL.) LEAVES"

Copied!
6
0
0

Texto

(1)

Jaqueline Martins Vasconcelos 1, Sebastião Carvalho Vasconcelos Filho 1, Juliana de Fátima Sales 1, Fabiano Guimarães Silva 1*

ABSTRACT: Quina (Strychnos pseudoquina A. St. Hil.). Loganiaceae, a native tree from the Brazilian savannah, is widely used in npopular medicine. In the present study, quina leaves of plants grown in glasshouse or at field conditions were anatomically and histochemically characterized. For the anatomical studies transverse sections taken from the middle third of leaves were stained with 0.05% toluidine blue, pH 4.0. Leaf samples were diaphanized and stained with 1% safranine to study the leaf surface. Phenolic compounds, lipids, starch, and alkaloids were analyzed by several histochemical methods. It was found in the quina leaves the stomata are present only in the abaxial surface and are paracytic. The typical epidermal cells are slightly sinuous and have few trycomas. Cuticle is thin in leaves of plants grown in greenhouse but thick in leaves of plants at field condition. The mesophyll is typically dorsiventral containing collateral vascular bundles. Phenolic compounds were found in the epidermal cells however no lipids, starch or alkaloids were found in any leaf tissue.

Keywords: Quina, anatomy, histochemistry, medicinal plants.

CARACTERIZAÇÃO ANATÔMICA E HISTOQUÍMICA DE FOLHAS DE STRYCHNOS PSEUDOQUINA (A. ST. HILL)

RESUMO: Quina (Strychnos pseudoquina A. St. Hil.) Loganiaceae, uma árvore nativa do cerrado Brasileiro, é amplamente usada na medicina popular. No presente estudo, folhas de quina crescidas em casa de vegetação ou em condições de campo foram caracterizadas anatomicamente e histoquimicamente. Para os estudos anatômicos seções transversais do terço médio das folhas foram coradas com azul de toluidina (0.05%, pH 4.0). Amostras das folhas foram diafanizadas e coradas com safranina (1%) para os estudos da superfície foliar. Compostos fenólicos, lipídios, amido e alcalóides foram analisados por vários métodos histoquímicos. Foi observado que nas folhas de quina, os estômatos estão presentes apenas superfície abaxial e são paracíticos. As células epidérmicas são levemente sinuosas e possuem poucos tricomas. A cutícula é fina em folhas de plantas crescidas em casa de vegetação mas grossa em plantas em condições de campo. As células do mesofilo são tipicamente dorsiventral contendo feixes vasculares colaterais. Compostos fenólicos foram encontrados nas células epidérmicas, contudo nenhum lipídio, amido ou alcalóides foram encontrados nos tecidos foliares.

Palavras-chaves: Quina, anatomia, histoquímica e plantas medicinais.

__________________________________________________________________________________________

1 Departamento de Biotecnologia. Instituto Federal Goiano – Câmpus Rio Verde. Rodovia Sul Goiana, km 01,

Zona Rural, Caixa Postal 66, Rio Verde - GO, CEP 75.901-970. * E-mail: fabiano.rv@ifgoiano.edu.br. Autor para correspondência.

(2)

INTRODUTION

Quina (Strychnos pseudoquina A. St. Hil) Loganiaceae, found especially in the savannah, is a plant widely used in folk medicine because of its aphrodisiac, tonic, and anti-fever properties, as well as healing liver ailments, stomach problems and anemia (ALMEIDA et al., 1998).

Quina’s natural occurrence, even in its indigenous habitat, is sparse.

The World Health Organization recommends the use of medicinal plants in poor countries; however, one should consider both, the safety and the degree of efficacy in their use as therapeutics. It is imperative to avoid deleterious side effects that can occur due to intrinsic characteristics of the medicine, many of which are overlooked due to the lack of standardization and product quality control (SILVA et al., 1976; CALIXTO, 2001).

Another consideration is that the indiscriminate use of savannah plants in folk medicine and pharmaceutical industry, and the transformation of savannah areas into grazing and agricultural areas, has caused a considerable reduction in the population density of some plants in their endemic areas (NADEEM et al., 2000).

Studies on the leaf histochemistry and anatomy provide crucial information for the quality control of raw materials used to produce phytotherapics, thus assuring their reliability (MARTINS et al., 2006). Therefore, it is crucial to broaden our knowledge about quina anatomy and hystochemistry. In the present study, quina leaves of plants grown in glasshouse or at field conditions were anatomically and histochemically characterized.

MATERIAL AND METHODS

Quina plants (Strychnos pseudoquina, A. St. Hill) were grown from seeds obtained from fruits harvested at Fazenda Gameleira, in Montes Claros de Goiás– Goiás state, Brazil (latitude 16º06 '20”S, longitude 51º 17' 11' W, 466 m asl) in September 2007. The voucher

specimen is deposited in the Rio Verde herbarium at Instituto Federal de Educação Ciência e Tecnologia Goiano/Campus Rio Verde under the collection number 70.

The fruits were depulped using a steel screen and water. After depulping, the seeds (approximately 100) were germinated in 25-cm diameter pots, containing sand as a substrate, in greenhouse.

Completely expanded leaves of seven month-old plants (collected in the greenhouse of IFGoiano/Campus Rio Verde and in the field at Fazenda Rio Verdinho in the city of Rio Verde) were used for the experiment.

Hand-cut thin sections of the middle third of leaves were stained with 0.05% toluidine blue, pH 4.0 (O’BRIEN et al., 1964), for the anatomical study. Histochemical analyses were performed using potassium dichromate (Johansen, 1940) for the detection of phenolic compounds, Sudan III (BRUNDRETT et al., 1991) for lipids and cuticle, lugol (JOHANSEN, 1940) for starch, and Wagner’s reagent (FURR et al., 1981) for alkaloids. Leaf samples were diaphanized (BERSIER et al., 1960) and stained with 1% safranin to study the leaf surface.

RESULTS AND DISCUSSION

Quina leaves are hypostomatal, with paracytic stomata, and have few trichomes. The common epidermal cells present a slightly sinuous contour and a thin cuticle. Collateral vascular bundles are observed in transverse section with typically dorsiventral mesophyll. The leaves of plants grown in greenhouse and field presented two and three layers palisade parenchyma respectively. These layers consisted of short and large cells and several layers of spongy parenchyma with round, dilated cells, and discrete intercellular spaces (Figure 1).

Pereira et al. (2003) analyzed the leaf morpho-anatomy of Palicourea longepedunculata Gadiner (Rubiaceae) and

found that the leaves of this species were simple, opposite, ovate-hastate, dorsiventral and hypostomatal. Additionally, they

(3)

presented a single-stratified epidermis, a thin cuticle, and paracytic stoma, occurring in the same level as the other epidermal cells. The mesophyll consisted of a layer of palisade

parenchyma and several layers of the spongy parenchyma similar to the quina leaves described in this study.

Ocotea puberula (Rich) Ness Lauraceae leaves also presented paracytic stoma and

unicellular tectorial trichomes in the abaxial face, a dorsiventral mesophyll, a biconvex midrib, Fig 1: A-B Anatomy of quina´s leaves. Adaxial (A) and abaxial (B) leaf surface of plants grown in the greenhouse. C-D: Leaf transverse sections of plants grown in the greenhouse. E-F: Leaf transverse sections of plants grown in the field. C-E: Mesophyll, D-F: Midrib. Ed: adaxial

ed pp pp pp pl xi fl E F

(4)

and a vascular bundle consisting of a single open-arch collateral bundle (FARAGO et al., 2005). Martins et al. (2006) studied the morpho-anatomy of Smilax polyantha Griseb (Smilacaceae), another savannah species, and found that the leaves of this species are hypostomatal and that the stomata are paracytic. The mesophyll tends to localize dorsiventrally because the adaxial parenchyma consists of cells with pronounced sinuosity.

Cuticle in quina´s upper epidermis is very thick in field-grown plants but is thin in plants grown in the greenhouse thin (Figure 2).

In vivo anatomical studies of Eugenia brasiliensis Lam. (Myrtaceae) leaves

pre-sented a noticeable thickening of the cuticle and epidermal cuticle extracts (DONATO et al., 2007). In contrast, the epidermis of

Policourea longepedunculata Gardiner

(Rubi-ace) (PEREIRA et al., 2003) and Baccharis

anomala DC. (Asteraceae) (Budel et al., 2008)

leaves presented thin cuticle.

The difference in cuticle thickening is likely to be caused by an adaptation that occurred as a function of environment differences in the grown conditions greenhouse or field) and differences in the plants developmental stage Reeve et al. (1993) defined adaptation as a phenotypic variant, resulting in reproductive success within a specific group of variants in a given

environment. According to those authors, the term “adaptation” has been used in plant anatomy to describe anatomical characteristics associated to specific environment conditions. According to Alquini et al. (2006), the cuticle is responsible for some of the epidermal cell functions, among which are the protection against water loss, excessive lighting or sun radiation, and other organisms including fungi, bacteria and insects.

Our histochemical tests showed the presence of phenolic composts in the epidermal cells, but no lipids, starch or alkaloids, in both the greenhouse- and field-grown plant leaves (Figure 3).

G H

Fig. 2: G – H: G: Leaf transverse section of quina (Strychnos pseudoquina A. St. Hill) grown in a greenhouse. H: Leaf transverse section of field-grown quina. Arrow: cuticle stained with Sudan III.

(5)

Fig 3: I - J: Leaf transverse section of quinaplants. I: plants grown in the greenhouse. J: Field grown plants. Stained with potassium dichromate (arrow).

Almeida et al. (1998) reported that several flavonoids were isolated from quina’s leaf extracts, among which were quinol and two alkaloids, diaboline and 11- methoxydiaboline. Frank-de-Carvalho et al. (2005) studied the leaf histochemistry of

Gomphrena arborescens L. f.

(Amaranthaceae), a native savannah medicinal plant, and found the presence of phenolic composts in almost all leaf tissues analyzed. Santos et al. (2008) studied the leaf histochemistry of seven Eucalyptus

(Myrtaceae) species, and also found phenolic composts in almost all species analyzed. However, no starch, alkaloids or lipids were found.

CONCLUSIONS

Quina leaves are hypostomatal, with paracytic stomata, presenting few trichomes. The common epidermal cells have a sinuous contour and a thin cuticle in leaves of plants grown in the greenhouse and thick cuticles in those from the field. The leaf has collateral vascular bundles and typically dorsiventral mesophyll. The histochemical tests revealed the presence of phenolic compounds in the epidermal cells, but no lipids, starch or alkaloids were found in quina leaves.

REFERENCES

ALQUINI, Y.; BONA, C.; BOEGER, M. R. T.; COSTA, C. G.; BARROS, C. F. Epiderme. In: APEZZATO-DA-GLÓRIA, B.; CARMELLO-GUERREIRO, S. M.(Eds.).

Anatomia Vegetal. 2. Ed. Atual. Viçosa: Ed.

UFV, 2006, 88-90 p.

ALMEIDA, S. P. de; PROENÇA, C. E. B.; SANO, S. M.; RIBEIRO, J. F. Cerrado: espécies vegetais úteis. Planaltina: EMBRAPA-CPAC, 1998. p. 343-346.

BERSIER, J. D.; BOCQUET, G. Lês méthodes d’éclaircissement em vascularisation et em morphogénie végétales comparées. Arch Science, v. 13, n. 4, p. 555-566, 1960.

BRUNDRETT, M. C.; KENDRICK, B.; PETERSON, C. A. Efficient lipid staining in plant material with Sudan Red 7B or Fjuoral Yellow 088 in polyethylene glycol-glycerol. Biotechnic and

Histochemistry, Baltimore, v. 66, n. 3, p.

111-116, 1991.

BUNDEL, J. M.; DUARTE, M. R. Estudo farmacobotânico de partes vegetativas aéreas de Baccharis anomala D. C., Asteraceae. Revista Brasileira de Farmacognosia, São Paulo, v. 18, p.761-768, Dec. 2008. Suplement.

(6)

CALIXTO, J. B. Medicamentos fitoterápicos. In: YUNES, R. A.; CALIXTO, J. B. (Ed.). Plantas medicinais sob a ótica da química medicinal moderna. Chapecó: Argos, 2001. p. 297-315.

DONATO, A. M.; MORRETES, B. L. Anatomia foliar de Eugenia brasiliensis Lam. (Myrtaceae) provenientes de áreas de restinga e de floresta. Revista Brasileira de Farmacognosia, São Paulo, v. 17, n. 3, p. 426-443, jul./set. 2007.

ENRENDORFER, F. Adaptative significance of major taxonomic characters and morfhological trends in angiosperms. In. HEYWOOD, V.H. (Ed.). Taxonomy and Ecology. London: Academic Press, p. 317-327, 1973.

FRANK-DE-CARVALHO, S. M.; GRACIANO-RIBEIRO, D. A. Anatomia e histoquímica das folhas de Gomphrena

arborescens L.f. (Amaranthaceae). Acta

Botânia Brasílica, São Paulo, v.19, n. 2, p.377-390, jun. 2005.

FARAGO, P. V.; BUDEL, J. M.; DUARTE, M. R.; NAKASHIMA, T. Análise morfoanatômica de folhas de Ocotea puberula (Rich.) Nees, Lauraceae. Revista Brasileira de Farmacognosia, São Paulo, v. 15, n. 3, p. 250-255, jul./set. 2005.

FURR, M.; MAHLBERG, P. G. Histochemical analyses of laticifers and glandular trichomes in

Cannabis sativa. Journal of Natural Products,

Cincinnati, v.44, p.153-159, Mar. 1981.

JOHANSEN, D. A. Plant microtechnique. New York: McGraw-Hill Book, 1940. 523 p. MARTINS, A. R.; APPEZZATO-DA-GLORIA, B. Morfoanatomia dos órgãos vegetativos de

Smilax polyantha Griseb. (Smilacaceae). Revista

Brasileira de Botânica, São Paulo, v. 29, n. 4. p.

555-567, dez. 2006.

NADEEM, M.; PALNI, L.M.S.; PUROHIT, A.N.; PANDEI, H.; NANDI, S.K. Propagation and conservation of Podophyllum hexandrum Royle: an important medicinal herb.

Biological Conservation, Oxford, v. 92, n. 1, p. 121-129, Jan. 2000.

O`BRIEN, T. P.; MCCULLY, M. E. The study of plant structure: principles and selected methods. Melbourne: Termarcarphi, 1981. 45 p.

PEREIRA, Z. V.; MEIRA, R. M. S. A.; AZEVEDO, A. A. Morfoanatomia foliar de

Palicourea longepedunculata Gardiner (Rubiaceae). Revista Árvore, Viçosa, MG, v. 27, n. 6, p. 759-767, nov./dez. 2003.

REEVE, H. K.; SERMAN, P. W. Adaptation and the goals of evolutionary research. Quarterly Review of Biology, New York, v. 68, n. 1, Mar. 1993. Disponível em:< http://www.jstor.org/pss/2832133>. Acesso em: 5 dez. 2009.

SANTOS, L. D. T.; THADEOA, M.; IAREMA, L.; MEIRA, R. M. S. A.; FERREIRA, F. A. Foliar anatomy and histochemistry in seven species of Eucalyptus. Revista Árvore, Viçosa, MG, v. 32, n. 4, p. 769-779, jul./ago. 2008.

SANT'ANNA-SANTOS, B. F.; BRASIL, R. D.; AZEVEDO, A. A.; SILVEIRA, A. de S.; ARAÚJO; J. M. de; AGUIAR, R. Utilização de parâmetros morfoanatômicos na análise da fitotoxidez do flúor em folhas de Magnolia

ovata (A. St.-Hil.) Spreng. (Magnoliaceae).

Revista Árvore, Viçosa, MG, v. 31, n. 4, p. 761-771, jul./ago. 2007.

SILVA, J.B.; SALATINO, A.; PANIZZA, S. Ensaios fitoquímicos preliminares em espécies do Cerrado. Boletim Botânico da Universidade de São Paulo, São Paulo, v. 4, p. 129-132 1976.

Referências

Documentos relacionados

Estes dados sugerem uma exigência maior do mercado de trabalho atual deixando os egressos que foram formados mais recentemente inseguros ao sair da faculdade, vale salientar que

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Muito bom Bom Regular Ruim Muito ruim Não se aplica ou não observado.. A partir dos resultados obtidos, pode-se afirmar que, na opinião dos alunos, o curso possui muitas

Quapper (2001) ressalta a necessidade de aprender a conhecer as juventudes a partir das diversidades sociais. Trata o juvenil como produção, de acordo com o contexto

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Em 2008, a Embrapa Cerrados propôs o Projeto Desenvolvimento Tecnológico para Uso Funcional das Passifloras Silvestres, configurando a Rede Passitec – composta por mais de 40 equipes