• Nenhum resultado encontrado

Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity

N/A
N/A
Protected

Academic year: 2021

Share "Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

Endophytic

fungus

strain

28

isolated

from

Houttuynia

cordata

possesses

wide-spectrum

antifungal

activity

Feng

Pan

1

,

Zheng-Qiong

Liu

1

,

Que

Chen,

Ying-Wen

Xu,

Kai

Hou,

Wei

Wu

AgronomyCollege,SichuanAgriculturalUniversity,Chengdu,Sichuan,PRChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31October2013

Accepted7October2015

Availableonline2March2016

AssociateEditor:EleniGomes

Keywords:

Endophyticfungi

HouttuyniacordataThunb.

Chaetomiumglobosum

Antifungalactivity

Processparameter

a

b

s

t

r

a

c

t

Theaimofthispaperistoidentifyandinvestigateanendophyticfungus(strain28)that

wasisolatedfromHouttuyniacordataThunb,afamousandwidely-usedTraditionalChinese

Medicine.BasedonmorphologicalmethodsandaphylogeneticanalysisofITSsequences,

thisstrainwasidentifiedasChaetomiumglobosum.Anantifungalactivitybioassay

demon-stratedthatthecrudeethylacetate(EtOAc)extractsofstrain28hada wideantifungal

spectrumandstrongantimicrobialactivity,particularlyagainstExserohilumturcicum(Pass.)

LeonardetSuggs,BotrytiscinereapersoonandBotrytiscinereaPers.exFr.Furthermore,the

fermentationconditions,extractionmethodandtheheatstabilityofantifungalsubstances

fromstrain28werealsostudied.Theresultsshowedthatoptimalantifungalactivitycan

beobtainedwiththefollowingparameters:usingpotatodextrosebroth(PDB)asthebase

culturemedium,fermentationfor4–8d(initialpH:7.5),followedbyextractionwithEtOAc.

Theextractwasstableattemperaturesupto80◦C.Thisisthefirstreportontheisolation

ofendophyticC.globosumfromH.cordatatoidentifypotentialalternativebiocontrolagents

thatcouldprovidenewopportunitiesforpracticalapplicationsinvolvingH.cordata.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Endophyticfungiareconsideredasnovelsourcesforbioactive

compoundsthathaveimportantapplicationsinthefieldsof

agricultureandmedicine.Thesefungimaypossessthe

poten-tial toproducebioactive compounds, and this potential to

producebioactivecompounds isequalor similartothatof

theirhost.1–3Studieshaveshownpositivesymbiosisbetween

Correspondingauthor.

E-mail:ewuwei@gmail.com(W.Wu).

1 Thefirsttwoauthorscontributedequallytothiswork.

endophyticfungiandtheirhosts.Forexample,thesecondary

metabolites of endophytic fungi can facilitate the growth

oftheir hostplantsdirectlyor indirectlyand improvehost

resistancetoabioticorbioticstresses.4Substantialrenewed

attentionisnowbeingpaidtoendophyticfungi,whichhave

inhibitoryactivitytowardpathogenicfungi5andplayan

indis-pensableroleinfungalbiocontrol.6Recently,anendophytic

fungal strainwas isolatedbySantiagoet al.7from the

Cin-namomummollissimumplant.Onebioactivityofametabolite

http://dx.doi.org/10.1016/j.bjm.2016.01.006

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

fromthisplant,whichwasidentifiedasapolyketide,wasthe

efficientkillingofthefungalpathogenAspergillusniger(IC50

1.56␮gmL−1).7

Conventional chemical fungicides have been shown to

beharmful tothe environment and topublichealth,8 and

theycan cause pathogens to becomeresistant whenused

foralongtime.9Bycontrast,extractsfromnaturalproducts

showed advantages withregards to environmental

protec-tionandhumanhealth.For example,Yinetal.10 suggested

thatanethylacetate(EtOAc)extractofTrichodermaharzianum

fermentedbrothcan controlthe tomato graymold caused

by Botrytis cinerea, without fungicide resistance and in an

environmentally friendly manner. In addition, secondary

metaboliteshavebeenacontinuoussourceofnewlead

com-poundsandchemicalentitiesinthefieldsofagricultureand

medicine.Forinstance,multiplefungalmetabolites,suchas

12␤-hydroxy-13␣-methoxyverruculogenTR-2,fumitremorgin

B,verruculogen,andhelvolicacidandothersfroman

endo-phyticfungus(strainAspergillusfumigatusLN-4)exhibitedhigh

antifungal activities against multifarious phytopathogenic

fungi.11

HouttuyniacordataThunb. isa significant plantresource

toscreen forendophytic fungi that could produce specific

metabolicproductsforuseasbiofungicides.Infact,agreat

numberofmedicinalplantshavebeenusedinChinatocure

variousdiseasesforalongtime,andabundantplantuse

expe-riencehasbeenaccumulated.InTraditionalChineseMedicine

(TCM),H.cordatahasbeenusedtocureinflammation,

bronchi-tisinfectionsoftheupperrespiratorycavity,coughs,arthritis,

conjunctivitisandinfectionsoftheurethralchannelbecause

of its antifungal, antiviral, anti-mutagenic, anti-oxidative,

andantileukemicactivitiesand foritsimmunity-increasing

effects. Nevertheless, little published work has focusedon

testingendophyticfungifromH.cordata.Consequently,our

groupisinterestedinthesefungiandinparticularinthose

withantifungalactivity.

Basedonmetabolicstudiesaboutusingendophyticfungias

biofungicides,12weisolatedanendophyticfungalstrainfrom

fresh,symptomlessH.cordatatissuesthatwerecollectedfrom

Sichuanprovince,southwestChina.Weprimarilyinvestigated

theirantifungalactivity and best processingparameters to

laya foundation forthe furtheruse ofeffective biocontrol

agents.

Materials

and

methods

Isolationoftheendophyticfungus

Sourceorganism:Theendophyticfungus(strain28)was

iso-latedfromfresh,intactH.cordata,whichwascollectedfrom

YaanCity,southwestChinaand identifiedbyProfessorWu

Wei.Theabovesite hasa subtropicalhumidmonsoon

cli-matewithabundantrainfall.Strain28wasthenstoredina

refrigeratorat4◦C.

Theisolationprocedurewasbasedonthearticle13,14with

minormodifications:Healthysampleswerecollectedin

plas-ticbagsandplacedinaniceboxatonce,andthentheywere

transportedtothelaboratorywithinamaximumof48h.The

samplesurfaceswerewashedwithrunningwatertoremove

soilandthensterilizedasfollows:thesampleswererinsed

withsteriledistilledwater3times;theyweresubmergedin

75%ethanolfor1minandrinsed5timeswithsterilewater,

followedby0.1%HgCl2for1min;andlastly,theywererinsed

withsteriledistilledwater5moretimes.Thesamplesurfaces

weredriedwithsterileblottingpaper.Thesurface-sterilized

tubers were cut into 0.5cm-longsegments, and the center

ofthe sterilized leaveswas cutinto 10mm×10mmpieces

with sterile blades. The tissues (4 segments or pieces per

plate) were placed on potato dextroseagar (PDA)medium

(containing morethan 30␮gmL−1 streptomycin and

ampi-cillin) and incubated at 28◦C in the dark for 5–7d. Three

replicateplates were usedforeachtest. Thecolonieswere

examinedperiodically,andtheendophyticfungalhyphaethat

emergedfromthesegmentsweretransferredontofreshPDA

medium.Transferswerenotrepeateduntilapureculturewas

obtainedaccordingtothecolonymorphology.Tovalidatethe

effectofsurfacedisinfection,uncuttissuesthatwere

steril-izedaccordingtothesamestepswereplacedonPDAmedium

andincubatedunderthesameconditionsasthecontrol.In

addition, the last drift lotion from the surface-sterilization

process (1–2 drops)wasadded tothe PDAculturemedium

andcoatedevenlyasanothercontrol.Finally,weexamined

theeffectofdisinfectionaftercheckingwhethercolonieshad

formed.

Morphologicalcharacterization

Strain28 wasincubatedonPDAmediumat28◦Cfor7d.A

morphologicalcharacterizationwasthenusedtoidentifythe

strain using acombination ofthe fungal characteristics in

parallelwiththoseintheliterature15includingthemycelia,

sporangium,and sporemorphologyaswell astheexternal

formofthecolony.

Molecularidentification,ITSsequenceanalysis16

After a strain 28 subculture was grown in an Erlenmeyer

flask (250mL) containing 150mL of potato dextrose broth

(PDB)(200gL−1potatoand20gL−1dextrose,initialpH6.6–7.0)

at 130 revolutions per minute (revmin−1) for 7 dat 26◦C,

the mycelia and broth were separated by vacuum

suc-tion filtration. The mycelia were then scraped from the

filter and groundinto powder withthe aid ofliquid

nitro-gen. Genomic DNA was extracted by CTAB method.17 The

quality and integrity of the DNA were estimated by

elec-trophoresisona1%(w/v)agarosegel.TheITS1-5.8SrRNA-ITS2

region, which was the target rDNA region, was amplified

usingprimersITS1(5-TCCGTAGGTGAACCTGCGG-3)andITS4

(5-TCCTCCGCTTATTGATATGC-3).18Each25␮Lreaction

con-tained 2.5mM10×buffer (withMg2+), 2.0mM (10␮molL−1)

dNTPs,2.0mM(5␮molL−1)ofeachprimer,1.0mM(3U)Taq

DNApolymerase,and1mMgenomicDNA.Polymerasechain

reaction (PCR) amplifications were performed ina thermal

cycler(ABI2720,USA)withaninitialdenaturingstepat94◦C

for 5min, followed by 35 amplification cycles of 94◦C for

30s,60◦Cfor 30s, 72◦C for60sand a finalextensionstep

of 72◦C for 10min. Theamplification products were

sepa-ratedbyelectrophoresisona 1%(w/v) agarosegel at100V

for30minin1×TAEbufferandstainedwithethidium

(3)

toShanghaiSangonBiologicalEngineeringTechnology&

Ser-vicesCo. Ltd.forsequencing.Thesequencewassubmitted

totheNationalCentreforBiotechnologyInformation(NCBI)

GenBankandanalyzedbyBLAST.

Cultureconditionsduringfermentation

Strain28wasstoredintherefrigerator,andthenitwas

incu-batedonPDAmediumat28◦Cfor6–7d.Afungusplug(4mm

diameter)ofmycelialinoculumwascutfromthemarginof

activelygrowing strain 28 coloniesandtransferred into an

Erlenmeyerflask(250mL)containing150mLoffermentation

medium(4plugsperflask).Underbasecultureconditions,the

strainswereincubatedinPDBat26◦Cfor7dandinitialpH

val-uesof6.6–7.0.Therotationrateoftheincubatorwasfixedat

130revmin−1.Thecultureconditionswerevariedonthebasis

oftheexperimentaldesign.

Metaboliteextraction

Fungal mycelia were separated from the culture broth by

vacuumfiltrationanddiscardedafterthefermentation

proce-dures.Thefiltratewascollectedandconcentratedinaslittleas

10%oftheoriginalvolume(v/v)inavacuumrotaryevaporator

at40–45◦C,thenextractedthreetimesattheliquid-liquid

par-titionwithEtOAcsolvent1:1(v/v).Theresultingcrudeextracts

werecollectedandconcentratedtodrynessinavacuumrotary

evaporatorat40–45◦C,thendissolvedinto 3mLofacetone

per 150mL of initialculture volume, followed byfiltration

through0.22␮mMilliporefilterstoobtaintheEtOAc-extracted

solution.

Antifungalactivitybioassay

Theantifungalactivity ofthecrudemetaboliteswas

deter-minedbymycelialgrowthmethods19againstthefollowing15

speciesofplantpathogens:FusariumgraminearumSehw.(B1

forshort),Alternariasolani(Ell.etMart.)Sorauer(B2),

Phytoph-thoracapsiciLeonian(B3),Fusariumoxysporumf.sp.niveum(B4),

Sclerotiniasclerotiorum(Lib.)deBary(B5),Exserohilumturcicum

(Pass.)LeonardetSuggs (B6),Aphanomycesraphani Kendrick

(B7),PucciniazoysiaeDiet.(B8),FusariummoniliformeSheld.(B9),

Alternariaalternata (Fries) Keissler (B10),Botrytis cinerea

per-soon(B11),AlternariasolaniSorauer(B12),Thielaviopsisbasicola

(Berk.et Br.)Ferraris(B13),Botrytis cinereaPers.exFr. (B14),

and Bipolarismaydis (Nisikado et Miyake)Shoeml (B15).All

thepathogensabovewereprovidedbythelaboratoryof

phy-topathology at Sichuan Agricultural University, China. The

pathogenswereactivatedfromdormantstates.Afterthat,the

fungusplugs(4mmdiameter)of15pathogenicfungi(B1–B15)

fromthemarginofactivelygrowingcolonieswereplacedin

thecenterofPDAmediumplatescontaining10%ofthe

EtOAc-extractedsolution(v/v).Inaddition,extract-freeacetone(10%

inmedium) was usedas a control. Theexperiments were

performedintriplicateforeachpathogenicfungusand

con-trol.Thoseplatesthen were incubatedinthe darkfor7d,

andthecolonydiameterwasmeasuredintwoperpendicular

directions.

Optimizationofprocessparameters

Toscreenforthebestprocessingparameters, theeffectsof

thecultureandthefermentdisposalconditionsonantifungal

crudeextractproductionwereinvestigatedusingsingle-factor

experiments.Theinhibitoryrateofthecrudestrain28extracts

against B4 served as the indicator of antifungal activity.

Thebasecultureconditionsandthecrudeextractionofthe

metaboliteswerecompletedaccordingtotheabovemethod.

Extract-freeacetonewasusedasanegativecontrol.All

exper-imentswereperformedintriplicate.

MediaOptimization:Strain28wasinoculatedintoeight

dif-ferentliquidmedia(GauseNo.1liquidmedium,Czapek–Dox

broth,Sabouraud’sdextrosebroth,BSE(0.5%succinate,0.04%

K2HPO4, 0.04% KH2PO4, 0.02% MgSO4·7H2O, 0.05% yeast

extract;pH6.5),Martin’sbroth,LBbroth,mediumA,andPDB)

toselectasuitablemedium.

InitialpHtest:Strain28wasinoculatedontodifferentPDB

basicmediaatdifferentinitialpHvalues(initialpHvaluesof

6.0,6.3,6.6,6.9,7.2and7.5).

Incubationtimetest:Tenconicalflasks(250mL),eachof

whichcontained150mLofthePDBbasicmedium,were

incu-batedfor3,4,5,6,7,8,9,10,11and12d.

Thermal stability of antifungal activity assay: Seven

uniform-boreglasstubeswithfinegradationswerenumbered

ascontrolkeeping(CK)and1–6.Threemilliliterofthe

extract-ing solution was pouredinto the flasks, which were then

heated inawaterbathfor30minattemperaturesof40◦C,

50◦C,60◦C,70◦C,80◦C,90◦C,and100◦C,respectively.

Antifungalcompoundextraction:Toinvestigatetheeffect

oftheextractionsolventonthefermentationbroth,5

differ-entextractionsolvents(petroleumether,diethylether,n-butyl

alcohol,EtOAcandalcohol)werechosentoextractthe

anti-fungalcompounds.

Antifungal activity assay: We prepared enough 50-mL

Erlenmeyerflaskssothateachcontainedprecisely30mLof

PDB medium[including10% oftheextracted solution(v/v)]

foreachprocessparameterabove.Next,this30mLmixture

was pouredinto threePetridishesper condition.Afungus

plug(4mmdiameter)ofmycelialinoculumwascutfromthe

marginofactivelygrowingB4coloniesasanindicatorfungus,

anditwasplacedinthecenterofthePDAmediumofeach

dish.Havingbeeninoculated,thesedisheswerewrappedwith

plasticwrap(whichwaspurchasedinthesupermarket),and

incubatedinanincubatorat28◦Cfor7d.Finally,the

suppres-sionofB4byfermentedbrothextractwasmeasuredintwo

perpendiculardirectionsusingagrowthratemethod.

Statisticalanalysis

Theinhibitoryrateofthecrudestrain28extractsagainsteach

funguswascalculatedbyusingthefollowingformula:

anti-fungal rate=[(average colony diameter of control−average

colony diameter of treatment)/average colony diameter of

control]×100.20 Thecolonydiameterwas measuredintwo

perpendiculardirectionsasdescribedabove.

All theresultswereexpressedasthe average±standard

deviationoftriplicatedeterminations.Ananalysisof

(4)

0.20000 mm

A

B

C

D

0.05000 mm

Fig.1–Thecolonyandmicrostructureofstrain28:colonyfrontsides(A),colonybacksides(B),ascocarps(C)andspore morphology(D).ThecolonialmorphologywasobservedaftergrowingonaPDAplateat28◦Cfor6d,andthemicrostructure ofthestrainwasobservedunderanOlympusBX51fluorescencemicroscope(OLYMPUSOPTICAL.CO.LTD.Tokyo,Japan) aftergrowingfor7d.

analysis of variance. Data analysis was performed with

MicrosoftOfficeExcel2010software.

Results

and

discussion

Thestrain 28 colonies(which grew onPDA plates at 28◦C

for6d)weresimilarlyflattened,black-gray,whiteandlobed

onthe edge, and theygrew relatively slowly (Fig. 1A). The

reversesidesofthecoloniesweredarkyellowtoaurantium

(Fig.1B),and theascocarpswereoliveorgreen-yellowwith

ascomalhairs(Fig.1C).Moreover,thesporeswerepalebrown

andlemon-shaped(Fig.1D).Therefore,thesecharacteristics

correspondedwellwiththoseofChaetomiumglobosum.15

The amplified ITS1-5.8S rDNA-ITS2 region of the

selected isolates (GenBank accession number: KF697163)

was sequenced and compared with the ITS sequences of

organisms represented in the NCBI GenBank database by

usingaBLASTsearchand DNAMANtogeneratea

phyloge-netictree(Fig.2)byNeighbor-joiningmethod.Thesequences

that showed E=0.0 and the highest % similarity with the

amplifiedsequenceswereincludedforalignmentand

boot-strappingusingCLUSTALX.Thephylogeneticrelationofthis

isolatetorelated fungiisshowninFig. 2. Thus,thisstrain

wasidentifiedasC.globosumofChaetomiumsp.basedonits

morphologicalcharacteristicsandtherDNAsequencingofits

region data.Chaetomium sp.is cosmopolitanindistribution

anditrepresentsaconsiderablemicroorganismalresource.21

TheresultsinTable1showthatthecrudeEtOAcextracts

ofstrain28 couldeffectively inhibit15typesofpathogenic

fungi,especiallyB6,B11andB14,theinhibitionratiosofwhich

wereall100.00%aswellasB15andB7at91.67±0.24%and

86.18±4.28%,respectively(Fig.3).Onthewhole,the

inhibi-tionratiosforallthepathogenicfungiwereabove50%,except

forB13andB12,whichhadinhibitionratiosof41.67±1.27%

and 45.93±1.74%, respectively. This result shows that the

crude extractsofstrain28 havebroad-spectrumantifungal

abilities. In 1954, Tveit22 suggested that C. globosum could

control the wheat seedling blight caused by

Helminthospo-rium victoriae. Abundant new reports have indicated that

Chaetomiumareinterestingmicrobialantagoniststhatareused

tocontrolphytopathogens.Therehavebeenmorethan200

compoundsreportedfromthisgenustodate.11Manyofthem

areendophyticfungifromplants.EndophyticChaetomiumwas

reportedtobeantagonistictothedevelopmentofdiseasein

wheatleavescausedbyPyrenophoratritici-repentis.23Agliotoxin

isolated from endophytic C. globosum that originated from

Ginkgo bilobashowed good antifungalactivity against Fusa-riumgraminearum.24Anovelcytotoxicagentthatwasderived

(5)

0.05 Achaetomium_strumarium_I AF048788.1 I Chaetomium_globosum_I HM01 6879.1 I Chaetomium_globosum_I HM01 6896.1 I 28.seq Chaetomium_cruentum_I HM365266.1 I Chaetomium_globosum_I HQ529775.1 I Chaetomium_murorum_I GQ376100.1 I Neurospora_crassa_I JN198494.1 I Chaetomium_elatum_I JN209872.1 I Chaetomium_elatum_I JN209873.1 I Chaetomium_subglobosum_I JN209930.1 I Chaetomium_angustispirale_I JN209862.1 I Chaetomium_cruentum_I JN209871.1 I Chaetomium_spirochaete_I JN209921.1 I Chaetomium_murorum_I JF502431.1 I 66 97 100 100 100 100 100

Fig.2–Clusteranalysisofstrain28.ThesequencesthatshowedE=0.0andthehighest%similaritywiththeamplified sequenceswereincludedforalignmentandbootstrappingusingCLUSTALX.Thisfigureshowsthephylogeneticrelationsof thisisolatewithrelatedfungi.Thus,thisstrainwasidentifiedasChaetomiumglobosumofChaetomiumsp.throughtherDNA sequencingofITSregiondata.ThistreewasconstructedonthebasisoftherDNAsequence(ITS1,5.8SandITS2)by Neighbor-joiningmethod.Bootstrapvalues>50%(1000replicates)areshownatthebranches.Thebarindicatesa5% sequencedivergence.

isolatedfromtheculturesofC.globosumthatoriginatedfrom

Ginkgo biloba.25 C.globosum EF18endophytic fungusextract

originatingfromWithaniasomniferaisreportedtobe

signifi-cantlyeffectiveagainstSclerotiniasclerotiorum.26

Fromageneticstandpoint,plantendophyticfungiareable

tosynthesizebioactivecompoundsthatareequalorsimilarto

thosesynthesizedbytheirhosts,possiblyasaresultof

hori-zontalgenetransfer27betweenendophyticfungiandtheir

cor-respondinghosts.Furthermore,C.globosumisabletodegrade

lignin,28whichisbeneficialtohorizontalgenetransfer.Other

workhasshownthatarecombinantplasmidcontainingthe

TUB2-resistancegeneconferred300timeshigherressistance

tocarbendazimwhentransformedintoaChaetomiumsp.

pro-toplastusingthe PEGmethod.29 However,H.cordatashows

potentantifungalactivitiesasaTCMoveralongperiod.

There-fore,strain28mightdisplayeffectiveantifungalpropertiesas

aresultofhorizontalgenetransferwithitshost.

Plantpathogensareharmfultothedevelopmentofcrops,

andthustherehavebeenmanyattemptstocontrolthem.30

However,abundantnovelpathwaysorsubstanceswith

effi-cient and environmentally friendly characteristics require

further research because of the high-frequency heritable

Table1–Theinhibitionof15typesofpathogensbystrain28fermentationfiltrateinvitro.

Pathogens Averagediameterwithextract(cm)a Controlaveragediameter(cm)a Inhibitionratio(%)a

B1 3.82±0.22 8.62±0.03 59.06±2.66 B2 2.83±0.15 7.67±0.12 67.44±2.13 B3 3.37±0.23 8.67±0.06 64.90±2.76 B4 3.62±0.08 8.63±0.06 61.68±0.94 B5 3.63±0.12 8.27±0.25 59.66±1.49 B6 0.50±0.00 1.50±0.20 100.00±0.00 B7 1.63±0.35 8.70±0.00 86.18±4.28 B8 3.73±0.25 8.47±0.32 59.41±3.16 B9 3.00±0.10 8.70±0.00 69.51±1.22 B10 2.80±0.20 7.80±0.26 68.49±2.74 B11 0.50±0.00 3.20±0.20 100.00±0.00 B12 3.60±0.10 6.23±0.25 45.93±1.74 B13 5.28±0.10 8.70±0.00 41.67±1.27 B14 0.50±0.05 6.25±0.48 100.00±0.87 B15 0.91±0.01 5.38±0.08 91.67±0.24

a Eachvalueistheaverage±standarddeviationoftriplicatedeterminations.FusariumgraminearumSehw.(B1forshort),Alternariasolani(Ell.et Mart.)Sorauer(B2),PhytophthoracapsiciLeonian(B3),Fusariumoxysporumf.sp.niveum(B4),Sclerotiniasclerotiorum(Lib.)deBary(B5),Exserohilum turcicum(Pass.)LeonardetSuggs(B6),AphanomycesraphaniKendrick(B7),PucciniazoysiaeDiet.(B8),FusariummoniliformeSheld.(B9),Alternaria alternata(Fries)Keissler(B10),Botrytiscinereapersoon(B11),AlternariasolaniSorauer(B12),Thielaviopsisbasicola(Berk.etBr.)Ferraris(B13),

(6)

B6-CK Control +Extr acts of str ain 28 B7-CK B11-CK B14-CK B15-CK B6 B7 B11 B14 B15

Fig.3–AntifungalactivityofcultureextractsproducedwithChaetomiumglobosumstrain28.Fungusplugs(4mmdiameter) ofpathogenicfungi(B6,B7,B11,B14andB15)fromthemarginsofactivelygrowingcolonieswereplacedinthecenterof PDAmediumcontainingthe10%EtOAcextractingsolutionofstrain28(v/v).Inaddition,theextract-freeacetone(10%in medium)wasusedasacontrol(B6-CK,B7-CK,B11-CK,B14-CKandB15-CK).

variationofpathogenswithbiotopechangesanddemandsin

agriculturaldevelopment.Furthermore,endophyticfungiare

becominginterestingsourcesofbioactivecompounds

includ-ingantifungals. Ourworkhas shownthatthe crudeEtOAc

extracts ofstrain 28 were broad-spectrum and efficient in

termsoftheirantifungalability.Therefore,itispromisingand

interestingtostudythisfungusfurtheranddevelopitsutility

valueasabiocontrolagent.

Wealsodiscussthe optimizationofprocessparameters

using single-factor experiments. A large amount of

endo-phyticfungalmetabolitesareobtainedprincipallybymeansof

liquidfermentation,inwhichcultureconditionsplayacrucial

role.Threevariables(culturemedium,initialpHand

fermen-tationtime)that significantlyinfluencefungal growthwere

selectedasthekeycultureconditionfactorspriorto

optimiza-tion.

Culture medium directly affects the biosynthesis and

accumulationofsecondarymetabolites because itsupplies

nutrientsandservesasaspatialcarrierduringthe

fermen-tationprocess.Table2indicates thatthereweresignificant

differences (p<0.05) amongseveral culturemedia. Martin’s

broth displayed the most obvious ability to contribute to

theaccumulationofantifungalsubstancesduringstrain28

growths, and it possessed the maximum inhibition ratio

(82.53%±1.95%)(p<0.05).

The initial pH is widely recognized as a critical factor

infermentationbecause it can affectindividual

physiolog-ical phenomena, such as fungal growth, sporulation, and

the production of enzymes, and it can influence enzyme

stability,31 the surface charge of protoplasts and nutrient

utilizationefficiency.32Therefore,researchisneededto

deter-minetheoptimalinitialpH.Therangeofinitialexperimental

pHvalues givenhere was basedon preliminary tests. The

resultsshowobvioussignificantdifferences(p<0.05)frompH

6.0–pH 7.5, and pH value of 6.9 is the most beneficial for

theaccumulationofantifungalsubstancesandresultsinthe

highestinhibitionratioof81.69%±1.81%(Table3)inspiteof

showingno significant difference(p<0.05)from that ofpH

6.0–6.9.

Theinhibitionratioincreasedsubstantially(p<0.05)from

3dto4doffermentationtime,andthentherewasno

sig-nificant difference from 4 d to 8 d, immediately followed

by a significant decrease (p<0.05) with an increase in the

fermentationtime(Table4).Secondarymetabolites(suchas

antibiotics)begintobeproducedneartheonsetofthe

sta-tionarygrowthphaseofamicrobialgrowthcurve,wherethe

specific growth rateis zero.33,34 Therefore, the species and

content ofantifungal substances increased withincreased

fermentationtime.Eventually,however,moreandmore

fun-galcelldeathoccurred,usuallybecausethecellsburstopen,

which is also known as cell lysis, and this lysis resulted

Table2–TheinhibitionofB4bystrain28when

cultivatedindifferentliquidmediuminvitro.

Media B4

Averagediameter (cm)a

Inhibitionratio (%)a GauseNo.1liquid

medium – – Czapek–Doxbroth 8.80±0.00a* 0.00±0.00f* Sabouraud’sdextrose broth 2.53±0.08e 75.50±0.92b BSE 5.52±0.03b 39.56±0.35e Martin’sbroth 1.95±0.23f 82.53±1.95a LBbroth 4.02±0.03c 57.63±0.35d MediumA 3.90±0.17cd 59.04±2.09cd PDB 3.60±0.23d 62.65±2.76c Control 8.80±0.05a 0.00±0.60f

a Each value is the average±standard deviation of triplicate determinations.

Valueswiththesameletterarenotsignificantlydifferent(p<0.05) accordingtotheone-wayanalysisofvariance(ANOVA).

(7)

Table3–TheinhibitionofFusariumoxysporumf.sp.

niveumbystrain28whencultivatedinliquidmedium

invitroatdifferentpHvalues.

InitialpH Fusariumoxysporumf.sp.niveum

Averagediameter(cm)a Inhibitionratio(%)a

6.0 2.25±0.28cd* 78.92±3.35ab* 6.3 2.40±0.20cd 77.11±2.41ab 6.6 2.33±0.13cd 77.95±1.52ab 6.9 2.02±0.16d 81.69±1.81c 7.2 2.53±0.06c 75.54±0.70b 7.5 3.05±0.15b 69.28±1.94a Control 8.80±0.05a 0.00±0.60d

a Each value is the average±standard deviation of triplicate determinations.

Values with the same letters are not significantly different (p<0.05)accordingtotheone-wayANOVA.

in reduced inhibition ratios after more than 8 d. To save

timewithoutcompromisingonthecontentofantifungal

sub-stance,4doffermentationwaschosenasasuitabletime.

Temperature treatments of the crude extracts over the

courseofconcentrationandsolventextractionisalsocritical

apartfromthecultureconditionsbecausesomecompounds

aretemperature-sensitiveorhavedifferentsolubilitiesat

dif-ferent temperatures. Therefore, the conditions of ferment

disposalwereoptimized.

Thethermalstabilityofextractsfromfermentationbroth

shouldbeinvestigatedasmuchaspossibletoprevent

ther-mal degradation.35 We tested the thermal stability of the

extractsin awaterbathat differenttemperatures. Table 5

liststhechangesinantifungalactivityagainsttheindicator

pathogen(B4)aftertheEtOAcextractedsolutionwasheated

for30minattemperaturesof40◦C,50◦C,60◦C,70◦C,80◦C,

90◦C, and 100◦C. The antimicrobial activity of the EtOAc

extractingsolutionvariedfrom0.00±0.00%to55.12±0.35%.

Thereweresignificantdifferences(p<0.05)above70◦C,and

Table4–Theantifungalabilityofstrain28when

cultivatedfordifferenttimesinvitro.

Days Fusariumoxysporumf.sp.niveum

Averagediameter(cm)a Inhibitionratio(%)a

3 8.60±0.17a* 2.41±2.09d* 4 3.82±0.08d 60.04±0.92a 5 3.63±0.12d 62.25±1.39a 6 3.60±0.10d 62.65±1.20a 7 3.77±0.06d 60.64±0.70a 8 3.92±0.18d 58.84±2.12a 9 4.65±0.09c 50.00±1.04b 10 4.75±0.05c 48.80±0.60b 11 5.35±0.13b 41.57±1.59c 12 5.58±0.16b 38.76±1.94c Control 8.80±0.05a 0.00±0.60d

a Each value is the average±standard deviation of triplicate determinations.

Valueswiththesameletterarenotsignificantlydifferent(p<0.05) accordingtotheone-wayANOVA.

Table5–Inhibitionratiooftheantimicrobialsubstances

instrain28whentreatedatdifferenttemperatures

invitro.

Temperature (◦C)

Fusariumoxysporumf.sp.niveum

Averagediameter(cm)a Inhibitionratio(%)a

40 4.20±0.26de* 54.88±3.23ab* 50 4.18±0.03e 55.12±0.35a 60 4.38±0.18de 52.68±2.14ab 70 4.58±0.08cd 50.24±0.93bc 80 4.73±0.08c 48.41±0.93c 90 7.97±0.15b 8.90±1.86d 100 8.70±0.00a 0.00±0.00e Control 8.70±0.09a 0.00±1.06e

a Each value is the average±standard deviation of triplicate determinations.

Values with the same letters are not significantly different (p<0.05)accordingtotheone-wayANOVA.

theinhibitionratiodecreasedrapidlyto0at100◦C.Clearly,

this resultindicatesthattheantimicrobialsubstancesfrom

strain28wereheat-stableafterthermaltreatmentupto80◦C.

Theantimicrobialactivitiesoftheextractsthatweretreated

attemperatureshigherthan80◦Cdeclinedsharply,possibly

becauseofthermaldegradation.ItisnotablethatZhaoetal.36

drewasimilarconclusionwhentheantibacterialmetabolites

ofamarinefungus(NJ0104)werethermallystableupto80◦C.

Hence,thereisajustificationinthatpartoftheantibacterial

metabolitescanmaintainbiologicalactivityatleastatmarine

temperatures.

Bioactive antifungalcompounds areextracted efficiently

onlybysuitableextractionsolventsbecause oftheir

differ-entpolarityandsolubilityproperties.Thereweresignificant

differences(p<0.05)amongfiveextractionsolvents(Table6).

EtOAc extractexhibitedthestrongestantifungalability

fol-lowedbydiethyletherandn-butylalcoholextracts.

Onamoregeneralnote, thereisalsoaneedforfurther

study on howto usesecondary metabolitesfrom strain 28

as biocontrol agents. For example,there is alack of

stud-iesondirectantifungaleffectsincrops,andphytopathogenic

fungusisoneofthevitallinkstodevelopingbio-antifungal

Table6–Inhibitionratioofthefermentationfiltrates

fromstrain28whenextractedindifferentsolvents

invitro.

Extraction solvents

Fusariumoxysporumf.sp.niveum

Averagediameter(cm)a Inhibitionratio(%)a Petroleumether 4.22±0.26b* 55.18±3.09d* Diethylether 2.12±0.06d 80.48±0.70b N-butylalcohol 2.20±0.26cd 79.52±3.19bc Ethylacetate 1.91±0.02e 83.01±0.28a Alcohol 2.27±0.06c 78.67±0.70c Control 8.80±0.05a 0.00±0.60e

a Each value is the average±standard deviation of triplicate determinations.

Valueswiththesameletterarenotsignificantlydifferent(p<0.05) accordingtotheone-wayANOVA.

(8)

agents.Previousstudiesonlyrevealedtheantifungalactivity

ofthecrudeEtOAcextractsinspiteoftheactivityofthe

sin-glecomponents.However,thisinvestigativedirectionwould

leadtofascinatingscientificresearchandpractical

applica-tionvaluebecause oftheextract’s obviousbroad-spectrum

antifungalability.Thisarticleisalsothefirstreportonthe

isolationofendophyticC.globosumfromH.cordataasa

biocon-trolagent.Moreover,preliminarydatafromprocessparameter

optimizationassays will provide good guiding significance

forharvesting more secondary metabolites from strain 28.

Inaddition,numeroussecondarymetabolitesfrommultiple

C.globosum strainshave beenreported andshowed a

vari-etyofbiologicalactivitiesincludingcytotoxicity,antibacterial

activity,phytotoxicity,elicitoractivityandothers.37Therefore,

studyingthisorganismanditsantifungalcompoundsfurther

todeveloppracticalapplicationswillbeapromisinglineof

researchforthefuture.

Author

contributions

FP, ZQL and WWconceived and designed the experiment.

ZQL, QC, and YWX participated in sample collection and

the isolation of the strain. FP, ZQL and KH analyzed and

interpretedthe sequence data and identifiedthe strain. In

addition, the antifungal activity bioassay and optimization

ofprocessparametersincludingstatisticalanalysiswere

per-formedbyFPand ZQL.Moreover,FP, ZQLand WWdrafted

andrevisedthemanuscript.Allauthors readand approved

thefinalmanuscript.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This work was financial supported by the “211” Project

Double-SupportPlanofSichuanAgriculturalUniversity(No.

00170705).Wearegratefultotheassistanceofthelaboratory

ofphytopathology ofSichuan agriculturalUniversity,China

forprovidingplantpathogens.

r

e

f

e

r

e

n

c

e

s

1.WaniMC,TaylorHL,WallME,CoggonP,McPhailAT.Plant antitumoragents.VI.Isolationandstructureoftaxol,anovel antileukemicandantitumoragentfromTaxusbrevifolia.JAm ChemSoc.1971;93:2325–2327.

2.YouX,FengS,LuoS,etal.Studiesonarhein-producing endophyticfungusisolatedfromRheumpalmatumL.

Fitoterapia.2013;85:161–168.

3.KusariS,PandeySP,SpitellerM.Untappedmutualistic paradigmslinkinghostplantandendophyticfungal productionofsimilarbioactivesecondarymetabolites.

Phytochemistry.2013;91:81–87.

4.KuldauG,BaconC.Clavicipitaceousendophytes:theirability toenhanceresistanceofgrassestomultiplestresses.Biol Control.2008;46:57–71.

5.MishraA,GondS,KumarA,SharmaV,VermaS,KharwarRN.

Sourcingthefungalendophytes:abeneficialtransactionof biodiversity,bioactivenaturalproducts,plantprotectionand nanotechnology:Microorganismsinsustainableagricultureand biotechnologyNetherlands:SpringerPress;2012:

581–612.

6.MejíaLC,RojasEI,MaynardZ,etal.Endophyticfungias biocontrolagentsofTheobromacacaopathogens.BiolControl.

2008;46:4–14.

7.SantiagoC,FitchettC,MunroMH,JalilJ,SanthanamJ. Cytotoxicandantifungalactivitiesof5-Hydroxyramulosin,a compoundproducedbyanendophyticfungusisolatedfrom

Cinnamomummollisimum.EvidBasedComplementAlternatMed.

2012;2012:689310.

8.MüllerAK,BosgraS,BoonPE,VoetHVD,NielsenE,Ladefoged O.Probabilisticcumulativeriskassessmentof

anti-androgenicpesticidesinfood.FoodChemToxicol.

2009;47:2951–2962.

9.JensenB,KnudsenIB,JensenD.Biologicalseedtreatmentof cerealswithfreshandlong-termstoredformulationsof clonostachysrosea:biocontrolefficacyagainstFusarium culmorum.EurJPlantPathol.2000;106:233–242.

10.YinG,WangW,ShaS,LiuL,YuX.Inhibitionandcontrol effectsoftheethylacetateextractofTrichodermaharzianum

fermentedbrothagainstBotrytiscinerea.AfrJMicrobiolRes.

2010;15:1647–1653.

11.LiXJ,ZhangQ,ZhangAL,GaoJM.Metabolitesfrom

Aspergillusfumigatus,anendophyticfungusassociatedwith

Meliaazedarach,andtheirantifungal,antifeedant,andtoxic activities.JAgricFoodChem.2012;60:3424–3431.

12.KumarS,KaushikN.Metabolitesofendophyticfungias novelsourceofbiofungicide:areview.PhytochemRev.

2013:1–16.

13.PremalathaK,KalraA.Molecularphylogeneticidentification ofendophyticfungiisolatedfromresinousandhealthy woodofAquilariamalaccensis,aredlistedandhighly exploitedmedicinaltree.FungalEcol.2013;6:205–211.

14.XuD,XiaX,XuN,AnL.Isolationandidentificationofa novelendophyticbacterialstrainwithantifungalactivity fromwildblueberryVacciniumuliginosum.AnnMicrobiol.

2007;57:673–676.

15.DuganFM.Theidentificationoffungi:anillustratedintroduction withkeys,glossary,andguidetoliterature.SaintPaul, Minnesota,USA:APSPress;2006.

16.GherbawyY,VoigtK.Molecularidentificationoffungi.Berlin, Germany:Springerpress;2010.

17.PorebskiS,BaileyLG,BaumB.ModificationofaCTABDNA extractionprotocolforplantscontaininghighpolysaccharide andpolyphenolcomponents.PlantMolBiolRep.1997;15: 8–15.

18.WhiteTJ,BrunsT,LeeS,TaylorJ.Amplificationanddirect sequencingoffungalribosomalRNAgenesforphylogenetics.PCR protocols:aguidetomethodsandapplications.18.NewYork, USA:AcademicPress;1990:315–322.

19.FangZD.ResearchmethodofplantpathogenBeijing,China: AgriculturePress;1998.

20.YangX,QiuD,YangH,LiuZ,ZengH,YuanJ.Antifungal activityofxenocoumacin1fromXenorhabdusnematophilus

var.pekingensisagainstPhytophthorainfestans.WorldJ MicrobiolBiotechnol.2011;27:523–528.

21.LeeS,HanlinRT.PhylogeneticrelationshipsofChaetomium

andsimilargenerabasedonribosomalDNAsequences.

Mycologia.1999:434–442.

22.TveitM,MooreM.IsolatesofChaetomiumthatprotectoats fromHelminthosporiumvictoriae.Phytopathology.

1954;44:686–689.

23.IstifadahN,McGeePA.EndophyticChaetomiumglobosum

reducesdevelopmentoftanspotinwheatcausedby

(9)

24.LiHQ,LiXJ,WangYL,etal.Antifungalmetabolitesfrom

Chaetomiumglobosum,anendophyticfungusinGinkgobiloba. BiochemSystEcol.2011;39:876–879.

25.QinJC,ZhangYM,GaoJM,etal.Bioactivemetabolites producedbyChaetomiumglobosum,anendophyticfungus isolatedfromGinkgobiloba.BioorgMedChemLett.

2009;19:1572–1574.

26.KumarS,KaushikN,ProkschP.Identificationofantifungal principleinthesolventextractofanendophyticfungus

Chaetomiumglobosum,fromWithaniasomnifera.SpringerPlus.

2013;2:37.

27.GophnaU,RonEZ,GraurD.BacterialtypeIIIsecretion systemsareancientandevolvedbymultiple

horizontal-transferevents.Gene.2003;312: 151–163.

28.HaiderK,TrojanowskiJ.Decompositionofspecifically 14C-labelledphenolsanddehydropolymersofconiferyl alcoholasmodelsforlignindegradationbysoftandwhite rotfungi.ArchMicrobiol.1975;105:33–41.

29.ChiYJ,YangQ.Constructionandidentificationof

recombinantplasmidofTUB2Geneandtransformationinto

Chaetomiumsp.HighTechnolLett.2003;13:34–40.

30.AryaA,PerellóAE.Managementoffungalplantpathogens.

Gottingen,Germany:CABIPublishing;2010.

31.TaraganoVM,PilosofAMR.ApplicationofDoehlertdesigns forwateractivity,pH,andfermentationtimeoptimization forAspergillusnigerpectinolyticactivitiesproductionin solid-stateandsubmergedfermentation.EnzymeMicrob Technol.1999;25:411–419.

32.GrignonC,SentenacH.pHandionicconditionsinthe apoplast.AnnuRevPlantPhysiolPlantMolBiol.

1991;42:103–128.

33.BuchananRL,WhitingRC,DamertWC.Whenissimplegood enough:acomparisonoftheGompertz,Baranyi,and three-phaselinearmodelsforfittingbacterialgrowthcurves.

FoodMicrobiol.1997;14:313–326.

34.MadiganMT,MartinkoJM.Brockbiologyofmicroorganisms.

11thed.PrenticeHallInternationalInc.;2006.

35.ChanCH,YusoffR,NgohGC,KungFWL.Microwave-assisted extractionsofactiveingredientsfromplants.JChromatogrA.

2011;1218:6213–6225.

36.ZhaoS,LiS,LiuH,ZhaoQ,WangJ,YanM.Screeningof marinefungusfromNanjiIslandandactivityoftheir metabolitesagainstpathogenicVibriofromPseudosciaena crocea.ChinJOceanolLimnol.2012:1–11.

37.ZhangQ,LiHQ,ZongSC,GaoJM,ZhangAL.Chemicaland bioactivediversitiesofthegenusChaetomiumsecondary metabolites.MiniRevMedChem.2012;12:127–148.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

O volume seminal, concentração de espermatozóides, número de espermatozóides por ejaculado, número de montas por ejaculação e o tempo de reacção perante uma égua em

Both traditional agriculture investors (LPs) and management board (GPs) benefit from the Alqueva project as the strategy considered with the fixed lease plus bonus agreement

A coleta de dados do projeto de mapeamento e diagnóstico das cadeias produtivas do município de Lajes foi realizada através de alunos voluntários.. Estes foram

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

On this study, 150 fungi were isolated from the Pampa biome, targeting the production of PUFA, where the fungus encoded as SPII65 was selected as a promising strain for

The pathogenicity of fungi from weed seeds was evaluated by inoculation in plants of agronomic interest and, when pathogenic, we inoculated them in the host plant of the fungus..

L-asparaginase activity obtained by endophytic fungi isolated from leaves of the medicinal plant Myracrodruon urundeuva in the Caatinga and brejo de altitude ecosystems in