• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
5
0
0

Texto

(1)

Compatiation of Gauge Theories and the

Gauge Invariane of Massive Modes

R. Amorim and J.Barelos-Neto

Instituto deFsia

UniversidadeFederaldoRiodeJaneiro

RJ 21945-970,CaixaPostal68528,Brasil

Reeivedon13Deember,2001

We study the gauge invariane of the massive modes in the ompatiation of gauge theories

fromD =5to D =4. Wedeal withAbelian gauge theoriesofrank oneandtwo,andwith

non-Abelianonesofrankone. WeshowthatStukelbergeldsnaturallyappearintheompatiation

mehanism,ontrarilytowhatusuallyoursinliterature wheretheyare introduedbyhand,as

a trik, to render gauge invariane for massive theories. We also show that inthe non-Abelian

ase theyappear inaverydierentway whenompared withtheir usualimplementationinthe

non-AbelianProamodel.

I Introdution

Nowadays, there is broad onsensus that

fundamen-tal theories might ome from spaetime dimension D

higher than four, probably D = 10 or D = 11. This

is mainly relatedtothe adventofstringtheories,that

are onsistent in the quantum word just at D = 10.

Further,thedualityamong knownstringtheories

sug-geststhattheymightemergefromamorefundamental

theoryatD=11. However,oneofthegreatdrawbak

ofthis ideaisthat thereisnoruleaboutsomespei

mehanismstoreahourwordatD=4.

Onemannerofgainingsomeinsightonthisproblem

istostudytheompatiationlosetoD=4andtry

tounderstandthefeaturesthatapossiblefundamental

theory shouldhavefrom thetheoretialonsistenyof

the results. It is important tomention that the

semi-nalidearelatedto thispointofviewdatesbakalong

timeago,intheworksofKaluzaandKlein[1,2℄,where

they havestartedfrom thegravitationalEinstein

the-ory atD =5and,after spontaneousompatiation,

reahed the Maxwell and Einstein theories at D = 4.

ThevetorgaugeeldA

wasoriginatedfroma

ompo-nentofthemetritensor. Itisopportunetoemphasize

that many of the reent attempts to implement

om-patiationmehanismhavetheKaluza-Kleinideaas

astrongsupport.

Wewould liketo addressthepresentpapertothis

line. Weonsidertheompatiationofgaugetheories

thequestion of gauge invarianein D =4, that shall

beretainedin theompatiationproedure,evenfor

themassivemodes. WeshallseethatStukelbergelds

[3℄,thatareusuallyintroduedasatrikinorderto

at-tainthegaugeinvarianeofmassivevetorelds,

nat-urally emergein this proedure. Even though we are

going to deal just with gauge elds of rank one and

two (that are the only ones whose number of

physi-al degrees of freedom are onsistent at D = 4), the

methodanbediretlyextendedforgaugeeldsofany

rank at higher spaetime dimensions. Conerning to

thenon-Abelianase,wementionthatthenon-Abelian

formulationoftheoriesofrankhigherthanoneannot

be diretly done. The gauge invariane, even for the

masslessase, is only ahieved by means of auxiliary

elds[4℄. Weshalldealwiththenon-Abelianasejust

forrankone. We mentionthat therole played by the

Stukelbergeldsinthisaseisverydierentfromtheir

usualimplementationinthenon-AbelianProamodel.

Our work is organizedasfollows: In Setion II we

treatthespontaneousompatiationofMaxwell

the-ory originally dened in D = 5, and show that in

the Fourierexpansion proedure, the zeromodes

or-respondto theusual Maxwelland realmasslesssalar

elds in D = 4. The nonzero modes orrespond to

omplexProa elds oupled to the appropriate

om-plex Stukelberg elds to keep the gauge invariane.

InSetion III weapplythisproedure inthetwo-form

(2)

two-formgaugetheoriesforthezeromodes. Thevetor

eldsplaytheroleofStukelbergeldsforthemassive

modes of the two-form elds. In setion IV, we

on-sider Yang-Mills theory. Although it has the Abelian

limitfoundinSetionII,aninterestinggaugestruture

is obtainedin thefull theory,where modesand gauge

multiplets are mixed in a non-trivial way in order to

keep the gauge invariane of the ation. We reserve

SetionV forsomeonludingremarks.

II Maxwell theory

Let us onsider the following ation for the Maxwell

theoryatD=5

S= 1

R Z

d 4

x Z

R

0 dx

4

1

4 F

MN

F

MN

(2.1)

wheretheoordinatex 4

desribesairleofradius R .

WeuseapitalRomanindiestoexpressthespaetime

dimensionD =5,i.e. M;N =0;;4,and adoptthe

metri onvention MN

= diag(+1; 1; 1; 1; 1).

TheMaxwellstresstensorF MN

is denedin termsof

thepotentialvetorA M

bytheusualrelation

F MN

= M

A N

N

A M

(2.2)

Theation(2.1)isinvariantunder thegauge

transfor-mation

ÆA M

= M

(2.3)

Letus split the vetorpotential A M

as A M

=A

for M = 0;;3 and A M

= for M = 4. We thus

havefortheation(2.1)

S= 1

R Z

d 4

x Z

R

0 dx

4

1

4 F

F

1

2

1

2

4

A

4 A

+

4

A

(2.4)

The rst term above annot be identied with the

Maxwell Lagrangian at D = 4 beause A

depends

on bothx

and x 4

. Following the usualproedure in

the (spontaneous) ompatiation proedure [2℄, we

taketheexpansionsofA

andinFourierharmonis,

namely

A

(x;x 4

) = +1

X

n= 1 A

(n) (x)exp

2in x

4

R

(x;x 4

) = +1

X

n= 1

(n) (x)exp

2in x

4

R

(2.5)

The replaement of these expansions into the ation

(2.4)leadsto

S= Z

d 4

x +1

X

n= 1

1

4 F

(n) F

( n) 1

2

(n)

( n)

2 2

n 2

R 2

A

(n) A

( n) +

2in

R A

(n)

( n)

(2.6)

Sine A

M

is a real quantity, we havefrom

expan-sions(2.5)thatA

( n) =A

(n) and

( n) =

(n) . Using

thisintotheation(2.6)werewriteitinamore

onve-nientway

S = Z

d 4

x n

1

4 F

(0) F

(0) 1

2

(0)

(0)

+ 1

X

n=1 h

1

2 F

(n) F

(n) 4n

2

2

R 2

A

(n) +

iR

2n

(n)

A

(n) iR

2n

(n) i o

(2.7)

WeobservethatthetwozeromodetermsatD=4

orrespond to Maxwell and real salar eld theories.

The other modes are related to omplex Proa elds

with masses givenby 2n=R . It is interestingto note

theroleplayedbytheorrespondingmodesofthesalar

elds. Theyare Stukelbergelds. Usually, these are

putbyhandasatriktomaketheProatheorygauge

invariantortoimplementtheHamiltonian embedding

proedure,duringtheonversionofseondtorst-lass

onstraints[5℄. Here, these elds naturally emerge in

ordertokeepthegaugesymmetryoftheinitialtheory.

III Abelian two-form

Thenaturalextensionofwhatwasdoneintheprevious

setion is toonsider gaugeelds ofrank two. Letus

(3)

S = 1 12R Z d 4 x Z R 0 dx 4 H MNP H MNP (3.1)

The ompletely antisymmetristress tensor H MNP

is

dened in termsof theantisymmetritwo-formgauge

eld B MN by H MNP = M B NP + P B MN + N B PM (3.2)

Thistheoryisinvariantforthe(reduible)[6,7℄gauge

transformation ÆB MN = M N N M (3.3)

Inordertoperformtheompatiationto D=4,

weonvenientlysplit thepotentialB MN as B MN = (B ;B 4 ) = (B ;A ) (3.4)

where wehave identied B 4

with A

. Again,this is

notthevetorpotentialoftheMaxwelltheorybeause

it depends on both x

and x 4

and its gauge

transfor-mation,aordingto (3.3),reads

ÆA = 4 4 (3.5)

whih is not the harateristi transformation of the

Maxwellonnetion.

Introduing(3.4)into(3.1),weobtain

S = 1 R Z d 4 x Z R 0 dx 4 1 12 H H 1 4 F F + 1 4 4 B 4 B + 1 2 F 4 B (3.6)

where,forthesamepreviousargument,F = A A

isnottheMaxwellstresstensor. Expandingthe

eldsB

,A

,aswellasthegaugeparameters

and

4

inFourierharmonis,wehave

B (x;x 4 ) = +1 X n= 1 B (n) (x)exp 2in x 4 R A (x;x 4 ) = +1 X n= 1 A (n) (x)exp 2in x 4 R (x;x 4 ) = +1 X n= 1 (n) (x) exp 2in x 4 R 4 (x;x 4 ) = +1 X n= 1 (n) (x) exp 2in x 4 R (3.7)

Introduing thesequantitiesinto (3.6)and onsidering

thatB ( n) =B (n) ,A ( n) =A (n)

,et.,weobtain

S = Z d 4 x h 1 12 H (0) H (0) 1 4 F (0) F (0) + 1 X n=1 1 6 H (n) H (n) 1 2 F (n) F (n) + 2n 2 2 R 2 B (n) B (n) 2in R F (n) B (n) i (3.8)

Dueto thegaugetransformationsofthezeromode

elds, ÆA (0) = (0) ÆB (0) = (0) (0) (3.9)

wehavethat thetwozeromodetermsof(3.8)arethe

tensorandvetor(Maxwell)theoriesatD=4[8℄. The

remainingmodesorrespondtomassiveomplextensor

gaugeeldsB

(n)

andmasslessvetoronesA

(n)

. Letus

rewritethen-modetermsofexpression(3.8)inamore

appropriateform S (n) = Z d 4 x h 1 6 H (n) H (n) 2n 2 2 R 2 iB (n) R 2n F (n) iB (n) R 2n F (n) i (3.10)

We notie that in the rank 2 theory, the

mass-less vetor gauge eld A

(n)

naturally appears as a

Stukelberg eld for themassiveantisymmetrigauge

eld iB

(n)

. Theirgaugetransformationsaregivenby

ÆA (n) = (n) 2in R (n) ÆB (n) = (n) (n) (3.11)

playtheroleofStukelbergeldsforthemassiverank

twotheory, wasalso found in theaseof Hamiltonian

embeddingmehanism[9℄.

Weouldgeneralizethisanalysisforgaugeelds of

anyrank. However,forD=4itdoesnotmakesenseto

onsidergaugeelds ofrankhigherthantwo,beause

(4)

IV Non-Abelian ase

Asalreadysaid, thenon-Abelianformulationofgauge

theorieswithranktwoorhigherannotbediretly

im-plemented. Its gaugeinvariane anonly be ahieved

withthehelpofauxiliaryelds[4℄. Consequently,sine

thesemodelsdonothavealeargaugeinvariane,their

disussionherewillbeavoided. Weshallonlyonsider

in this setion the vetorase. The non-Abelian

ver-sionoftheproeduredesribedinsetionIIshouldstart

fromtheation

S= 1

R Z

d 4

x Z

R

0 dx

4

tr

1

4 F

MN

F

MN

(4.1)

wherenow

F MN

= M

A N

N

A M

i[A M

;A N

℄ (4.2)

andthegaugepotentialstakevaluesin aSU(N)

alge-bra,whosehermitiangeneratorsareassumedtosatisfy

a normalized trae ondition. The ation (4.1) is

in-variantunderthegaugetransformation

ÆA M

=D M

(4.3)

oneonedenestheovariantderivativeas

D M

= M

i[;A M

℄ (4.4)

AgainwritingA 4

=,wenotethatF 4

= 4

A

D

permitstorewriteation(4.1)as

S= 1

R Z

d 4

x Z

R

0 dx

4

tr

1

4 F

F

1

2 D

D

1

2

4

A

4 A

+D

4

A

(4.5)

Expandingtheeldsabovein Fourierharmonisin

asimilarwaytoSe. II,weget

S= Z

d 4

xtr 1

X

n= 1 h

1

4 F

(n) F

( n) 1

2

2n

R A

(n) +iD

(n)

2n

R A

( n) iD

( n) i

(4.6)

where

(D

)

(n) =

(n) +i

+1

X

m= 1 [

(m) ;A

(n m) ℄

F

(n) =

A

(n)

A

(n) i

+1

X

m= 1 [A

(m) ;A

(n m)

℄ (4.7)

It is interestingtoobservethat thenon-Abelianharaterofthe ation(4.6)indues agaugestruture where

themodesmixedamongthemselves. Inotherwords,thegaugemultipletandthemodesformanontrivialstruture

that hasto beonsidered asawhole to preservethesymmetry ofthe ation. Atually, thetransformations (4.3)

havetheirmodeexpandedversiongivenby

ÆA

(n) =(D

)

(n)

Æ

(n) =

i2n

R

(n) i

+1

X

m= 1 h

(m) ;A

(n m) i

(4.8)

wheretheovariantderivativeisdenedin (4.7). Asaonsequeneoftheaboveequations,

ÆF

(n) = i

+1

X

m= 1 h

(m) ;F

(n m) i

Æ

2n

R A

(n) +i(D

)

(n)

= i +1

X

m= 1 h

(m) ;

2(n m)

R A

(n m) +i(D

)

(n m)

(5)

whihisasymmetryofation(4.6),asanbeveried.

It is interestingtoobservethat the roleplayed by the

Stukelberg elds hereis dierent from the usual one

presentedbythenon-AbelianProamodel[10℄. There,

theStukelbergeldisintroduedbyhandin orderto

just giveÆ[mA

+i(D

)℄=0.

V Conlusion

Inthispaperwehaveonsideredthespontaneous

om-patiationsof Maxwell,Abeliantwo-form, and

non-Abelian one-formgaugetheories from aD =5

spae-time with a ompat dimension to the usual D = 4

Minkowski spaetime. We havefoused ourattention

to the gaugeinvariane of the theories formulated at

D = 5, whih should be kept along the

ompatia-tionproedure. Asusual,therearisemassivemodesin

theproessofompatiation. Inpriniple,thegauge

invariane of these modes ould be lost. We observe,

however, that generalizedStukelberg elds naturally

emerge in order to keep the ontent of the original

gauge invariane. Although in the Abelian ases the

Stukelbergeldsorrespondtothosealreadyfoundin

the literature, the ompatiation of the Yang-Mills

theory reveals anew strutureof ompensating elds.

Beause of the nonlinearity of the ation, the gauge

struture displayed by the mode expansion of

ovari-ant derivatives, urvature tensors and gauge

transfor-mations play a remarkable feature in mixing Fourier

modesand gaugemultipletomponentsinanontrivial

way.

Aknowledgment: This work is supported in part

by ConselhoNaionalde Desenvolvimento Cientoe

Tenologio - CNPq (BrazilianResearh ageny) with

thesupport ofPRONEX66.2002/1998-9.

Referenes

[1℄ T.Kaluza, Akad. Wiss.Phys.Math. K1, 966 (1921);

O.Klein,Z.Phys.37,895(1926).

[2℄ Foramoregeneralrefereneonompatiation

meh-anism,seeforexample, L.Castellani, R.D'Auriaand

P. Fre, Supergravity and Superstrings { A

Geomet-riPerspetive(WorldSienti,1991),andreferenes

therein.

[3℄ E.C.G.Stukelberg,Helv.Phys.Ata30,209(1957).

[4℄ A.Larihi, Phys.Rev.D55, 5045 (1997); D.S.Hwang

and C.-Y Lee, J. Math. Phys. 38, 30 (1997); J.

Barelos-Neto, A. Cabo and M.B.D. Silva, Z. Phys.

C72,345(1996).

[5℄ I.A.Batalinand E.S.Fradkin,Phys.Lett. B180, 157

(1986); Nul. Phys. B279, 514 (1987); I.A. Batalin,

E.S. Fradkin, and T.E. Fradkina, ibid. B314, 158

(1989);B323,734(1989);I.A.BatalinandI.V.Tyutin,

Int.J.Mod.Phys.A6,3255(1991).

[6℄ M.KalbandP.Ramond,Phys.Rev.D9,2273 (1974).

[7℄ For a review see M. Henneaux, Phys. Rep. C126, 1

(1985).A more ompleteperspetive anbe foundin

M.HenneauxandC.Teitelboim,Quantizationofgauge

systems(PrinetonUniv.Press, 1992).

[8℄ J.Barelos-Neto, J.Math.Phys.41,6661 (2000).

[9℄ C. Bizdadea and S.O. Saliu, Phys. Lett. B368, 202

(1996).

[10℄ T.KunimasaandT.Goto,Prog.Theor.Phys.37,452

Referências

Documentos relacionados

eletrónico, podendo ser acompanhada por uma guia de tratamento impresso fornecido pelo médico (Anexo 2). A prescrição desmaterializada não apresenta limite de linhas de prescrição,

129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic 130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Estudo por Difração de Raios- X de Ondas de Densidade de Carga (CDW) e de Ondas de Densidade de Spin (SDW) no Cromo. de fase magnética, tanto para amostras tensionadas quanto

Além disso, até à década de 1640 não há notícia de que câmaras do Estado da Índia ou do mundo atlântico português tenham manifestado interesse em participar nas Cortes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent