• Nenhum resultado encontrado

Effect of diterpenoid kaurenoic acid on genotoxicity and cell cycle progression in gastric cancer cell lines

N/A
N/A
Protected

Academic year: 2018

Share "Effect of diterpenoid kaurenoic acid on genotoxicity and cell cycle progression in gastric cancer cell lines"

Copied!
9
0
0

Texto

(1)

Effect

of

diterpenoid

kaurenoic

acid

on

genotoxicity

and

cell

cycle

progression

in

gastric

cancer

cell

lines

Plínio

Cerqueira

dos

Santos

Cardoso

a,1

,

Carlos

Alberto

Machado

da

Rocha

b,

*

,1

,

Mariana

Ferreira

Leal

c

,

Marcelo

de

Oliveira

Bahia

a

,

Diego

Di

Felipe

Ávila

Alcântara

a

,

Raquel

Alves

dos

Santos

d

,

Natália

dos

Santos

Gonçalves

d

,

Sérgio

Ricardo

Ambrósio

e

,

Bruno

Coêlho

Cavalcanti

f

,

Caroline

Aquino

Moreira-Nunes

a,g

,

Claudia

do

Ó

Pessoa

f

,

Rommel

Mário

Rodríguez

Burbano

a,h,

**

aHumanCytogeneticLaboratory,BiologicalScienceInstitute,FederalUniversityofPará(UFPA),Belém,Pará,Brazil

bFederalInstituteofEducation,ScienceandTechnologyofPará(IFPA),Av.AlmiranteBarroso,1155(Marco),CEP66093-020,Belém,Pará,Brazil cDepartmentofMorphologyandGenetics,FederalUniversityofSãoPaulo(UNIFESP),SãoPaulo,SãoPaulo,Brazil

dLaboratoryofGeneticsandMolecularBiology,UniversityofFranca(UNIFRAN),Franca,SãoPaulo,Brazil eLaboratoryofBiotransformation,UniversityofFranca(UNIFRAN),Franca,SãoPaulo,Brazil

fDepartmentofPhysiologyandPharmacology,FederalUniversityofCeará(UFC),Fortaleza,Ceará,Brazil

gLaboratoryofGeneticsofHemoglobinopathiesandHematologicDiseases,FederalUniversityofCeará(UFC),Fortaleza,Ceará,Brazil hHospitalOphirLoyola(HOL),Belém,Pará,Brazil

ARTICLE INFO

Articlehistory:

Received24November2016

Receivedinrevisedform22February2017 Accepted22February2017

Keywords:

Cellcycleprogression Cometassay

Gastriccancercelllines Genetranscriptions Kaurenoicacid Micronuclei

ABSTRACT

Thegoalofourstudywastoevaluatetheeffectofkaurenoicacid,obtainedfromcopaibaoilresin,in gastriccancer(GC)andanormalmucosaofstomach(MNP01)celllines.Thecompoundwastestedat concentrationsof2.5,5,10,30and60mg/mL.Cometandmicronucleusassayswereusedtoaccessits

potential genotoxicity invitro. Moreover, we evaluated the effect of kaurenoic acid in cell cycle progressionandinthetranscriptionofgenesinvolvedinthecontrolofthecellcycle:MYC,CCND1,BCL2, CASP3,ATM,CHK2andTP53.KaurenoicacidinducedanincreaseoncellDNAdamageormicronucleus frequenciesonGCcelllinesinadose-dependentmanner.TheGCandMNP01celllinesenteringDNA synthesisand mitosisdecreasedsignificantlywithkaurenoicacid treatment,andhad anincreased growthphasecomparedwithnon-treatedcells.Thetreatmentinducedapoptosis(ornecrosis)evenata concentrationof2.5mg/mLinrelationtonon-treatedcells.GCcelllinespresentedreducedMYC,CCND1,

BCL2andCASP3transcriptionwhileATM,CHK2andTP53increasedintranscriptioninrelationto non-treatedcells,especiallyataconcentrationabove10mg/mL.ThegenetranscriptionintheMNP01

(non-treatednon-cancercellline)wasdesignatedasacalibratorforalltheGCcelllines.Inconclusion,our resultsshowedthatkaurenoicacidobtainedfromCopaiferainducesDNAdamageandincreasesthe micronucleifrequencyinadose-dependentmannerinGCcells,withasignificantgenotoxicityobserved abovetheconcentrationof5mg/mL.Moreover,thiscompoundseemstobeabletoinducecellcyclearrest

andapoptosisinGCcells.

©2017ElsevierMassonSAS.Allrightsreserved.

1.Introduction

Gastriccancer(GC)remainsthethirdleadingcauseof

cancer-related mortality worldwide, and invasion and metastasis of

gastriccancerrepresentsthemajorreasonforitspoorprognosis

[1].Multimodal therapies haveproven tobenefitpatients with

cancer.However,withoutcurativesurgery,variationsand

combi-nationsofchemotherapyand/orradiationcannotbringclinically

meaningfulsuccessnowadays[2].

*Correspondingauthor.

**Correspondingauthorat:HospitalOphirLoyola(HOL),Av.MagalhãesBarata, 992,CEP66060-281,Belém,Pará,Brazil.

E-mailaddresses:carlos.rocha@ifpa.edu.br(C.A.M.d.Rocha),rommel@ufpa.br (R.M.R.Burbano).

1Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.biopha.2017.02.085

0753-3322/©2017ElsevierMassonSAS.Allrightsreserved.

Available

online

at

(2)

One of the main problems in cancer treatment is gradual

resistanceofcancercellsagainsttreatment[3].Therefore,theaim

ofimmunopharmacologicalstudieshasbeentoimprovecancer

treatmentresults[4].Thealternatesolutionfortheharmfuleffects

of synthetic agents is the use of phytotherapy [5]. Bioactive

compoundsfromplantshavealotofbiologicalactivitiesandmay

presentgreatpotentialinthedevelopmentofnewdrugsforthe

treatmentofhumandiseases[6].

Reports about medicinal plants in the Brazilian Amazonian

region have been documented in the literature, especially

concerning the oil resin extracted from the trunk of Copaifera

langsdorffiiDesfon(Leguminosae)[7,8].Thisoilresinisareputed

folkremedy used bythe nativesof Brazil for thetreatmentof

several diseases such as sore throat, urinary and pulmonary

infections,andtohastenulcerandwoundhealing[9].Usually,this

oilresinisadministeredorallyinnatura,orappliedinointment

form [10–12]. This substance has great social and economic

representationintheAmazonregion,sinceitrepresentsabout95%

oftheentireoilresinproductioncountrywide[13].

SeveralstudieshavedemonstratedthattheCopaiferaoilresin

hasmanifoldtherapeuticproperties,includinganti-inflammatory,

antitumoral,antimelanoma,antiulcerogenic,antilipoperoxidation

and antioxidant [10,12,14–16]. Furthermore, the diterpenes,

kaurenoic and polyaltic acids present in the pure oil seem to

presenthealingandanti-inflammatoryproperties[7,8].

Kaurenoicacid(ent-kaur-16-en-19-oicacid)(Fig.1)isclassified

asaditerpeneandconsideredanintermediateofthegibberellin

plantgrowthhormonebiogenesis[17].Somestudiesshowedthat

kaurenoicacidpresentsinvitroanti-parasiticandanti-microbial

activities[18–23].Moreover,thisditerpenehasanti-proliferative

actioninCEMleukemiccells,MCF-7breastandHCT-8coloncancer

cells[24].Additionally,kaurenoicacidisalsoabletoreducehuman

spermmotilitywhendirectlytestedinspermsamples,butwas

onlyweaklyspermicidal[25].

While Copaifera oil resin has its herbal properties widely

reported, there are few studies in the scientific literature that

evaluatedtheeffectsofthisoilresincomponents,especiallyinGC

celllines.Thus,thepresentstudyaimstoassessthegenotoxicityof

kaurenoicacidandtheeffectofthiscompoundinthecellcycleand

inthetranscriptionofgenesinvolved,amongotherfunctions,in

GCcelllines.

2.Materialsandmethods

2.1.Generalexperimentalprocedures

TheACP02,ACP03andAGP01celllines,previouslyestablished

andcharacterizedbyourresearchgroup,wereusedinthepresent

study[26,27].TheACP02celllinewasestablishedfroma

diffuse-typeGC,andACP03andAGP01werefromanintestinal-typeGC.

ACP03isabletostartatumorigenesisprocessinCebuspaella[28].

WealsousedtheGCcelllinePG100obtainedfromRiodeJaneiro

CellBank,Brazil,thatwaspreviouslycytogeneticlycharacterized

byourgroup[29].

Cells lines were cultivated under standard conditions in

Modified Eagle’s medium salts, supplemented with 10% fetal

bovine serum, 2mM L-glutamine and antibiotics (100IU/mL

penicillin and 100

m

g/mL streptomycin [30]). Cells were

main-tained in 25cm2 tissue culture

flasks (TPP, Trasadingen,

Switzerland)at37C inahumidi

fiedatmospherecontaining5%

CO2andwereharvestedbytreatmentwith0.15%trypsinand0.08%

EDTA in phosphate-buffered saline (PBS). Cells (3105) were

seededin5mLofcompletemediumandgrownfor2dayspriorto

treatmentwiththetestsubstance.

Cellsweretreatedwithdifferentconcentrationsofkaurenoic

acid(2.5,5,10,30and60

m

g/mL)for3h.Afterthis,thecellswere

washed withice-cold PBS and trypsinizedwith 100

m

L trypsin

(0.15%) and were resuspended in complete medium. The final

concentrationofDMSOintheculturemediumwaskeptconstant,

below 0.1% (v/v). The negative control cell cultures were not

exposed tokaurenoic acid, while themethyl methanesulfonate

(Sigma Aldrich Co, St. Louis, MO, USA) was used as a positive

control (410 5M). All cell treatments were carried out with

threereplicates.

2.2.Chemicalisolation

Inthisstudy,kaurenoicacid(CAS6730-83-2)(SigmaChemical

Co., St.Louis,MO, USA) was dilutedundersterileconditions in

dimethyl sulfoxide (DMSO)and theconcentrationsused inthis

studywerebasedonpreliminarycytotoxicityassaysperformedby

our research group (unpublished data). Kaurenoic acid was

obtainedfromtheoilresinofC.langsdorffiithatgrowsabundantly

intheAmazonregionofNorthernBrazil[31].

2.3.Genotoxicityassay

TheCometassay(alkalineversion)wasperformedasdescribed

by Singhet al. [32] withsomemodifications[33,34].Aftercell

treatment,thecellswerewashedwithice-coldPBSandtrypsinized

with100

m

L trypsin(0.15%)and wereresuspendedin complete

medium. An aliquot (450

m

L)of thecell suspension fromeach

experimental groupwas takenandcentrifugedat1.000rpmfor

5mininamicrocentrifuge(Eppendorf).Theresultingpelletwas

homogenizedwith300

m

Lofalowmeltingpointagarose(0.8%),

spreadontomicroscopeslidespre-coatedwithanormalmelting

pointagarose(1.5%)andcoveredwithacoverslip.After5minat

4C,thecoverslipwasremovedandtheslideswereimmersedin

cold lysissolution (2.5MNaCl;100mM EDTA; 10mM Tris,10%

DMSOand1%Triton-X,pH:10)foroneweek.Afterlysis,theslides

were placed in an electrophoresis chamber and covered with

freshlymadeelectrophoresisbuffer(300mMNaOH;1mMEDTA,

pH>13).

The electrophoresis was run for 25min (34V and 300mA).

Afterward,theslideswereneutralizedbysubmersionindistilled

water(4C)for5minandxedin100%ethanolfor3min.Staining

oftheslideswasperformedimmediatelybeforetheanalysesusing

ethidium bromide dye (20

m

g/mL). Slides were prepared in

duplicate,and100cellswereanalyzedpersample(50cellsfrom

eachslide)usingafluorescentmicroscope(OlympusBX41)at40

magnification.

Thedamageindex(DI)isbasedonthelengthofmigrationand

theamountofDNAinthetail.Itisconsideredasensitivemeasure

ofDNA.Fivecategories(0–4)wereusedhere:class0(nodamage),

class1(slightdamagewithataillengthshorterthanthediameter

ofthenucleus),class2(mediumdamagewithataillengthoneor

twotimesthediameterofthenucleus),class3(significantdamage

with a tail length greater than two times the diameter of the

Fig.1.Molecularstructureofkaurenoicacid(ent-kaur-16-en-19-oicacid).

(3)

nucleus)andclass4(significantdamagewithtaillengthgreater

thanthreetimesthediameterofthenucleus).Damagedindexthus

ranged from 0 (no damage: 100 cells0) to 4 (completely

damaged:100cells4)[35,36].

2.4.Mutagenicassay

The micronucleusassaywas performedaccording toFenech

[37].Threehoursaftertreatment,thecultureswerewashedtwice

withthe medium and Cytochalasin B(Sigma Chemical Co., St.

Louis,MO, USA)wasadded atafinalconcentrationof2

m

g/mL.

Cultureswereharvested 21hafterCytochalasinBaddition.The

cells wereseparated fromthe bottle bytrypsinization and the

cellularsuspensionwascentrifugedat1000rpmfor5min.Then,

cellswereresuspendedin aKCl0.075Msolutionmaintainedat

4C for 3min (mild hypotonic treatment). Cell cultures were

harvested72haftertheincubation,centrifuged(5minat800rpm)

andsubmittedtohypotonicsolution(KCL0.075M).Afterward,GC

celllineswerewashedoncewith5mLofacoldmethanol:acetic

acid(5:1) (v/v) fixative and washed againwith 5mL of a cold

methanol:aceticacid(3:1)(v/v)fixative.Thecellsuspensionwas

droppedontoslidesandstainedinasolutionof5%Giemsadye

(SigmaChemicalCo.,St.Louis,MO,USA)inaphosphatebuffer(pH

6.8)for5min.Micronucleiwerescoredin2000binucleatedcells

using the criteria according to Fenech [37]. The analysis was

performedusinganopticalmicroscope(BIOVALL2000A)at100

magnification.

2.5.Cellcycleanalysis

Cell cycle distribution followed the procedure described by

Nicolettietal.[38].GClineswereincubatedat37Cfor3hinthe

darkinalysissolutioncontaining0.1%,citrate,0.1%tritonX-100

and50

m

g/mLpropidiumiodide.Cellfluorescencewasdetermined

byflowcytometryinaGuava1EasyCyteTMMiniSystemcytometer

(GuavaTechnologiesInc.,Hayward,CA,USA),usingCytoSoft4.1

software.

2.6.Genestranscriptionanalysis

Weanalyzedthetranscriptionofgenesinvolvedinthecellcycle

regulationtoevaluatetheeffectof kaurenoicacidtreatmentin

ACP02,ACP03,AGP01andPG100celllines(Table1).TotalmRNA

was isolated from all cell line samples using Trizol Reagent

(Invitrogen,Carlsbad,CA,EUA).TheextractedRNAwaspurified

usingRNeasyMiniKit(Qiagen,Valencia,CA,EUA),accordingtothe

recommended protocol. The concentration and quality were

determined using a NanoDrop spectrophotometer (Kisker,

Germany)and1%agarosegels,respectively.Sampleswerestored

at 80Cuntiluse.

RNAwas reverse-transcribed using the High-Capacity cDNA

Archive kit according to the manufacturer’s protocol (Life

Technologies,Pittsburgh,PA,USA).ComplementaryDNAwasthen

amplifiedbyreal-timereversetranscriptionquantitativePCR

(RT-qPCR) using TaqMan probes purchased as Assays-on-demand

Productsfor GeneExpression (LifeTechnologies,Pittsburgh,PA,

USA; Table 1) and a 7500 FastReal-Time PCR instrument (Life

Technologies,Pittsburgh,PA,USA).TheGAPDHgenewasselected

as an internal control for RNA input and reverse-transcription

efficiency.AllRT-qPCRswereperformedintriplicateforboththe

targetgenesandtheinternalcontrol.Therelativequantificationof

genetranscriptionwascalculatedaccordingtothemanufacturer’s

software (Life Technologies, Pittsburgh, PA, USA). The gene

Table1

SummaryofSevenTargetGenesandtheReferenceGene.

Gene symbol

Name genefunction assay*

MYC v-mycavianmyelocytomatosisviral oncogenehomolog

progressionofcellcycleprogression,apoptosisandcellulartransformation/oncogene hs00153408_m1

CCND1 cyclinD1 positiveregulationofmitoticcellcycle/oncogene hs00765553_m1

BCL2 b-cellcll/lymphoma2 anti-apoptotic/oncogene hs00608023_m1

CASP3 caspase3,apoptosis-relatedcysteine peptidase

pro-apoptotic hs00234387_m1

ATM atmserine/threoninekinase cellcyclearrestinresponsetoDNAdamageandforgenomestability/tumorsupressor hs01112355_g1 CHK2 checkpointkinase2 cellcyclecheckpointregulatorinresponsetoDNAdamageandtoreplicationblocks/

putativetumorsuppressor

hs00200485_m1

TP53 tumorproteinp53 inductionofcellcyclearrest,apoptosis,senescence,DNArepair,orchangesin metabolism/tumorsupressor

hs01034249_m1

*TaqManprobeswerepurchasedasassays-on-demandproductsforgeneexpression(LifeTechnologies,USA).

Fig.2. Genotoxicityofkaurenoicacidingastriccancercellline.A)Damageindexbycometassay;B)micronucleifrequency.DI:damageindex;MN:micronucleifrequency.C-: control,whichwerenon-treatedcells;C+:cellstreatedwithmethylmethanesulfonateon*Significantlydifferentfromthecontrol(p<0.05;byKruskal-Wallistestfollowedby Games-Howellpost-hocanalysis).**Significantlydifferentfromthecontrol(p0.001;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

(4)

transcriptionintheMNP01(non-treatednon-cancercellline)was

designatedasacalibratorforalltheGCcelllines.

2.7.Statisticalanalysis

Thedataareshownastheasthemeanstandard deviation

(SD). The Shapiro-Wilk test was used to evaluate the data

distribution and to determine the appropriate subsequent test

for statisticalcomparisons. The Kruskal-Wallistest followedby

Games-Howellpost-hoctestformultiplecomparisonswasusedto

comparethestudiedgroups.Spearmancorrelationtestwasusedto

evaluate the possible correlation between kaurenoic acid

concentration and genotoxicty or gene transcription. A p-value

lessthan0.05wasconsideredsignificant[39].

3.Resultsanddiscussion

GCcelllinestreatedwithmethylmethanesulphonatepresented

asignificantincreaseintheDNAdamageindexwhencompared

withcontrolnon-treatedcells[333.5(13.5)versus25.5(7.5),

p<0.001;Fig.2A].Similarphenomenonwasrepeatedfornormal

cellsMNP01(356versus22.3,p<0.001).Morethan70%ofGCcells

treatedwiththisdrugpresentedcometclass4,whichwasdetected

inlessthan2%ofnon-treatedcells(Fig.3).

Fig.3.EffectofkaurenoicacidonthescoreofDNAdamagebycometassayingastriccancercelllines.TheDNAdamagewasclassifiedbasedonthelengthofmigrationandon theamountofDNAinthecomettail.Class0:nodamage;Class1:littledamagewithataillengthshorterthandiameterofthenucleus;Class2:mediumdamagewithatail lengthoneortwotimesthediameterofthenucleus;Class3:significantdamagewithataillengthgreaterthantwotimesthediameterofthenucleus;Class4:significant damagewithtaillengthgreaterthanthreetimesthediameterofthenucleus;C-:control,whichwerenon-treatedcells;C+:cellstreatedwithmethylmethanesulfonateon* Significantlydifferentfromthenegativecontrol(p<0.05;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).**Significantlydifferentfromthecontrol (p0.001;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

Fig.4.Genotoxicityofkaurenoicacidbycometassayineachstudiedgastriccancercellline.A)ACP02;B)ACP03;C)AGP01;D)PG100.DI:damageindexbycometassay.C-: control,whichwerenon-treatedcells;C+:cellstreatedwithmethylmethanesulfonateon*Significantlydifferentfromthecontrol(p<0.05;byKruskal-Wallistestfollowedby Games-Howellpost-hocanalysis).**Significantlydifferentfromthecontrol(p0.001;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

(5)

Kaurenoic acid induced DNA damage in a dose-dependent

manner(Fig.2).Atconcentrationsabove5

m

g/mL,kaurenoicacid

induceda significantincrease in the DNAdamage index when

comparedwithcontrolvalues:47(25.75;p=0.001),47(42.75;

p=0.006),173(69;p<0.001),205(43;p<0.001)for5, 10,30or

60

m

g/mL, respectively (Fig. 2A). Kaurenoic acid induced DNA

damageclassifiedascometclass4(Fig.3);however,lessthan30%

ofcellspresentcometclass4.

Moreover, the methyl methanesulphonate treatment also

inducedasignificantincreaseofmicronucleicomparedwiththe

control[96.5(12)versus20.5(8),p<0.001].Additionally,GC

cell lines presented a significant increase of the frequency of

micronuclei when treated with kaurenoic acid concentrations

above 5

m

g/mL: 30.5 (7.25; p=0.004), 37 (8; p<0.001), 53

(19; p<0.001) and 74.5 (15.75; p<0.001), respectively

(Fig.2B).

The kaurenoic acid concentration treatment was strongly

correlatedwiththeDNAdamageindex(rS=0.912,p<0.001)and

themicronucleifrequency(rS=0.925,p<0.001).Asimilarpattern

wasobservedinresponsetothekaurenoicacidtreatmentineach

cellline(Figs.4and5).

Genotoxiceventsareconsideredcrucialstepsinthe

progres-sion of cancer. In this study, we performed comet assay and

micronucleustests in four GC cell lines treated withdifferent

concentrationsofkaurenoicacid.Toourknowledge,noprevious

studyevaluatedtheeffectofthiscompoundinGCcelllines.Here,

we observed that kaurenoic acid has a genotoxic potential

especially at higher concentrations, evidenced by increased

frequenciesofbothmicronucleiandDNAdamage.Kaurenoicacid

inducedDNAdamageinadose-dependentmanner.Ourcurrent

findings in GCcelllines areinpartinagreementwithfindings

previouslyobservedinChinesehamsterlungfibroblastcells(V79

cells)treatedwithkaurenoicacid.Therefore,thiscompoundmay

actasaDNAintercalatingagent[31],whichinduceschromosomic

alterationsandDNAbreaksinmammaliancells[40].

Few studies have evaluated the effect of kaurenoic acid.

However, the genotoxic effect of diterpens was previously

reported. Usingthecometassay,Katoet al.[41]showed thata

pimarane-type diterpene, pimaradienoic acid, induced DNA

damage at concentrations of 2.5 and 5.0

m

g/mL in V79 cells.

Moreover,DNAdamagewasalsoreportedinhepatocytesofSwiss

micetreatedwith80mg/kgofthisditerpene.

Paclitaxel(Taxol1)isaditerpenoidclinicallyeffective

antineo-plasticdrugthathasbeenusedforthetreatmentofseveralhuman

cancers,includingGC[42].Thisditerpensuppressthemicrotubule

spindle dynamics, which results in mitosis inhibition and

apoptosis induction [43,44]. Branham et al. [45] previously

described that paclitaxel is able to induce DNA damage in

lymphocytes treatedwith concentrationsof 10

m

gorhigher. In

gastrointestinal cell lines (HT29 and MKN45), 0.01

m

g/mL of

paclitaxelseemstobecytotoxicbyMTTassay

([2-(2-methoxy-4-

nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazo-lium,Monosodiumsalt](WST-8)colorimetricassay)[46].

Themethylmethanesulphonatetreatmentinducedapoptosis

ornecrosis[sub-G1;40.2(4.7)versus1.6(0.8);p<0.001]and

reducedtheGCcellsentering mitosis[G2/M;12.1(1.7)versus

24.1(4.11);p<0.001]inrelationtocontrols.TheGCcellsentering

DNAsynthesisandmitosisdecreasedsignificantlywithkaurenoic

acidtreatment,alongwithanincreaseinthegrowthphase(G1)

comparedwithcontrols.Inaddition,kaurenoicacidtreatmentwas

able to significantly induce apoptosis (or necrosis) even at

concentrations of 2.5

m

g/mL in relation to non-treated cells

Fig.5. Effectofkaurenoicacidonmicronucleifrequencyineachgastriccancercellline.A)ACP02;B)ACP03;C)AGP01;D)PG100.MN:micronucleifrequency.C-:control, whichwerenon-treatedcells;C+:cellstreatedwithmethylmethanesulfonateon*Significantlydifferentfromthecontrol(p<0.05;byKruskal-Wallistestfollowedby Games-Howellpost-hocanalysis).**Significantlydifferentfromthecontrol(p0.001;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

(6)

(Table2andFig.6).Asimilarpatternwasobservedinresponseto

thekaurenoicacidtreatmentineachcellline.

TofurtherunderstandtheeffectofkaurenoicacidinGCcells,

weevaluatedthecellcycleprogressionandthetranscriptionof

genes involved, among other functions, in the control of this

process.KaurenoicacidwasabletoinducecellcyclearrestatG1

andinduceapoptosisinadose-dependentmanner,reducingthe

DNA synthesis and mitosis processes. The gene transcription

analysesareinagreementwiththesefindings.

TheGCcelllinespresentedanincreasedtranscriptionofMYC

[fold-change=2.66 (0.42); Fig. 7A], CCND1 [fold-change=1.96

(0.19);Fig.7B],BCL2[fold-change=2.08 (0.21);Fig.7C],and

CASP3[fold-change=1.66(0.10);Fig.7D]inrelationtothe

non-neoplasticMNP01cells that wereusedas a calibratorfor gene

transcription analysis. On the other hand, the GC cell lines

presented a reduced transcription of ATM [fold-change=0.36

(0.14);Fig. 7E], CHK2 [fold-change=0.40 (0.11);Fig. 7F] and

TP53 [fold-change=0.27 (0.11); Fig. 7G] in relationto MNP01

cells.

TheGCcellstreatedwithmethylmethanesulphonatepresented

asignificantlyreducedtranscriptionofCCND1[1.34(0.11)versus

1.95 (0.19), p<0.001; Fig.7B],BCL2 [1.85 (0.18) versus 2.08

(0.21), p=0.048; Fig. 7C] in relation to non-treated GC cells.

Conversely, CASP3 transcription was increased in the GC cells

treated withmethyl methanesulphonatein relation tocontrols

[1.94(0.15)versus1.66(0.10),p<0.001;Fig.7D].Moreover,we

observed a significantly reduced MYC transcription in ACP02,

ACP03, AGP01 and PG100 cell lines treated with methyl

methanesulphonate in relation to non-treated cells (p<0.05),

wheneachcelllinewasevaluatedseparately.Additionally,methyl

methanesulphonate induced a significant reduction of ATM

transcriptioninACP02andPG100cells(p<0.05),andanincrease

ofCHK2transcriptioninACP03andPG100cells(p<0.05).

Table 3 shows us how the kaurenoic acid affected the

transcription of genes involvedin the controlof the cellcycle.

MYCtranscriptionwassignificantlyreducedinGCcelllinestreated

with 30 and 60

m

g/mL of kaurenoic acid compared with

non-treatedcells(Fig.7A).Lowconcentrationsofkaurenoicacidwere

alsoabletoreduceMYCtranscriptioninsomecelllines.Moreover,

GCcelllinestreatedwith10,30and60

m

g/mLofkaurenoicacid

alsopresentedreducedCCND1(Fig.7B),BCL2(Fig.7C),andCASP3

(Fig. 7D) transcription in relation to non-treated cell lines.

Conversely, GC cell lines treated with10, 30 and 60

m

g/mL of

kaurenoicacidpresentedincreasedATM(Fig.7E),CHK2(Fig.7F),

andTP53(Fig.7G)transcriptioninrelationtonon-treatedcelllines.

Inaddition,5

m

g/mLofkaurenoicacidalsoinducedincreasedCHK2

transcriptioninGCcelllinesinrelationtocontrols(Fig.7F).

Moreover, we observed an inverse correlation between

kaurenoic acid concentration treatment and MYC (rS= 0.770,

p<0.001), CCND1 (rS= 0.880, p<0.001), BCL2 (rS= 0.826,

p<0.001) and CASP3 (rS= 0.828, p<0.001) transcription. On

the other hand, kaurenoic acid concentration treatment was

directly correlated with ATM (rS=0.863, p<0.001), CHK2 (rS=

0.871,p<0.001)andTP53(rS=0.721,p<0.001)transcription.

Weobservedthat MYC,ATM,CHK2,CCND1,BCL2,CASP3, and

TP53transcriptionslightlyvariedinresponsetothekaurenoicacid

treatmentineachcellline.Inthisanalysis,wefirstnormalizedthe

studiedgenestranscriptioninGCcelllinesbytheirtranscriptionin

non-neoplastic cells. As expected, the GC cell lines presented

increasedtranscriptionoftheoncogenesMYC,CCND1andBCL2and

reduced transcription of the ATM, CHK2 and TP53 tumor

suppressors.

TheresponsetokaurenoicacidslightlyvariedamongGCcell

lines,whichwouldbeexpectedconsideringthedifferencesinthe

geneticbackground[26–29].Ingeneral,higherconcentrationsof

thiscompoundinducedlowerMYC,CCND1andBCL2transcription

Table2

Effectofkaurenoicacidoncellcycleprogressionandinductionofapoptosisornecrosis.

Kaurenoicacid(mg/mL) DNAContent(%)

S G2/M G1 Apoptosis/Necrosis

0(Control) 21.5(3.4) 24.1(4.1) 47.1(4.1) 1.6(0.8)

2.5 p=NS p=NS 50.9(4.9)

p=0.021

5.5(4.2)

p<0.001

5 p=NS 17.1(6.1)

p=0.002

52.2(4.8)

p<0.001

7.3(5.6)

p<0.001

10 16.5(3.3)

p<0.001

13.9(5.8)

p<0.001

53.9(5.7)

p<0.001

11.7(9.1)

p<0.001

30 13.8(2.5)

p<0.001

12.3(3.5)

p<0.001

56.9(7.6)

p<0.001

17.8(9.6)

p<0.001

60 12.3(1.8)

p<0.001

11.3(3.6)

p<0.001

p=NS 23.2(9.7)

p<0.001

NS=notstatisticallysignificant.

Fig.6.Kaurenoicacideffectoncellcycleprogressionofgastriccancercelllines.C-:control,whichwerenon-treatedcells;C+:cellstreatedwithmethylmethanesulfonateon* Significantlydifferentfromthecontrol(p<0.05;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).**Significantlydifferentfromthecontrol(p0.001;by

Kruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

(7)

Fig.7.Kaurenoicacideffectongenetranscriptioningastriccancercelllines.A)MYC;B)CCDN1;C)BCL2;D)CASP3;E)ATM;F)CHK2;G)TP53.Thedrugtreatmentsandgene transcription analyses were performed in ACP02, ACP03, AGP01 and PG100 cell lines. C-: control, which were non-treated cells; C+: cells treated with methylmethanesulfonateon*Significantlydifferentfromthecontrol(p<0.05;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).**Significantly differentfromthecontrol(p0.001;byKruskal-WallistestfollowedbyGames-Howellpost-hocanalysis).

(8)

inGCcelllines,reinforcingthatkaurenoicacidalsoactsinmitosis inhibition.

AlthoughreductionofCASP3wasdetectedinGCcellinrelation

tonon-cancerous cells and withthe kaurenoic acidtreatment,

higherconcentrationofthiscompoundinducedhigherATM,CHK2

and TP53in GC cell lines.These genes present several rolesin

humancells,includingcellcyclearrestandinductionofapoptosis

in response toDNAdamage as observed bycell cycleanalysis.

Considering that the DNA damage also increased with the

kaurenoicacidconcentrationtreatment,ourresultssuggestthat

kaurenoicacidmayalsoactasanapoptosisinducerinresponseto

DNAdamage.Furtherinvestigationsarestillnecessary,however,

kaurenoicacidmaypresentantineoplasticactivityasthediterpene

paclitaxel.

4.Conclusion

OurresultsshowedthatkaurenoicacidobtainedfromCopaifera

inducesDNAdamageandincreasesthemicronucleifrequencyina

dose-dependentmannerinGCcells,withasignificantgenotoxicity

observed above the concentration of 5

m

g/mL. Moreover, this

compound seems to be able to induce cell cycle arrest and

apoptosisinGCcells.

Conflictofinterest

Theauthorsdeclarethatthereisnoconflictofinterest.

Acknowledgements

We gratefully acknowledge the financial support of the

Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico

(CNPq)andFundaçãodeAmparoàPesquisadoEstadodeSãoPaulo

(FAPESP),forgrantsandfellowshipaward.

References

[1]L.Chen,L.Min,X.Wang,J.Zhao,H.Chen,J.Qin,etal.,LossofRACK1promotes metastasisofgastriccancerbyinducingamiRNA-302c/IL-8signalingloop, CancerRes.15(2015)3832–3841.

[2]Y.Y.Choi,S.H.Noh,J.H.Cheong,Evolutionofgastriccancertreatment:fromthe goldenageofsurgerytoaneraofprecisionmedicine,Med.J.56(2015)1177– 1185.

[3]Z.Wang,N.Wang,J.Chen,J.Shen,Emergingglycolysistargetinganddrug discoveryfromchinesemedicineincancertherapy,Evid.BasedComplement Alternat.Med.2012(2012)173–175.

[4]A.Azadmehr,R.Hajiaghaee,A.Afshari,Z.Amirghofran,M.Refieian-Kopaei,H. Darani,etal.,Evaluationofinvivoimmuneresponseactivityandinvitro anti-cancereffectbyScrophulariamegalantha,Med.PlantsRes.5(2011)2365–2368. [5]M.A.Harun-ur-Rashid,G.Sadik,A.A.Rahman,Biologicalactivitiesofanew

derivativefromIpomoeaturpithum,Pak.J.Biol.Sci.5(2002)968–969. [6]A.P. Balbani, D.H. Silva,J.C. Montovani, Patentsof drugsextracted from

Brazilianmedicinalplants,Exp.Opin.Ther.Pat.19(2009)461–473.

[7]M.R.R.Tappin,J.F.G.Pereira,L.A.Lima,A.C.Siani,J.L.Mazzei,M.F.S.Ramos, Quantitativechemicalanalysisforthestandardizationofcopaibaoilbyhigh resolutiongaschromatograpy,Quim.Nova27(2004)236–240.

[8]E.ComelliJúnior,J.Skinovski,M.F.Sigwalt,A.B.Branco,S.R.Luz,C.P.Baulé, Rupturepointanalysisofintestinalanastomotichealinginratsunderthe actionofpureCopaíba(CopaiferaIangsdorfii)oil,ActaBras.Cir.25(2010)362– 367.

[9]L.C.DiStasi,C.A.H.Lima,PlantasmedicinaisnaAmazôniaenaMataAtlântica, FundaçãoEditora,SãoPaulo,2003,pp.604.

[10]L.A.F.Paiva,L.A.Gurgel,R.M.Silva,A.R.Tomé,N.V.Gramosa,E.R.Silveira,etal., Antiinflammatoryeffectofkaurenoicacid,aditerpenefromCopaifera langsdorffiionaceticacid-inducedcolitisinrats,Vascul.Pharmacol.39(2002) 303–307.

[11]M.W.Biavatti,D.Dossin,F.C.Deschamps,M.P.Lima,Copaibaoil-resinanalysis: contributiontoqualitycontrol,Rev.Bras.Farmacol.16(2006)230–235. [12]J.J.deLimaSilva,S.B.Guimaraes,E.R.daSilveira,P.R.L.Vasconcelos,G.G.Lima,

S.M.Torres,etal.,EffectsofCopaiferalangsdorffiiDesf:on ischemia-reperfusionofrandomizedskinflapsinrats,Aesthet.Plast.Surg.33(2009) 104–109.

[13]R.D.Medeiros,G.Vieira,Sustainabilityofextractionandproductionofcopaiba (CopaiferamultijugaHayne)oleoresininManaus,AM,Brazil,For.Ecol.Manage. 256(2008)282–288.

[14]A.Ohsaki,L.T.Yan,S.Ito,H.Edatsugi,Y.IwataD.Komoda,Theisolationandin vivopotentantitumoractivityofclerodanediterpenoidfromtheoleoresinof theBrazilianmedicinalplant,CopaiferalangsdorfiDesfon,Bioorg.Med.Chem. Lett.4(1994)2889–2892.

[15]N.M. Gomes, C.M. Rezende, S.P. Fontes, M.E. Matheus, P.D. Fernandes, Antinociceptiveactivityofamazoniancopaibaoils,J.Ethnopharmacol.109 (2007)486–492.

[16]A.O.dosSantos,M.A.Costa,T.Ueda-Nakamura,B.P.Dias-Filho,V.F.da Veiga-Júnior,M.M.deSouzaLima,etal.,Leishmaniaamazonensis:effectsoforal treatmentwithcopaibaoilinmice,Exp.Parasitol.129(2011)145–151. [17]D. Barton, K. Nakanshi, O. Meth-Cohn, Comprehensive Natural Products

Chemistry,Elsevier,Oxford,1999,pp.234.

[18]K.Boakye-Yiadom,N.I.Fiagbe,J.S.Aymin,Antimicrobialpropertiesofsome WestAfricanmedicinalplantsiv:antimicrobialactivityofxylopicacidand otherconstituenteofthefruitsofXylopiaaethiopica(Annonaceae),Llyodia40 (1977)543–545.

[19]S.C.Davino,A.M.Giesbrecht,N.F.Roque,Antimicrobialactivityofkaurenoic acidderivatesubstitutedoncarbon-15,Braz.J.Med.Biol.Res.22(1989)1127– 1129.

[20]R.Batista,E.Chiari,A.B.deOliveira,Trypanosomicidalkaurenediterpenes fromWideliapaludosa,PlantaMed.65(1999)283–284.

[21]A.C.de Melo,B.B.Cota,A.B. deOliveira,F.C.Braga,HPLCquantitationof kaurenediterpenesinXylopiaspecies,Fitoterapia72(2001)40–45. [22]M. Wilkens, C. Alarcon, A. Urzua, L. Mendoza, Characterization of the

bactericidalactivityofthenaturalditerpenekaurenoicacid,PlantaMed.68 (2002)452–454.

[23]M.Cotoras,C.Folch,L.Mendoza,Characterizationoftheantifungalactivityon Botrytiscinereaofthenaturalditerpenoidskaurenoicacidand 3beta-hydroxy-kaurenoicacid,J.Agric.FoodChem.52(2004)2821–2826.

[24]L.V. Costa-Lotufo,G.M.A.Cunha, P.A.M.Farias,G.S. Viana,K.M. Cunha, C. Pessoa,etal.,Thecytotoxicandembryotoxiceffectsofkaurenoicacid,a diterpeneisolatedfromCopaiferalangsdorffiioleo-resin,Toxicon40(2002) 1231–1234.

[25]A.Valencia,A.Wens,H.Ponce-Monter,N.Pedron,A.J.Gallegos,A.F.Guijane, etal.,ZoapatleXII.InvitroeffectofkaurenoicacidisolatedfromMontana frutescensandtwoderivativesuponhumanspermatozoa,J.Ethnopharmacol. 18(1986)89–94.

[26]M.F.Leal,J.L.MartinsdoNascimento,C.E.daSilva,M.F.VitaLamarão,D.Q. Calcagno,A.S.Khayat,Establishmentandconventionalcytogenetic characterizationofthreegastriccancercelllines,CancerGenet.Cytogenet.195 (2009)85–91.

[27]M.F.Leal,D.Q.Calcagno,J.F.BorgesdaCosta,T.C.R.Silva,A.S.Khayat,E.S.Chen, etal.,MYC,TP53,andchromosome17copy-numberalterationsinmultiple Table3

Effectofkaurenoicacidonthetranscriptionofgenesinvolvedinthecontrolofcellcycleprogression.Valuesrepresenttherelationshipbetweenthetranscriptionofeachgene intheGCcelllinesandthetranscriptionofthesamegeneintheMNP01(non-treatednon-cancercellline).

Kaurenoicacid(mg/mL) MYC CCND1 BCL2 CASP3 ATM CHK2 TP53

0(Control) 2.66(0.42) 1.96(0.19) 2.08(0.21) 1.66(0.10) 0.36(0.14) 0.40(0.11) 0.27(0.11)

2.5 p=NS p=NS p=NS p=NS p=NS p=NS p=NS

5 p=NS p=NS p=NS p=NS p=NS 0.75(0.07)

p<0.001

p=NS

10 p=NS 1.59(0.04)

p<0.001

1.56(0.17)

p<0.001

1.42(0.21)

p=0.016

0.57(0.02)

p=0.005

0.81(0.07)

p<0.001

0.45(0.11)

p=0.002

30 2.07(0.08)

p<0.001

1.23(0.06)

p<0.001

1.47(0.14)

p<0.001

1.23(0.07)

p<0.001

0.89(0.08)

p<0.001

0.92(0.07)

p<0.001

0.50(0.09)

p<0.001

60 1.27(0.14)

p<0.001

1.16(0.07)

p<0.001

1.32(0.17)

p<0.001

1.19(0.07)

p<0.001

0.95(0.04)

p<0.001

0.93(0.04)

p<0.001

0.48(0.03)

p<0.001

NS=notstatisticallysignificant.

(9)

gastriccancercelllinesandintheirparentalprimarytumors,J.Biomed. Biotechnol.2011(2011)231–238.

[28]F.daCosta,M.F.Leal,T.C.Silva,E.F.AndradeJúniro,A.P.Rezende,J.A.Muniz, etal.,ExperimentalgastriccarcinogenesisinCebusapellanonhumanprimates, PLoSOne6(2011)e21988.

[29]H.F.Ribeiro,D.F.Alcântara,L.A.Matos,J.M.C.Sousa,M.F.Leal,M.A.C.Smith, etal.,Cytogeneticcharacterizationandevaluationofc-MYCgeneamplification inPG100,anewBraziliangastriccancercellline,Braz.J.Med.Biol.Res.43 (2009)717–721.

[30]G.Speit,B.Habermeier,R.Helbig,Differencesintheresponsetomutagens betweentwoV79sublines,Mutat.Res.325(1994)105–111.

[31]B.C.Cavalcanti,L.V.Costa-Lotufo,M.O.Moraes,R.R.Burbano,E.R.Silveira,K.M. Cunha,etal.,Genotoxicityevaluationofkaurenoicacid,abioactive diterpenoidpresentinCopaibaoil,FoodChem.Toxicol.44(2006)388–392. [32]N.P. Singh,M.T.McCoy, R.R.Tice, E.L.Schneider, Asimpletechnique for quantificationoflowlevelsofDNAdamageinindividualcells,Exp.CellRes. 175(1988)184–191.

[33]A.Hartmann,G.Speit,Asimpletechniqueforquantificationoflowlevelsof DNAdamageinindividualcells,Toxicol.Lett.90(1997)183–188.

[34]A.R. Collins, The comet assay for DNA damage and repair: principles, applications,andlimitations,Mol.Biotechnol.26(2004)249–261. [35]A.Collins,M.Dusinska,M.Franklin,M.Somorovská,H.Petrovská,S.Duthie,

Cometassayinhumanbiomonitoringstudies:reliability,validation,and applications,Environ.Mol.Mutagen.30(1997)139–146.

[36]J.daSilva,T.R.O.Freitas,V.Heuser,J.R.Marinho,B.Erdtmann,Genotoxicity biomonitoringincoalregionsusingwilfrodentCtenomystorquatusbyassay andmicronucleustest,Environ.Mol.Mutagen.35(2000)270–278.

[37]M.Fenech,Theinvitromicronucleustechnique,Mutat.Res.455(2000)81–95. [38]I.Nicoletti,G.Migliorati,M.C.Pagliacci,F.Grignani,C.Riccardi,J.Immunol.

Methods139(1991)271–279.

[39]M.Ayres, M.Ayres Júnior, D.L.Ayres, A.Santos, Biostat5.0: Aplicações estatísticasnasáreasdasciênciasbiológicasemédicas,SociedadeCivil Mamirauá,Brasília,2007.

[40]F.Palitti,Mechanismsoforiginofchromossomalaberrations,Mutat.Res.404 (1998)133–137.

[41]F.H.Kato,N.I.Viana,C.B.Santini,C.G.deSouza,R.C.Veneziani,S.R.Ambrósio, Assessmentoftheinvitroandinvivogenotoxicandantigenotoxiceffectsof pimaradienoicacidinmammaliancells,Mutat.Res.749(2012)87–92. [42]Y.I.Bang,S.A.Im,K.W.Lee,J.Y.Cho,E.-K.Song,K.H.Lee,etal.,Randomized,

double-blindphaseIItrialwithprospectiveclassificationbyATMproteinlevel toevaluatetheefficacyandtolerabilityofolaparibpluspaclitaxelinpatients withrecurrentormetastaticgastriccancer,J.Clin.Oncol.20(2015)3858– 3865.

[43]J.J.Manfredi,S.B.Horwitz,Taxol:anantimitoticagentwithanewmechanism ofaction,Pharmacol.Ther.25(1984)83–125.

[44]L.A.Amos,J.Löwe,HowTaxolstabilisesmicrotubulestructure,Chem.Biol.6 (1999)R65–R69.

[45]M.T.Branham,S.B.Nadin,L.M.Vargas-Roig,D.R.Ciocca,DNAdamageinduced bypaclitaxelandDNArepaircapabilityofperipheralbloodlymphocytes evaluatedbythealkalinecometassay,Mutat.Res.560(2004)11–17. [46]Y.Toiyama,Y.Inoue,J.Hiro,E.Ojima,H.Watanabe,Y.Narita,etal.,Therangeof

optimalconcentrationandmechanismsofpaclitaxelinradio-enhancementin gastrointestinalcancercelllines,CancerChemother.Pharmacol.59(2007) 733–742.

Imagem

Fig. 2. Genotoxicity of kaurenoic acid in gastric cancer cell line. A) Damage index by comet assay; B) micronuclei frequency
Fig. 4. Genotoxicity of kaurenoic acid by comet assay in each studied gastric cancer cell line
Fig. 5. Effect of kaurenoic acid on micronuclei frequency in each gastric cancer cell line
Table 3 shows us how the kaurenoic acid affected the transcription of genes involved in the control of the cell cycle.
+2

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Também vi que o Núcleo possibilita esse tipo de comunicação na Escola, fazendo-nos pensar em modelos de formação de leitura (se existir outra etapa do projeto,

Distribution of the individuals by diameter class (A) and height class (B) for the woody vegetation sampled in an area of campo de murundus in 2005 ( ) and 2008 (■) in

Silencing of FANCF in breast cancer cell lines led to significantly increased DNA damage compared with the cells treated with control shRNA (Figure 3).. Silencing of FANCF induced

Distribution of the number of individuals by diameter class, with an ideal class interval (CI) of 7.1 cm, in plots within the tree community of an area of cerradão in the

Distribution of the individuals by diameter class (A) and height class (B) for the woody vegetation sampled in an area of campo de murundus in 2005 ( ) and 2008 (■) in

The system dynamics were represented by changes to a larger diameter class; the diameter increment; the permanence of the diameter class (diameter increment was insufficient for a

Analyses of physical characteristics included wood basic density, dry matter weight and carbon stock, and of chemical characteristics included holocellulose, total extractives