• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
8
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Short-term

carcinogenesis

evaluation

of

Casearia

sylvestris

Cleide

A.S.

Tirloni

a

,

Giseli

K.

Traesel

a

,

Francislaine

A.R.

Lívero

c

,

Salvador

D.V.

Neto

a

,

Ronaldo

de

Faria

Junior

a

,

Thaís

C.

Paim

a

,

Joyce

A.

Santos

b

,

Silvia

A.

Oesterreich

a

,

Ariany

C.

Santos

a

,

Roosevelt

I.C.

Souza

a

,

Euclides

L.

Cardozo

Junior

c

,

Arquimedes

Gasparotto

Junior

a,∗

aFaculdadedeCiênciasdaSaúde,UniversidadeFederaldaGrandeDourados,Dourados,MS,Brazil

bFaculdadedeCiênciasExataseTecnológicas,UniversidadeFederaldaGrandeDourados,Dourados,MS,Brazil cLaboratóriodeFarmacologiaeToxicologiadeProdutosNaturais,UniversidadeParanaense,Umuarama,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31January2017

Accepted17May2017

Availableonline7August2017

Keywords:

Genotoxicity Mutagenesis

Short-termcarcinogenesis

Toxicity

Tumormarkers

a

b

s

t

r

a

c

t

CaseariasylvestrisSw.,Salicaceae,isanimportantmedicinalplantwidelyusedinBrazilforthetreatment ofvariouscardiovasculardisorders.ThisspecieswasincludedasofinterestbyBrazilianUnifiedHealth System.Althoughpreclinicalstudiesdescribedcardiovascularprotectiveeffectsandapparentabsenceof toxicity,nostudieshaveevaluateditscarcinogenicpotential.Inthisstudy,weproposedashort-term car-cinogenesisevaluationofC.sylvestrisinWistarrats,aimingtocheckthesafetyofthisspeciestouseitas proposedbyBrazilianUnifiedHealthSystem.C.sylvestrisleaveswereobtainedandthecrudeextractwas preparedbymacerationfrommethanol/water.Wistarratswereorallytreatedfor12weekswith50,250 or500mgkg−1ofcrudeextractorvehicle.Bodyweight,dailymorbidityandmortalityweremonitored. Bloodandbonemarrowsampleswerecollectformicronucleustest,cometassayandtumormarkers evaluation.Vitalorganswereremovedtomacroandhistopathologicalanalyses.Thecrudeextractdid notinducemutagenicandgenotoxiceffectsandnoalterationswereobservedinimportanttumor mark-ers.Finally,nodetectablesignsofinjurythroughgrosspathologyorhistopathologicalexaminations wereobserved.Ourresultscertifytheabsenceofthecrudeextracttoxicity,indicatingitssafety,evenat prolongedexposureasproposedbyBrazilianUnifiedHealthSystem.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Itisestimatethatabout80%oftheworld’spopulationdepends ontraditional practicestoprimary health care,and 85%of this portionusesplants(WHO,2011).Consideringthedifficultaccessof thesepopulationstoconventionalformsoftreatment,theWorld HealthOrganization(WHO)suggeststheadoption oftraditional practicesasatoolformaintaininghealthandencouragesthe devel-opmentofpublicpoliciestoinsertthemintotheofficialhealth systemofits191membercountries,includingBrazil(WHO,2011). Inthiscontext,BrazilianMinistryofHealthproposedactionsfor developmentofpublicpoliciesfortheinclusionofmedicinalplants intheBrazilianUnifiedHealthSystem(SUS),allowingthe expan-sionofdiseaseprevention,maintenanceandrecoveryofhealth. Thepurposeistoexpandthetherapeuticoptionstousers, ensur-ingaccesstomedicinalplantsinviewofacompletehealthcare

∗ Correspondingauthor.

E-mail:arquimedesjunior@ufgd.edu.br(A.GasparottoJunior).

(Carvalhoet al.,2011).Oneofthestrategies toattendthis was

theelaborationofFormHerbalMedicinesoftheBrazilian Phar-macopoeia,whichsupportsthehandlingpracticesanddispensing intheSUS,contemplating47speciesofnaturalplants,including theCaseariasylvestrisSw.,Salicaceae(Anvisa,2011).

Caseariasylvestrisisdistributedintropicalregionsandoccurs in almost all Brazilian territory, where is popularly known as ‘guac¸atonga’(TorresandYamamoto,1986).Traditionally,itsleaves and barks are used for diarrhea, fever, hyperlipidemia, inflam-mation, obesity, skin diseases and tonic health (Ferreira et al., 2011).Betweenpharmacologicalpropertiesthereareanti-cancer

(Ferreira et al., 2016), antihyperlipidemic (Schoenfelder et al.,

2008), antiinflammatory and antioxidant (Albano et al., 2013), antiatherogenic(Brantetal.,2014),besidesnoacuteorprolonged toxicologicaleffects(Amenietal.,2015).

Despite theimportance of medicinalplants forhumancare, theirtoxicologicalpotentialisfrequentlyevaluatedslightly and not as priority (Ferreira et al., 2007).Most of phyto-derivative commercializedmedications,called“natural”,areusedbythe pop-ulationwithouthavingcarriedoutadetailedstudyofthechemical

http://dx.doi.org/10.1016/j.bjp.2017.05.009

0102-695X/©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

composition,efficacyandsafetyofuse.Thisresultislimited knowl-edgeaboutsideeffects,especiallyonthegeneticmaterial(Varanda,

2006).

Carcinogenicevaluationofthemedicinalplantsisessentialto establishcontrolmeasuresinwidespreaduse,beforetheplants beingconsideredtherapeuticagents.Carcinogenesistestarepart of the regulatory process of new drug development, and life-spanstudiesinrodentshavebeenconsideredthegoldstandard since early in the 20th century. However, they require many financialresources,nearly thousandanimals,and take approxi-mately2–3 years from initiation toreport (Cohen and Arnold, 2016).Currently,short-termassays,(1–3monthsofduration),have beenproposedbyregulatoryauthoritiesasinexpensiveandrapid alternative toevaluate carcinogens substances (Bajpayee et al.,

2005).

So,despitetheC.sylvestrispresentimportantpreclinical phar-macological effects no data on its carcinogenic potential have beenpublished.Then,weproposedapreclinicalshort-term car-cinogenesisevaluationofC.sylvestris,aimingtocheckthesafety of this species to use it in herbal medicines as proposed by SUS.

Materialandmethods

Plantmaterialandextractpreparation

LeavesofCaseariasylvestrisSw.,Salicaceae,wereharvestedin abotanicalgardenof VeraCruz do Oeste,Brazil(620–650mof altitude,S25103028′′–W53152037′′)duringthesummerof2013.

Thespecimenwasidentifiedbytaxonomistsanddepositedinthe HerbariumofBotanicalMuseumofCuritiba,Brazil(no.359503). Leavesweredriedinaforceddraftoven(45◦C,48h).Thecrude

extractwaspreparedbymacerationfrommethanol/water(70:30 v/v)atroomtemperaturefor15days(Brantetal.,2014).Thesolvent waseliminatedbyarotaryevaporatorandlyophilized(yielding 17.14%).Thefreeze-driedextract(MECS)wasdissolvedinfiltered waterbeforetheexperiments.

Liquidchromatography–massspectrometry(LC–MS)

MECSwasexaminedbyultra-high performanceliquid chro-matography.Samplesat2mgml−1concentrationwerepreparedin H2O–MeOH(7:3v/v)andtheanalysiswascarriedoutona reversed-phaseHSS-C18column.Thebinarysolventwascomposedof0.1% aqueousformicacidandmethanol(v/v).Thelinearsolventgradient ataflowrateof0.4mlmin−1wasdevelopedbyincreasingmethanol percentagefrom0%to38%(10min), thento60%at13minand returningtoinitialconditionat14min,re-equilibratedfor3min. Thecolumnwasheatedat60◦Candsampleskeptatroom

tempera-ture.2␮lwasinjectedandcompoundsweredetectedat200–400

byhigh-resolutionmassspectrometry(HR-MS).

HR-MSanalysesweredevelopedonanelectrosprayionization massspectrometryoperatinginthenegativeionizationat atmo-sphericpressure.Thesourcetemperaturewas350◦CandN

2stream wasusedfor sampledesolvation withsheath gasand auxiliary flowrateat60and20arbitraryunits,respectively.Theionization parameterswere:sprayvoltageof3.5kV,capillaryof−20Vand tubelensof−130V.Formassaccuracy,externalcalibrationwas performedandresolutionwassetat30,000FWHM(atm/z400)in LC–MSmode.Acquisitionwasobtainedintotalioncurrentmode, withmassrangeofm/z100–1000.Compoundfragmentationwas obtainedbycollision-induceddissociationusingheliumandenergy

Carcinogenesisandmutagenesisevaluation

Animals

Femaleand maleWistar rats,12weeks old,werehousedat 22±2◦C,12hlightdarkcycle,55±10%humidityconditions,with

adlibitumaccesstowater andchow. Theethicalcommittee on animaluseoftheFederalUniversityofGrandeDourados(UFGD) approvedalltheprocedures(no.11/2015).

Experimentaldesignandsamplecollection

Ratsweredistributedintoeightgroups(n=8–10)fortreatment withMECS(50,250and500mgkg−1,p.o.,thoughgavage,1mlkg−1) orvehicle(filteredwater,1mlkg−1,controlgroup)daily,during12 weeks.Thedoseswereselectedbasedonpreviousdatareporting cardiovasculareffectsofMECS(Brantetal.,2014).Aten-timelower dosefromthehighestdosewasalsotested.

Rats morbidity and mortality, aggressiveness, eyes and ear pallidness,convulsions,salivation,motoractivity,breathing, heart-beat,diarrhea,comaandinjuryweremonitored.Bodyweight(BW), consumeofchowandwaterwereweeklycontrolled.

Attheendoftheexperiment,theanimalswerefood-deprived for12handanesthetizedwithisoflurane.Bloodsampleswere col-lectedfromcaudalveinforgenotoxicitytestandafterdecapitation fortumormarkersanalyses.Liver,spleen,kidneysandlungswere removed for determining therelative weights, gross pathology andhistopathologicalanalyses.Therightfemurwascollectedfor micronucleusassay.

Grosspathologyandhistopathologicalevaluation

Sampleswereharvested,fixedin10%formalin,dehydratedwith alcoholandxylene,embeddedinparaffinwax,sectioned(4␮m)

andstainedwithhematoxylin/eosin.Thesliceswereanalyzedbya veterinarypathologist,withaslicescanner,at10×magnification.

Micronucleustest

The proximal epiphyses were cut off from femurs and the spinalcordwasremovedbydrainwithfetalbovineserum.After centrifugation (5min, 1000×g) the pelletwas homogenized, a dropofthiswasplacedonaslideandthesmearwasperformed. Slices were dried at room temperature and fixed in absolute methylalcohol(10min)and24hlatterwerestainedwithgiemsa (15min),washedindistilledwaterandblindanalyzed.Two thou-sandpolychromaticerythrocytes(MN/PCE)/animalwerecounted using an optical microscope (1000× magnification). The poly-chromatic/normochromaticerythrocytesratio(PCE/NCEratio)was calculatedbyanalyzing100randomerythrocytes/animal(OECD,

1997).

Cometassay

Bloodofrats (20␮l) treatedwithMECSduring 12weeks or

cyclophosphamide (20mgkg−1, p.o., through gavage, 1mlkg−1, 24hbeforesamplecollection)washomogenizedin120␮lof1.5%

low-melting-pointagarosegeland transferredtosliceswith5% agarosegel.Afterimmersioninalysisbuffer(2.5MNaCl,100mM EDTA,and10mMTris[pH 10.0]with1%Triton X-100and10% dimethylsulfoxide)for4h, sliceswereincubatedinanalkaline buffer(300mMNaOHand1mMEDTA,pH>13,4◦C)for20min.

Nucleoidswereelectrophoresed(20min,25V,300mA,inthedark at 4◦C), whereupon the alkali was neutralized with 0.4M Tris

(3)

nucleoiddiameter).Readingswereusedtocalculatedamagedcell (sumof0–3classesdamage)andscoreofdamage(thevalueofthe damagemultipliedbytheclassnumberandthenthesumofthe threeclasses)(OECD,2014).

Tumormarkers

PlasmaticlevelsoftumormarkersCA15-3(breast),CA19-9 (pancreas,biliaryanddigestivetract),CA125(ovariesandliver),CA 27-29(breast),CA72-4(stomachandovarian),alpha-fetoprotein (AFP;livercancer),squamouscellcarcinomaantigen(SCC;cervix squamouscell,head,neck,esophagusandlung);and thyrocalci-tonin(TC;thyroid)weredeterminedbyelectrochemiluminescence usinganautomatedanalyzer.ResultsareexpressedasUl−1 (CA 15-3,CA19-9,CA125,CA27-29),ngl−1(AFPandSCC)orpgml−1 (TC).

Statisticalanalyses

Differencesweredeterminedbyone-wayanalysisofvariance (ANOVA)orKruskalWallisfollowedbyBonferroni’sorDunn’spost hoc. Weighgain of rats was analyzedby two-way ANOVA fol-lowedbyBonferroni’sposthoc.Thelevelofsignificancewas95% (p<0.05).Thedataareexpressedasmean±standarderrorofthe mean(S.E.M.).Graphsweredrawnandstatisticalanalysiswas car-riedoutusingtheGraphPadPrismsoftwareversion5.0forMacOS X(GraphPad®Software,SanDiego,CA,USA).

Results

Phytochemicalcharacterization

BioactiveclerodanediterpenestypicalofgenusCaseariawere identified,highlightingthecasearvestrinsA–CandcasearinsBand G. Gallic acidderivatives such as isobutyl gallate-3,5-dimethyl etherandmethylgallate-3,5-dimethyletherhavealsobeen identi-fied.Furthermore,thefingerprintobtainedfromMECSshowedfive peakswithabsorbanceat335nmcompatiblewithflavonoid glyco-sides.ThepeakRt6.093issimilartorutinanditsaveragecontent wasfoundtobe20.2mgg−1(Fig.1).

Bodyweight,relativeorgansweightandclinicalevaluation

TreatmentwithMECSdidnotalter theBW (g)of femaleor malerats(Fig.2AandB,respectively).Therelativeweightofliver, spleenandkidneyswerethesamebetweenallgroupsfound (Sup-plementary Table). Moreover, no alterations in chow or water consumption,andbehavioralwerefound.

100

80

60

40

20

0 2 4 6 8 10 12 14 16

0

Minutes

mA

U

Rutin - 6.093

Fig.1.UPLCanalysisofMECSobtainedfromCaseariasylvestris.

Grosspathologyandhistopathologicalanalyses

MECSdidnotinducelung,kidneyorlivermacroscopic alter-ations(datanotshown).Thehistologicalexaminationconfirmed theabsenceofdamageinlung(A),kidney(B)orliver(C)infemale or male rats treated with vehicle (Figs. 3 and 4, respectively),

MECS50mgkg−1(Figs.3and4,respectively),MECS250mgkg−1

(Figs.3and4,respectively)orMECS500mgkg−1 (Figs.3and4,

respectively).

Micronucleustest

CyclophosphamideincreasedthenumberofMN-PCEinfemale andmaleratsby283.9%(Fig.5AandB,respectively);anddecreased thePCE/NCEratioby99%infemaleandmale(Fig.5CandD, respec-tively)when compared withcontrol group.MECSdidnot alter the values of MN-PCE or PCE/NCEratio in female (Fig. 5A and C, respectively)ormale rats(Fig.5Band D,respectively)when comparedwithC-.Illustrativeimageofnormochromatic erythro-cyte,polychromaticerythrocyteandmicronucleusarepresentedin

Fig.5E(C-),F(MECS50mgkg−1),G(MECS250mgkg−1)orH(MECS 500mgkg−1).

Cometassay

Classesandnumberofdamagedcellsfoundinthecometassay offemaleandmalearepresentedinTables1and2,respectively.No alterationswereobservedinthenegativecontrolgroup. Cyclophos-phamideinducedanintensedamageinallsamples.In contrast, MECSdidnotinducedalterations.

Tumormarkers

MECSdidnotaltertheplasmaticlevelsofCA15-3,CA19-9, CA125, CA27-29,CA72-4,SCCand TC offemale ormale rats

Table1

Numberofdamagedcellsandclassesofdamageoffemaleratstreatedwithvehicle(C−,negativecontrol),cyclophosphamide(C+,positivecontrol)orfreeze-driedextract

ofCaseariasylvestris50,250and500mgkg−1.

Groups Damagecells(%) Classesofdamage Score

1 2 3 4

C− 10.2±0.64 89.8±1.22 7.1±0.70 2.7±0.63 0.4±0.16 13.7±1.84

C+ 87.0±3.75a 8.5

±2.21a 20.1

±8.01a 63.1

±7.51a 8.52

±4.52a 194.1

±8.91a

MECS50mgkg−1 8.7

±3.01 91.3±0.94 6.5±0.87 1.9±0.31 0.3±0.21 11.20±2.61

MECS250mgkg−1 7.8±0.55 92.1±1.41 5.5±0.79 1.6±0.43 0.7±0.33 11.67±2.34

MECS500mgkg−1 7.2±0.49 93.0±0.88 5.2±0.63 1.8±0.33 0.2±0.13 9.40±2.75

Valuesexpressedasmean±S.E.M.,n=8–10.Class0,nodamage;class1,tailofcometshorterthanthediameterofnucleoid;class2,tailofcometonceortwicethediameter

ofnucleoid;class3,tailofcometmorethantwicethediameterofnucleoid.C−,negativecontrol,C+,cyclophosphamide,positivecontrol.Differencesbetweengroupswere

evaluatedbyone-wayANOVAfollowedbyBonferroni’stest.

ap<0.05whencomparedwithC

(4)

A

B

350

350 300

300 250

200

250 400 450

150

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Weeks Weeks

g g

Control MECS 50 mg.kg-1

MECS 250 mg.kg-1

MECS 500 mg.kg-1

Fig.2.EffectofCaseariasylvestrisextract(MECS)onbodyweightgain(g)offemale(A)ormale(B)rats.Animalsreceived(orally)vehicle(controlgroup)or50,250or

500mgkg−1MECS.Treatmentswereperformedonceaday,during12weeks.Valuesareexpressedasmeans±S.E.M.(n=8–10).Statisticalcomparisonwasperformedusing

two-wayANOVAfollowedbyBonferroni’stest.

1

3

4

A

B

C

C

C

C

A

B

A

B

A

B

2

Fig.3.Lung(A),kidney(B)orliver(C)histologyoffemaleratstreatedwithvehicleorC.sylvestrisextract(MECS).Animalsreceived(1)vehicle(controlgroup),(2)50mgkg−1

MECS,(3)250mgkg−1MECSor(4)500mgkg−1MECS.Treatmentswereperformedonceaday,during12weeks.SlideswerestainedwithHematoxylinandEosin.40×

(5)

1

2

3

4

A

B

C

A

B

C

A

B

C

A

B

C

Fig.4. Lung(A),kidney(B)orliver(C)histologyofmaleratstreatedwithvehicleorC.sylvestrisextract(MECS).Animalsreceived(1)vehicle(controlgroup),(2)50mgkg−1

MECS,(3)250mgkg−1MECSor(4)500mgkg−1MECS.Treatmentswereperformedonceaday,during12weeks.SlideswerestainedwithHematoxylinandEosin.40

×

magnification.

Table2

Numberofdamagedcellsandclassesofdamageofmaleratstreatedwithvehicle(C−,negativecontrol),cyclophosphamide(C+,positivecontrol)orfreeze-driedextractof

Caseariasylvestris50,250and500mgkg−1.

Groups Damagecells(%) Classesofdamage Score

1 2 3 4

C− 11.99±0.74 87.9±0.75 9.39±0.56 1.8±0.33 0.8±0.25 15.39±3.62

C+ 91.0±2.91a 9.0±2.91a 19.6±7.82a 62.0±9.6a 9.40±3.57a 171.8±2.91a

MECS50mgkg−1 10.59±0.61 89.5±1.08 7.19±0.91 2.5±0.52 0.9±0.40 14.89±3.14

MECS250mgkg−1 10.49±0.76 89.6±1.16 8.39±1.22 1.8±0.36 0.3±0.15 12.89±3.45

MECS500mgkg−1 9.73

±0.55 91.7±0.76 6.79±0.52 2.44±0.90 0.5±0.22 13.17±3.20

Valuesexpressedasmean±S.E.M.,n=8–10.Class0,nodamage;class1,tailofcometshorterthanthediameterofnucleoid;class2,tailofcometonceortwicethediameter

ofnucleoid;class3,tailofcometmorethantwicethediameterofnucleoid.C−,negativecontrol,C+,cyclophosphamide,positivecontrol.Differencesbetweengroupswere

evaluatedbyone-wayANOVAfollowedbyBonferroni’stest.

(6)

A

B

E

F

G

H

C

D

15

10

5

0

C- C+

C+ 50 250 500

MECS(mg.kg-1)

C- 50 250 500 MECS(mg.kg-1)

C+ C- 50 250 500

MECS(mg.kg-1)

MN-PCEs

15

10

5

0

C- 50 250 500 C+ MECS(mg.kg-1)

MN-PCEs

2.5 2.0 1.5 1.0 0.5 0.0

2.0 1.5

1.0 0.5

0.0

∗ ∗

∗ PCEs/NCEs r ∗

atio

PCEs/NCEs r

atio

Fig.5.EffectofCaseariasylvestrisextract(MECS)onthecountsof(AandC)femaleand(BandD)maleMN-PCEsandPCE/NCEratio,respectively.Cytotoxicityofvehicle

and50,250or500mgkg−1MECSispresentedinpanelsE,F,GandH,respectively.Arrowsindicatenormochromaticerythrocyte;angledarrowsindicatepolychromatic

erythrocytes;andsquareindicatemicronucleusinpolychromaticerythrocyte.SlideswerestainedwithGiemsaandshownwith1000×magnification.Statisticalcomparison

wasperformedusingone-wayANOVAfollowedbyBonferroni’stest.Valuesareexpressedasmean±S.E.M.(n=8–10).*p<0.05whencomparedwithcontrolgroup.

MN-PCE,micronucleatedpolychromaticerythrocytes;PCE/NCE,polychromatictonormochromaticerythrocytesratio.C−,controlgroup;C+,cyclophosphamide,positivecontrol

group.

Table3

Tumormarkersoffemaleratstreatedwithvehicle(controlgroup)orfreeze-driedextractofCaseariasylvestris50,250and500mgkg−1during12weeks.

Tumormarker Groups

Control MECS50mgkg−1 MECS250mgkg−1 MECS500mgkg−1

CA15-3 1.08±0.07 1.07±0.05 0.96±0.05 1.01±0.06

CA19-9 10.01±0.29 9.12±0.35 9.55±0.45 9.34±0.33

CA125 13.34±0.55 13.91±0.41 14.40±0.69 14.33±0.62

CA27-29 6.20±0.49 5.23±0.37 5.09±0.28 5.22±0.43

CA72-4 1.34±0.12 1.43±0.19 1.42±0.13 1.21±0.12

AFP 1.73±0.15 1.26±0.07a 1.21±0.07a 1.18±0.07a

SCC 0.35±0.05 0.30±0.04 0.37±0.04 0.42±0.04

TC 4.36±0.37 4.00±0.25 4.35±0.39 4.05±0.26

Valuesexpressedasmean±S.E.M.,n=8–10.CA,cancerantigen;AFP,alpha-fetoprotein;SCC,squamouscellcarcinomaantigen;TC,thyrocalcitonin.Unit:CA15-3,CA19-9,

CA125,CA27.29andCA72-4:Ul−1;AFP:ngml−1;SCC:ngml−1;TC:pgml−1.Differencesbetweengroupswereevaluatedbyone-wayANOVAorKruskalWallisfollowedby

Bonferroni’sorDunn’stest.

ap<0.05whencomparedwithcontrol.

Table4

Tumormarkersofmaleratstreatedwithvehicle(controlgroup)orfreeze-driedextractofCaseariasylvestris50,250and500mgkg−1during12weeks.

Tumormarker Groups

Control MECS50mgkg−1 MECS250mgkg−1 MECS500mgkg−1

CA15-3 1.01±0.05 1.02±0.12 0.94±0.03 1.04±0.06

CA19-9 10.17±0.31 9.82±0.37 9.74±0.46 9.80±0.37

CA125 14.18±0.43 13.71±0.42 13.12±0.40 13.09±0.49

CA27-29 6.00±0.46 5.37±0.42 5.37±0.39 5.67±0.27

CA72-4 1.26±0.09 1.36±0.13 1.38±0.10 1.39±0.09

AFP 1.10±0.06 1.13±0.08 1.35±0.08 1.21±0.06

SCC 0.35±0.03 0.35±0.04 0.45±0.04 0.40±0.05

TC 4.00±0.25 4.53±0.37 4.55±0.38 4.30±0.30

Valuesexpressedasmean±S.E.M.,n=8–10.CA,cancerantigen;AFP,alpha-fetoprotein;SCC,squamouscellcarcinomaantigen;TC,thyrocalcitonin.Unit:CA15-3,CA19-9, CA125,CA27.29andCA72-4:Ul−1;AFP:ngml−1;SCC:ngml−1;TC:pgml−1.Differencesbetweengroupswereevaluatedbyone-wayANOVAorKruskalWallisfollowedby Bonferroni’sorDunn’stest.

(Tables 3and4,respectively).Theplasmatic levelsof AFPwere

significantlyreducedinfemaleratstreatedwithalldosesofMECS.

Discussion

Inthiswork,ashort-termcarcinogenesisstudywasconducted with a popular herbal preparation obtained from C. sylvestris. Throughaseriesofdetailedprotocols,weobservedthattheMECS

oftreatment.Furthermore,nosignificantincreaseintumor mark-erslevels, signsof tumorormalignant cells ingross pathology norhistopathologicalchangesinvitalorgansofWistarratswere detected.

(7)

reportedin28.4%ofthem(Sponchiadoetal.,2016).Thishigh inci-denceofpositiveresultsshouldalerttotheimportanceofassessing thegenotoxicandmutagenicpotentialofherbalmedicinesbefore applyingthemastherapeuticagents.

Importantmarkersoftheactionofgenotoxiccompoundsarethe presenceofmicronucleiorthedecompressionofpartsofcellular DNA.Themicronucleiareoriginatedfromchromosomefragments thatareacentricorthataredelayedinrelationtotheothersintheir migrationtowardthepolesofthemitoticspindle.Thesechanges maybeinducedbyagentsthatarecapableofbreakingDNAor inter-feringwithspindle formation.Similarly,thepresenceof simple breaks,alkalinelabilesitesandcrosslinksresultingfromtheaction ofgenotoxiccompounds,altersthecellstructureoftheDNA,which isnormallysupercoiledandstronglycompacted,causingrelaxation inpartsofthemolecule(Tafazolietal.,2017).Inviewofthe above-mentioneddata,theOrganizationforEconomicCo-Operationand Development(OECD)recommendsthemicronucleustestandthe cometassayasanimportanttoolcapableofidentifyingpotentially genotoxicagents(OECD,1997,2014).Therefore,theabsenceof sig-nificantchangesintheseassaysprovidedveryconsistentdataon thelowgenotoxicityoftheMECS.

Anotherimportantaspectofthisstudywastheinvestigationof thecarcinogenicpotentialofMECS.Forthis,weinitiallyoptedfor thedosagesofdifferenttumormarkers,andlater,foradetailed histopathologicalanalysisofdifferentvitalorgans.Tumormarkers (orbiologicalmarkers)areproteinsorpiecesofproteinpresentin tumors,bloodorotherbiologicalfluidstowhichchangesintheir concentrationsarerelatedtothegenesisandgrowthofneoplastic cells.Ingeneral,tumormarkerscanbeproducedbynormalcells aswellasbycancercells,althoughareproducedatveryhigh lev-elsbytumorcells(Duff,2001).Thesemarkersmaybeusefulin thediagnosisandprognosisofdifferenttypesoftumors,aswell asassistinthedevelopmentofnewtreatmentmodalities(Touitou

andBogdan,1998).

Inourstudy,noneoftheanimalsreceivingMECSshoweda sig-nificantincreaseindifferenttumormarkerslevelswhencompared toanimalstreatedonlywiththevehicle.Ontheotherhand,female ratstreatedwithMECS(atalldoses)showedasignificant reduc-tioninAFPlevels.AFPisanimportantfetalserumprotein,whichis normallysynthesizedintheliver,yolksacandfetalgutwith func-tionsofplasmatransportandmaintenanceofoncoticpressure.In general,levelsabove500ng/mlarehighlysuggestiveofliver malig-nancyandvalueswellbelowthatleveldonot,ontheirown,have considerableclinicalsignificance(Sauzayetal.,2016).Generally, tumormarkersarecomplementarytestsandshouldalwaysbeused accompaniedbyothermethodsfordiagnosisortherapeutic mod-ification.Inourcase,inacomplementarywaytotumormarkers, allthevitalorgansofanimalstreatedwiththeMECSwere exam-inedthroughdetailedhistopathologicalanalysis,and,innoneof thecases,morphoanatomicalterations suggestiveof tumorand malignancywereobserved.

Takentogether,ourstudyindicatesthatthemethanolicextract fromC.sylvestrisissafeatthetesteddoses,withnomutagenic, genotoxicorcarcinogeniceffects.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Funding

ThisworkwassupportedbyFundac¸ãodeApoioao Desenvolvi-mentodeEnsino,Ciência,TecnologiadoEstadodoMatoGrossodo Sul(FUNDECT,59/300.046/2015),andConselhoNacionalde Desen-volvimentoCientíficoeTecnológico(CNPq,449464/2014-8).

Authors’contributions

CAST:invivoexperimentsanddataanalyses.ELCJ:LC–MS anal-yses.SDVN,RDFJandTCP:invivoexperiments.JAS,GKTandSAO: mutagenicityanalyses.ACSandRICS:histopathologicalanalyses. FARL:dataanalysis,datadiscussionandmanuscriptpreparation. AGJ:datadiscussionandmanuscriptcorrection.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2017.05.009.

References

Albano,M.N.,daSilveira,M.R.,Danielski,L.G.,Florentino,D.,Petronilho,F.,Piovezan,

A.P.,2013.Anti-inflammatoryand antioxidantpropertiesofhydroalcoholic

crudeextractfromCaseariasylvestrisSw.(Salicaceae).J.Ethnopharmacol.147, 612–617.

Ameni,A.Z.,Latorre,O.A.,Torres,L.M.,Górniak,S.L.,2015.Toxicitystudyabouta

medicinalplantCaseariasylvestris:acontributiontotheBrazilianUnifiedHealth System(SUS).J.Ethnopharmacol.175,9–13.

Anvisa, 2011. Formulário de Fitoterápicos da Farmacopéia Brasileira, Agência

NacionaldeVigilânciaSanitária.Anvisa,Brasília,pp.1–126.

Bajpayee,M.,Pandey,A.K.,Parmar,D.,Dhawan,A.,2005.Currentstatusof

short-termtestsforevaluationofgenotoxicity,mutagenicity,andcarcinogenicityof environmentalchemicalsandNCEs.Toxicol.Mech.Methods15,155–180.

Brant,N.M.F.,Gasparotto,F.M.,Araújo,V.O.,Maraschin,J.C.,Ribeiro,R.C.L.,Lourenc¸o,

E.L.B.,GasparottoJunior,A.,2014.CardiovascularprotectiveeffectsofCasearia

sylvestrisSwartzinSwissandC57BL/6LDLr-nullmiceundergoinghighfatdiet. J.Ethnopharmacol.154,419–427.

Carvalho,A.C.B.,Perfeito,J.P.S.,Silva,L.V.C.,Ramalho,L.S.,deOliveiraMarques,R.F.,

Silveira,D.,2011.RegulationofherbalmedicinesinBrazil:advancesand

per-spectives.Bras.J.Pharm.Sci.47,467–474.

Cohen,S.M.,Arnold,L.L.J.,2016.Criticalroleoftoxicologicpathologyinashort-term

screenforcarcinogenicity.Toxicol.Pathol.29,215–227.

Duff,M.J.,2001.Clinicalusesoftumormarkers:acriticalreview.Crit.Rev.Clin.Lab.

Sci.38,225–262.

Ferreira,P.M.,Bezerra,D.P.,Silva,J.N.,daCosta,M.P.,Ferreira,J.R.,Alencar,N.M.,

Figueiredo,I.S.,Cavalheiro,A.J.,Machado,C.M.,Chammas,R.,Alves,A.P.,Moraes,

M.O.,Pessoa,C.,2016.Preclinicalanticancereffectivenessofafractionfrom

CaseariasylvestrisanditscomponentcasearinX:invivoandexvivomethods andmicroscopyexaminations.J.Ethnopharmacol.186,270–279.

Ferreira,P.M.P.,Carvalho,A.F.F.U.,Souza,D.F.,Magalhães,J.F.,Martins,A.R.,

Mar-tins,M.A.C.,Queiroz,M.G.R.,2007.WaterextractofMoringaoleiferaseeds:a

toxicologicalapproach.REPM1,45–57.

Ferreira,P.M.P.,Costa-Lotufo,L.V.,Moraes,M.O.,Barros,F.W.A.,Martins,A.M.A.,

Cavalheiro,A.J.,Bolzani,V.S.,Santos,A.G.,Pessoa,C.,2011.Folkusesand

phar-macologicalpropertiesofCaseariasylvestris:amedicinalreview.An.Acad.Bras. Cienc.83,1373–1384.

OECD,1997.Guideline474:mammalianerythrocytemicronucleustest.In:OECD

(Ed.), Guideline for Testing of Chemicals. Organization for Economic Co-OperationandDevelopment,Paris,pp.1–10.

OECD,2014.Guideline489:invivomammalianalkalinecometassay.In:OECD(Ed.),

GuidelineforTestingofChemicals.OrganizationforEconomicCo-Operationand Development,Paris,pp.1–25.

Sauzay, C.,Petit,A., Bourgeois,A.M.,Barbare, J.C.,Chauffert, B.,Galmiche,A.,

Houessinon,A.,2016.Alpha-foetoprotein(AFP):amulti-purposemarkerin

hepatocellularcarcinoma.Clin.Chim.Acta463,39–44.

Schoenfelder,T.,Pich,C.T.,Geremias,R.,Avila,S.,Daminelli,E.N.,Pedrosa,R.C.,

Bet-tiol,J.,2008.AntihyperlipidemiceffectofCaseariasylvestrismethanolicextract.

(8)

Sponchiado,G.,Adam,M.L.,Silva,C.D.,Soley,B.S.,deMello-Sampayo,C.,Cabrini,

D.A.,Correr,C.J.,Otuki,M.F.,2016.Quantitativegenotoxicityassaysforanalysis

ofmedicinalplants:asystematicreview.J.Ethnopharmacol.178,289–296.

Tafazoli,S.,Vo,T.D.,Petersen,A.,Constable,A.,Coulet,M.,Phothirath,P.,Lang,J.,

Bald-win,N.,2017.Genotoxicity,acuteandsubchronictoxicityevaluationofsavory

foodingredients.Regul.Toxicol.Pharmacol.87,71–87.

Torres,R.B.,Yamamoto,K.,1986.TaxonomiadasespéciesdeCaseariaJacq.

(Flacour-tiaceae)doestadodeSãoPaulo.Rev.Bras.Bot.9,239–258.

Touitou,Y.,Bogdan,A.,1998.Tumormarkerinnonmalignantdiseases.Eur.J.Cancer

Clin.Oncol.24,1083–1091.

Varanda,E.A.,2006.Atividademutagênicadeplantasmedicinais.Rev.Ciênc.Farm.

BásicaApl.27,1–7.

WHO,2011.TheWorldMedicinesSituation2011:TraditionalMedicines:Global

Imagem

Fig. 1. UPLC analysis of MECS obtained from Casearia sylvestris.
Fig. 2. Effect of Casearia sylvestris extract (MECS) on body weight gain (g) of female (A) or male (B) rats
Fig. 4. Lung (A), kidney (B) or liver (C) histology of male rats treated with vehicle or C
Fig. 5. Effect of Casearia sylvestris extract (MECS) on the counts of (A and C) female and (B and D) male MN-PCEs and PCE/NCE ratio, respectively

Referências

Documentos relacionados

Apesar da legislação brasileira e as evidencias positivas sobre os benefícios bilaterais da inclusão da família na assistência às pessoas com transtorno mental, esta prática

classification of grains class 1 (1C), class 2 (2C) and class 3 (3C) and protein content (PROT) obtained for the cultivars of barley and submitted to doses of fertilization

No Cenário 1, cuja potência instalada nas cargas é de aproximadamente 6 MVA, sem potência de geração solar fotovoltaica, os resultados obtidos na simulação

O estudo realizado por Gialanella (2011), aborda a avaliação da afasia através da versão Italiana da AAT, aplicada por um terapeuta da fala e a sua relação com a previsão

Figure 3 - Percentage of bulbs by diameter class as a function of different irrigation depths, in absence (bars to the left in the same class) and presence of (bars to the right in

The Brazilian code for reinforced concrete structures [10] recom- mended for the region of construction of the building a concrete cover value of 20 mm for slabs and beams and 25

Para avaliação da velocidade em que ocorreu o colapso, foi verificado o valor para o qual o software não efetuava o dimensionamento das seções dos pilares, sendo

These include the commodification and privatization of land and the forceful expulsion of peasant populations (as in Mexico and India in recent times); conversion of various forms