• Nenhum resultado encontrado

, Raquel Rodríguez-Borges

N/A
N/A
Protected

Academic year: 2022

Share ", Raquel Rodríguez-Borges"

Copied!
6
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original Article

Partial characterization of ethanolic extract of Melipona beecheii propolis and in vitro evaluation of its antifungal activity

Jesús Ramón-Sierra

a,1

, Enrique Peraza-López

a,1

, Raquel Rodríguez-Borges

a

, Alejandro Yam-Puc

a

, Tomás Madera-Santana

b

, Elizabeth Ortiz-Vázquez

a,∗

aTecnológicoNacionaldeMéxico,InstitutoTecnológicodeMérida,Mérida,Yucatán,México

bCentrodeInvestigaciónenAlimentaciónyDesarrollo,Hermosillo,Sonora,México

a r t i c l e i n f o

Articlehistory:

Received1October2018 Accepted17April2019 Availableonline11May2019

Keywords:

Stinglessbee Phenoliccontent Antifungal Candidaalbicans Antioxidantactivity Propolis

a b s t r a c t

TheethanolicextractofMeliponabeecheiiBennett1831,propolisfromYucatánMexicowasevaluated invitroforthedeterminationofitsphenoliccompoundcontent,antioxidantcapacityandantifungal activity.TheresultswerecomparedagainstthoseoftheethanolicextractofApismelliferapropolis.The totalphenoliccontent,flavonoidcontentandflavanones–dihydroflavonolscontentwereassessedbycol- orimetricmethods.TheantifungalactivitywasassessedinvitroagainstCandidaalbicans.Fortheethanolic extractofM.beecheiipropolis;totalphenoliccontent,was263.25±8.78␮g/ml,totalflavonoidcontent was768±204␮g/mlandflavanones–dihydroflavonolscontentwas335.42±15.08␮g/ml.Forantiox- idantactivityassessedasDPPHscavengingandironreducingpowerethanolicextractofM.beecheii propolisreportedIC50of32.47and1.60␮g/mlofgallicacidequivalentrespectively.Regardingantifungal activityagainstC.albicans,theminimalinhibitoryconcentrationandminimalfungicidalconcentration forethanolicextractofM.beecheiipropoliswere1.62±0.33and2.50±0.22␮g/mlofdryextract;Forboth minimalinhibitoryconcentrationandminimalfungicidalconcentration,ethanolicextractofM.beecheii propolisrequired30%lessconcentrationofdryextractthanethanolextractofA.melliferapropolisto exertthesameantifungalactionsagainstC.albicans.Tothebestofourknowledge,thisisthefirstreport abouttheflavonoidandflavanones–dihydroflavonolscontentofM.beecheiipropolis.Duetothelack ofinformationavailableaboutthestinglessbee’shoneycombproducts,thestudyandconservationof endemichoneybeesshouldremainasanactivefocusofresearch.

©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

ThegenusCandidarepresentsasetofyeast-likefungibelong- ingtotheascomycetephylum.ThespeciesofthegenusCandidaare mostlyfree-livingorganisms,andmayexistascommensalsinthe genitourinaryandgastrointestinaltractsofvariousspeciesofani- mals,includinghumans.Undercertainconditions,severalspecies ofCandidabehaveasopportunisticpathogens,both forhumans andotheranimals(Rodriguesetal.,2014).Thepathologiesgener- atedbyCandidarangefromsuperficialmycosestolife-threatening systemicinfections(deOliveiraSantosetal.,2018).

ThefactthataparticularspeciesofCandidabehavesasanoppor- tunisticpathogenorcommensaldependsonacomplexseriesof interactionsbetweenthemicroorganism,thehostandthemicro-

Correspondingauthor.

E-mail:eortiz@itmerida.mx(E.Ortiz-Vázquez).

1Theseauthorsequallycontributedtothepaper.

bial flora present at the interaction site. Infections caused by Candidaaremorefrequentinimmunocompromisedpopulations (e.g.children, theelderlyandpatientswithimmunodeficiency), individualswithskinormucousmembranesbreaches(e.g.intra- venousdrugusers,intravenouscatheters),orthoseinwhomthe usualmicrobiotaisfoundtobealtered(e.g.hormonalchanges,use ofbroad-spectrumantibiotics)(TurnerandButler,2014).

AmongtheCandidaspeciesC.albicans,C.glabrata,C.tropicalis, C.parapsilosisandC.kruseistandoutasbeingfrequentlyidentified asopportunisticpathogens.Thesefivespeciesaregroupedinwhat isknownastheCandidapathogenicspeciescomplex(Turnerand Butler,2014).Althoughtherearedrugswithactivityagainstseveral speciesofCandida,theiruseislimitedduetotheemergenceof resistantstrainsandthenarrowsafetymarginformanyofthese compounds.Thismakescandidiasisanimportanthealthconcern, especiallyforhospitalizedpopulations(Srivastavaetal.,2018).

Duetothecontinuousemergenceofstrainsresistanttoclassical antifungalagents,it isnecessarytoinvestigatenewcompounds withactivityagainstthisopportunisticpathogen,preferablywith

https://doi.org/10.1016/j.bjp.2019.04.002

0102-695X/©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

fewersideeffectsthanthosecurrentlyavailable(Srivastavaetal., 2018).

Propolis,togetherwithwax,pollenandhoneyisaproductofthe beehive.Itisproducedbybeesbymixingplantresinswithsecre- tionsfromthebee’sdigestivetract.Propolisispresentedatroom temperatureasamalleablesolidandisusedbybeesasamaterial forsealingandwaterproofingtheinteriorofthehive(Pasupuleti etal.,2017).Propoliscontainsdiversecompoundswithbiological activity,inparticularanthocyanins,flavonoids,tannins,saponins, terpenoids,polypeptidesandlecithins.Amongthebiologicalactiv- itiesattributedtopropolisareantibacterial,antifungal,antioxidant andanti-inflammatorycapacity(Pazinetal.,2017).

Mostoftheavailableinformationaboutthepropertiesofpropo- liscomesfromtheanalysisoftheoneproducedbytheEuropeanbee (Apismellifera)(FarooquiandFarooqui,2012),withrelativelylittle informationregardingthoseproducedbystinglessbees(Oliveira etal.,2006).

Inthepresentinvestigationwecarriedoutapartialcharacter- izationofthepropolisproducedbyastinglessbeeendemicofthe YucatanPeninsulainMexico(Meliponabeecheii)throughtheeval- uationof anethanolicextract elaboratedfromit.Themeasured parametersconcernedtwoofthemostrelevantbiologicalactiv- itiesofthepropolis; theantioxidantactivityand theantifungal activity.Theantifungal activitywasevaluatedinvitrousingthe opportunisticpathogenC.albicansasabiologicalmodel.Asapoint ofcomparison,thepropolisgeneratedbyA.melliferawasevaluated bythesameprocedure.

Materialsandmethods Biologicalsamples

ThepropolisofMeliponabeecheiiwascollecteddirectlyfromthe hive.ThecollectionwascarriedoutinApril2015inthemunicipality ofManiYucatanMexico(20.3931N,89.3918W).Thesameproce- durewascarriedoutwiththepropolisofApismellifera,whichwas collectedinMarch2015fromthemunicipalityofTiziminYucatan Mexico(21.1455N,88.1496W).Propoliswasprotectedfromlight andimmediatelytransferredtothelaboratorywhereitwasstored at−80Cuntilfurtheranalysis.

ThestandardizedCandidaalbicansstrainATCC10231andaclin- icalisolatefromthesamespecies(Y01),wereused.Theclinical isolatewasidentifiedaccordingtothestandardizedprotocolsof O’HoranHospitalin thestateof Yucatan,Mexico.Themicroor- ganismswerestoredat−80Candactivatedimmediatelypriorto use.

Reagentsandlaboratoryequipment

Thefollowingreagentswereused:ethanol,methanol,distilled water(Hycel),gallicacid,NaNO2,AlCl3·6H2O(Fermont),catechin, naringenin,trichloroaceticacid(Sigma-Aldrich),2,4-dinitrophenyl hydrazine(Baker)andSabouraudDextroseAgarculturemedium (SDA),SabouraudDextrose broth(SDB) (Bioxon).Spectrometric measurementswerecarriedoutinaPerkinElmerLamb-biospec- trophotometer,eachevaluationwasperformedintriplicate.

Ethanolicextractfrompropolis

Eachtypeofpropolis(100g)wasmilledatroomtemperature untilauniformparticlesizewasachieved.Subsequently,10gofthe samplewassuspendedin100mlof80%(v/v)ethanol.Thesamples wereincubatedunderagitationfor48hat37Cprotectedfrom light,followedbycentrifugationfor10minat5000×gat4C.The supernatantwasrecoveredandfilteredwithaporesizeof0.45␮m.

TheresultoftheextractionwaslabeledasethanolextractofM.

beecheii (EEMB)and ethanol extract ofA. mellifera (EEAM).The extractswerestoredat−20Cuntiluse.Theyieldoftheextrac- tionwasevaluatedbycomparingthedryweightoftheextractwith respecttotheinitialamountofpropolisusedfortheextraction.In ordertoavoidtheinterferenceofethanolinthedeterminationof theantifungalactivity,theextractwasdriedat45Cfor24hfol- lowedbyresuspensioninDMSO1%ina1:1ratiowithrespectto theinitialvolume.

Determinationoftotalphenoliccontent(TPC),totalflavonoids content(TFC),totalflavanonesanddihydroflavonolscontent (TFDC)

Thequantificationoftotalphenolswascarriedoutaccording tothemethodologydescribedby(Bratetal.,2006)usinggallic acidasstandard.500␮loftheFolin–Ciocalteureagent(1:10)was addedto100␮lofeachoftheextractsunderstudy.Thesamples werehomogenizedfor30sandincubatedatroomtemperature for2min.Theabsorbancewasdeterminedat760nm.Thecontent offlavonoidswasdeterminedaccordingtothemethodologypro- posedbyLeeetal.(2003)usingcatechin asstandard.250␮lof NaNO2(5%,w/v)wasaddedto250␮lofeachoftheextracts.The sampleswereincubatedatroomtemperaturefor5min,followed bytheaddition of125␮lof anaqueoussolution ofAlCl3·6H2O (10%,w/v).Thesampleswereincubatedfor10minatroomtem- perature, followed bythe additionof 125␮l of1MNaOH.The determinationoftheabsorbancewasperformedat490nm.The totalcontentofflavanonesanddihydroflavonolswasdetermined usingthemethodologydescribed byPopovaetal.(2004),using naringeninasstandard.2,4-Dinitrophenylhydrazine(500␮l,1%, w/v)wasaddedto200␮lofeachoftheextractsfollowedbyincu- bationat50Cfor50min.Thesampleswereallowedtocoolat roomtemperaturefor10min,followedbytheadditionofpotas- siumhydroxideinmethanol(10%,w/v)intheamountneededto reachafinalvolumeof2.5ml.Theformer solution(200␮l)was mixedwithmethanol(800␮l)toobtaina finalvolumeof 1ml.

Spectroscopicreadingswereperformedatawavelengthof486nm.

Antioxidantcapacity

TheantioxidantcapacitywasevaluatedbyDPPHfreeradical scavengingactivityandthereducingpowerofiron(III).DPPHfree radicalscavengingactivitywasevaluatedaccordingtothemethod- ology proposedby da Silva et al. (2013). In this assay, 1ml of 0.1mMsolutionofDPPHinethanolwasaddedto100␮lofeachof thesamplesfollowedbyhomogenizationandincubationatroom temperaturefor30min.Thecontrolconsistedofdistilledwaterfol- lowingthesamestepsasforthesamples.Gallicacidwasusedasa standard.Theabsorbancewasmeasuredat517nm.

For thedetermination of the reducing power of Fe(III),the methodology proposed by Coelho et al. (2017) was used. In this test 250␮lof phosphate buffer(0.2M pH6.6) and 250␮l K4Fe(CN)6·3H2O(1%,w/v)wereaddedto250␮lofeachextract followedbyhomogenizationandincubationfor20minat50C, then250␮lof10%CCl3CO2Hwereadded.Subsequently,themix- tures werecentrifuged at4000×g for 10min.The supernatant (500␮l)wastransferredtoa newvialfollowed bytheaddition of400␮lofFeCl3.Thesampleswereincubatedfor10minat50C.

Thesampleswereallowedtocoolfor10minatroomtempera- ture.Theabsorbanceat700nmwasdetermined.Thedetermination ofthepercentageofuptakeoffreeradicalsandthereductionof Fe(III)toFe(II)wasmadeusingtheformula:((TA−SA)/TA)×100, where TA=target absorbance, SA=sample absorbance (Coelho etal.,2017).

(3)

Table1

ComparisonbetweentheamountofcompoundsofphenolicoriginandantioxidantactivityoftheethanolextractofthepropolisoftwodifferentspeciesofbeesApismellifera (EEAM)andMeliponabeecheii(EEMB).

Ethanolicextractofpropolis

EEAM EEMB

Totalphenols(␮g/mlgallicacid) 798.74±20.76 263.25±8.58

Totalflavonoids(␮gcatechin/ml) 1723.47±531 768±204

Totalflavanones–dihydroflavonols(␮gnaringenin/ml) 382.38±86.23 335.42±15.08

IC50ofDPPH(␮gequivalentsofgallicacid/ml) 49.53±3.91 32.47±3.13

IC50ofreduceFe(III)(␮gequivalentsofgallicacid/ml) 4.3±.03 1.671±.02

IC50:Half-maximalinhibitoryconcentration;DPPH:2,2-diphenyl-1-picrylhydrazyl-hydrate.

EvaluationoftheantifungalactivityofEEMBandEEAMpropolis

The antifungal activity of ethanolic extract against C. albi- cans was evaluated in vitro for both the ATCC 10231 strain andaclinicalisolate(Y01).Diskdiffusionantibiogramwasper- formedasaqualitativetest.Forthis,PetridishescontainingSDA were massively sowed withC. albicans inoculum standardized at 1×106colony-formingunits/ml (CFU). Disks for antibiogram (13mm)wereimpregnatedwiththesubstances tobeevaluated andplacedontheagarsurface.Arangeofconcentrationsofthe ethanolicextractofpropoliswereevaluated(1–15␮g/mlofdry base), the negative control being carried out with the solvent (DMSO1%),thepositivecontrolconsistingof1.35␮gofnystatin.

Allsampleswereincubatedat37Candevaluatedafter24h.

Thedetermination of theminimuminhibitoryconcentration (MIC)andtheminimumfungicidalconcentration(MFC)wascar- riedoutusingthemicrodilutionmethodin1.5mlmicrocentrifuge tubes(Silicietal.,2005;Espinel-Ingroffetal.,2007;Keskinetal., 2017).Startingfrom0.5McFarlandinoculum,thenecessaryvol- umewasaddedto250␮lofSabouraudDextroseBroth(2×)toreach afinalconcentrationof106CFUinavolumeof500␮l.Immediately, thenecessaryamountofpropolisextractresuspendedin1%DMSO wasaddedtoreachtheconcentrationtobeevaluated(1–15␮g/ml ofdryextract),followedbytheadditionofdistilledwaterinthe amountnecessarytoreachanendvolumeof500␮l.Thesamples wereincubatedunderagitationat150rpmfor48hat37C.Fungal growthwasassessedbymeasuringabsorbanceat600nmat12,24, 36and48h(Silicietal.,2005;Espinel-Ingroffetal.,2007;Keskin etal.,2017).Thesolvent(1%DMSO)wasusedasacontrol(total growth)and 2␮gofnystatinaninhibition control.Thepercent inhibitionwascalculatedbytheformula:((SA−NCA)/PCA)×100, whereSA=sampleabsorbance,NCA=negativecontrolabsorbance andPCA=positivecontrolabsorbance(Alsopetal.,1980;Kayaand Özbi˙lge,2014).MICwasconsideredasthatconcentrationofpropo- lisextractthatshowedan80%reduction ingrowthat24hand MFCtheconcentrationthatproduceda99%reductioningrowth comparedtocontrolat48h.

Statisticalanalysis

Multivariateregressionanalysis,onewayANOVAwithTukey rangetest wasperformedusingtheIBMSPSSstatisticsV23for assessingthedifferencesintheantifungaleffectofbothpropolis.

Results

Determinationoftotalphenoliccontent(TPC),totalflavonoids content(TFC),andtotalflavanonesanddihydroflavonolsContent (TFDC).

Theyieldoftheextractionwas4.70(0.47%)and5.10(0.51%) mgdryweightofextractper1gofpropolisfromM.beecheiiandA.

melliferarespectively.EEMBandEEAMhadatotalphenoliccontent (measuredasgallicacidequivalents)of263.25±8.78␮g/mland 798.74±20.76␮g/ml,respectively.Theaboverepresentsayieldof

2.76mg/gofgallicacidequivalentspergramofrawpropolisinthe caseofM.beecheii7.80 andmg/gofrawpropolisofA.mellifera (Table1).

The total flavonoids content expressed as catechin equiva- lentswere768±204␮g/mland1723.47±531␮g/mlforEEMBand EEAM,respectively.Theflavonoidextractionyieldwas7.68mg/g and17.23mg/ginthecaseofpropolisofM.beecheiiandA.mellifera respectively(Table1).

Thetotal flavanonesand dihydroflavonolscontentexpressed as equivalents of naringenin was 335.42±15.08␮g/ml and 382.38±86.23␮g/mlforEEMBandEEAM,respectively.Theyield oftheextractionwas3.35mg/gofcrudepropolisinthecaseofM.

beecheiiand3.82mg/gforA.mellifera(Table1).

Antioxidantcapacity

IntheDPPHfreeradicalscavengingactivity,theEEMBandEEAM showedanIC50of32.47␮g/mland49.53␮g/mlofgallicacidequiv- alentsrespectively.WithrespecttothereducingpowerofIronIII, anIC50of1.60␮g/mlingallicacidequivalentsforM.beecheiiand 4.30␮g/mlforA.mellifera(Table1)wasobtained.

Antifungalactivity

Diskdiffusionantibiogram.UsingATCC10231strain50␮lof EEMBgenerated aninhibition haloof 21.12mm,50␮lof EEAM generatedaninhibitionhaloof16.16mm.Usingtheclinicaliso- late(Y01)50␮lofEEMBgenerateda20mminhibitionhalo,EEAM showednoapparentinhibition.Thesolvent(1%DMSO)showedno apparentantifungalactivity(Fig.1).

DeterminationoftheMICandMFC

Based onthe dryweight of theextract, theMIC forC. albi- cansATCC10231wasdeterminedas1.62±0.33␮g/mlforEEMB and 2.30±0.15␮g/ml for EEAM. The MFC for the same strain was2.50±0.22␮g/mland3.31±0.28␮g/mlforEEMBandEEAM, respectively (Fig. 2 and Table 2). In the case of the clinical isolate (Y01) the MIC was determined at 2.25±0.2␮g/ml and 2.75±0.15␮g/ml for EEMB and EEAM, respectively. The MFC for the same isolate was determined in 2.90±0.55␮g/ml and 3.75±0.11␮g/mlforEEMBandEEAM,respectively.Thesolvent(1%

DMSO)showednoinhibitionoffungalgrowth(Fig.2andTable2).

Multipleregressionanalysiswascarriedouttoassessthedoses- response effectoftheEEMBand EEAMpropolisagainst C.albi- cans (ATCC 10231 and Y01). For each of tested concentration theinhibitoryeffectofEEMBpropoliswashigherthanthesame concentrationofEEAMpropolisuntilbothreachedMFC,thesedif- ferencesshowedstatisticalsignificance(p=0.031andp=0.011for C.albicansATCC10231yY01,respectively(Fig.2).OnewayANOVA withTukeyrangetestwasusedtoevaluatetheexertedeffectsby bothEEMBandEEAMpropolisresultinginsignificantdifferences (p<0.05),exceptforconcentrationsabove3.50␮g/ml.

(4)

Candida albicans ATCC 10231 Candida albicans Y01

EEAP

EEMB

EEMB

EEAM C-

C-

C-

C+ C+

C-

A B

Fig.1. QualitativeassayoftheantifungalactivityoftheEEMBandEEAMpropolisbydiskdiffusionassayagainstCandidaalbicansATCC10231andaclinicalisolate(Y01).

EEMB,ethanolextractofMeliponabeecheiipropolis;EEAM,ethanolextractofApismelliferapropolis;C+−,positivecontrol(nystatin);C−−,negativecontrol(DMSO1%).

A B

100 100

80

60

40

20

0

1.5 2.0 2.5 3.0 3.5

90

80

70

60

50

1.5 2.0 2.5 3.0 3.5

Propolis concentration (in µg/ml) Propolis concentration (in µg/ml)

Propolis origin

Melipona beecheii Apis mellifera

Inhibition percentage Inhibition percentage

Fig.2.Dose–responsecurveoftheantifungalactivityofpropolisagainstC.albicans.Left(A)comparisonoftheactivityofEEMBandEEAMpropolisagainstCandidaalbicans ATCC10231.Right(B)comparisonoftheactivityofEEMBandEEAMpropolisagainstaclinicalisolateofC.albicans(Y01).Noticethatinbothcasesagivenconcentration ofMeliponabeecheiipropolisextractinducedamoreintensesuppressionofgrowthofC.albicansthanthesameconcentrationofApismelliferapropolisextractuntilboth reachedtheMFC.Thedifferencebetweenthetreatmentswasregardedasstatisticallysignificant(p=0.031forATCC10231andp=0.011forY01).EEMB,ethanolextractof M.beecheiipropolis;EEAM,ethanolextractofA.melliferapropolis.

Table2

CompressionoftheantifungalactivityagainstCandidaalbicansATCC10231oftheethanolextractofpropolisfromMeliponabeecheiiandApismelliferaanditsrelationship withthecontentofphenoliccompoundspresentinthesample.

Propolisorigin ␮gdryextract/ml ␮lextract(1%

DMSO)/ml

Totalphenols (␮g/mlgallicacid)

Totalflavonoids (␮gcatechin/ml)

Total

flavanones–dihydroflavonols (␮gnaringenin/ml)

M.beecheii MIC 1.62 3.44 0.90 2.64 1.15

MFC 2.5 5.31 1.39 4.07 1.78

A.mellifera MIC 2.2 4.3 3.43 7.4 1.44

MFC 3.3 6.49 5.18 8.92 2.17

DMSO:DimethylSulfoxide;MIC:MinimumInhibitoryConcentration;MFC:MinimumFungicidalConcentration.

Discussion

Phenoliccompoundsareadiversegroupofsecondarymetabo- lites produced by multiple plant species and represent the mostdiverseclassofcompoundspresentinpropolis.Substances identified as phenolic compounds include phenolic acids, tan- nins,flavonoids,curcuminoids,coumarins,lignans,amongothers (Huangetal.,2010).Inplantspecies,thesesubstancesfulfillvar- iousfunctions:intracellular signaling,defense againstpredators (e.g. toxins, antinutritional factorsetc.), protectionagainst phy- topathogens,andattractionofpollinatingspecies,amongothers

(Huangetal.,2010).Antioxidantcapacityisoneofthemostrelevant biologicalactivitiesattributedtopropolis.Ithasbeenproposedthat variousantioxidantsofnaturalorigincanmodifythenaturalhis- toryofdiversepathologiessuchashypertension,diabetesmellitus, obesity,systemic inflammatorydiseases, amongothers (Sforcin, 2016).Ithasbeendocumentedthatmuchoftheantioxidantactivity ofpropolisoccursduetoitsphenoliccompoundscontent(Huang etal.,2010;Libenetal.,2018).

Inthepresentstudy,itwasconfirmedthatboththepropolis of M. beecheii and A. mellifera possess at least two mecha- nismsofantioxidantactivity:theuptakeoffreeradicalsandthe

(5)

reductionofmetalionsinsolution.Itwasalsopossibletodemon- strate a significant difference in the total content of phenolic compoundsandflavonoidsinpropoliselaboratedbyM.beecheii andA. mellifera (p<0.05).Nevertheless,EEMB propolisrequired lessconcentrationofgallicacidequivalentsthanEEAMpropolis toexertthesameantioxidanteffectbothinDPPHtest andiron reducingpower.Thiseffectcanbeexplainedduetothedifferences inthephenoliccompoundsineachpropolis.

Thecontentofphenoliccompoundspresentinpropolisishighly variablebecauseitdepends onthediversity ofplantspeciesto whichthebeeshaveaccessduringitselaboration(Zhangetal., 2016).Additionally,eachbeespecieshasauniquehabitinitsresin collectionthatincreasestheregionalandinterspecificvariationsin thechemicalcompositionofthepropolis(Bakchicheetal.,2017).

Theantioxidantcapacityisnotthesameforeachofthediverse phenoliccompounds(Tabartetal.,2009).Ithasbeenshownthat therearesignificantdifferencesinthecompositionofthepropolis generatedbyA.melliferawithrespecttothatproducedbydifferent speciesofstinglessbees(meliponinitribe)(Huangetal.,2010).

Theabilitytoreducemetalionsisespeciallyrelevantinfood productssincetheabsorptionofmanymineralsonlyoccursatcer- tain oxidationstates. The aboveis demonstratedin thecase of iron,whichcanonlybeabsorbedasiron(II),lackingasignificant bioavailabilityasiron(III).Theuseofantioxidantsrepresentsan alternativetoimprovethebioavailabilityofthisclassofminerals (Davidsson,2003;HurrellandEgli,2010).

Thefindingsofthisstudycoincidewiththatdescribedbythe literatureforpropolisofA.mellifera,aswellaswiththosereported forotherstinglessbeespecies(ManriqueandSantana, 2008;da Silvaetal.,2013).Thecompoundspresentintheethanolicextracts ofthepropolisofA.melliferaandM.beecheiidemonstratedactiv- ityagainstC.albicans.Thiscoincideswithreportsoftheliterature regardingthepropolisofA.melliferaandseveralspeciesofstingless bees(Camposetal.,2015;Capocietal.,2015;Shehuetal.,2016;

Maureiraetal.,2017;Dezmireanetal.,2017).However,informa- tionregardingthebiologicalactivitiesofpropolis ofM.beecheii continuestobescarce(Popovaetal.,2005;Fonte-Carballoetal., 2016;Ibrahimetal.,2016).

Asfarasweknow,thisisthefirstreportregardingthecontentof flavonoidsanddihydroflavonols,aswellastheantioxidantactivity oftheethanolicextractofthepropolisofM.beecheii.

Conclusion

TheethanolextractofthepropolisofA.melliferaandM.beecheii containssignificantamountsofphenoliccompounds,whichexert anantioxidantactivitybyatleasttwodifferentmechanisms.The totalcontentofphenoliccompoundswassuperiorinthecaseofthe ethanolextractofA.melliferatothatofM.beecheii.Theethanolic extractofM.beecheiipresentedahigherantifungalactivityagainst C.albicansthanthatofA.mellifera,reachingMICwithlessthan3␮g ofdryextractperml,containingaconcentrationless1␮g/mlgallic acidequivalents.

Authorscontributions

JRSandEPLequallycontributedtorunningthelaboratorywork, analysisofthedataanddraftingthepaper.RRBcontributedtothe collectionofpropolisandrunningthelaboratorywork.AYPcon- tributedinanalysisofdataanddraftedthepaper.TMScontributed incriticalreviewofthemanuscript.EOVdesignedthestudy,super- visedthelaboratoryworkandcontributedincriticalreviewofthe manuscript.Alltheauthorshave read thefinal manuscript and approvedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Alsop,G.M.,Waggy,G.T.,Conway,R.A.,1980.Bacterialgrowthinhibitiontest.J.

WaterPollut.ControlFed.52,2452–2456.

Bakchiche,B.,Habati,M.,Benmebarek,A.,Gherib,A.,2017.Totalphenolic,flavonoid contentsandantioxidantactivitiesofhoneyandpropoliscollectedfromthe regionofLaghouat(SouthofAlgeria).WorldNewsNat.Sci.11,91–97.

Brat,P.,Georgé,S.,Bellamy,A.,DuChaffaut,L.,Scalbert,A.,Mennen,L.,Arnault,N., Amiot,M.J.,2006.DailypolyphenolintakeinFrancefromfruitandvegetables.

J.Nutr.136,2368–2373.

Campos,J.F.,Santos,U.P.dos,Rocha,P.dosS.da,Damião,M.J.,Balestieri,J.B.P., Cardoso,C.A.L.,Paredes-Gamero,E.J.,Estevinho,L.M.,dePicoliSouza,K.,San- tos,E.L.dos.,2015.Antimicrobial,antioxidant,anti-inflammatory,andcytotoxic activitiesofpropolisfromthestinglessbeeTetragoniscafiebrigi(Jataí).Evid.

BasedComplement.Altern.Med.,http://dx.doi.org/10.1155/2015/296186.

Capoci,I.R.G.,Bonfim-Mendonc¸a,P.deS.,Arita,G.S.,Pereira,R.R.deA.,Consolaro, M.E.L.,Bruschi,M.L.,Negri,M.,Svidzinski,T.I.E.,2015.Propolisisanefficient fungicideandinhibitorofbiofilmproductionbyvaginalCandidaalbicans.Evid.

BasedComplement.Altern.Med.,http://dx.doi.org/10.1155/2015/287693.

Coelho,J.,Falcão,S.I.,Vale,N.,Almeida-Muradian,L.B.,Vilas-Boas,M.,2017.Pheno- liccompositionandantioxidantactivityassessmentofsoutheasternandsouth Brazilianpropolis.J.Apic.Res.56,21–31.

daSilva,I.A.A.,daSilva,T.M.S.,Camara,C.A.,Queiroz,N.,Magnani,M.,deNovais, J.S.,Soledade,L.E.B.,Lima,E.deO.,deSouza,A.L.,deSouza,A.G.,2013.Phenolic profile,antioxidantactivityandpalynologicalanalysisofstinglessbeehoney fromAmazonas,NorthernBrazil.FoodChem.141,3552–3558.

Davidsson,L.,2003.Approachestoimproveironbioavailabilityfromcomplemen- taryfoods.J.Nutr.133,1560S–1562S.

deOliveiraSantos,G.C.,Vasconcelos,C.C.,Lopes,A.J.O.,deSousaCartágenes,M.do S.,Filho,A.K.D.B.,doNascimento,F.R.F.,Ramos,R.M.,Pires,E.R.R.B.,deAndrade, M.S.,Rocha,F.M.G.,deAndradeMonteiro,C.,2018.Candidainfectionsandther- apeuticstrategies:mechanismsofactionfortraditionalandalternativeagents.

Front.Microbiol.9,http://dx.doi.org/10.3389/fmicb.2018.01351.

Dezmirean,D.S.,M˘arghitas¸,L.A.,Chiril˘a,F.,Copaciu,F.,Simonca,V.,Bobis¸,O.,Erler,S., 2017.Influenceofgeographicorigin,plantsourceandpolyphenolicsubstances onantimicrobialpropertiesofpropolisagainsthumanandhoneybeepathogens.

J.Apic.Res.56,588–597.

Espinel-Ingroff,A.,Arthington-Skaggs,B.,Iqbal,N.,Ellis,D.,Pfaller,M.A.,Messer,S., Rinaldi,M.,Fothergill,A.,Gibbs,D.L.,Wang,A.,2007.Multicenterevaluationof anewdiskagardiffusionmethodforsusceptibilitytestingoffilamentousfungi withvoriconazole,posaconazole,itraconazole,amphotericinB,andcaspofun- gin.J.Clin.Microbiol.45,1811–1820.

Farooqui,T.,Farooqui,A.,2012.Beneficialeffectsofpropolisonhumanhealthand neurologicaldiseases.Front.Biosci.4,779–793.

Fonte-Carballo,L.,Milián-Rodríguez,Y.E.,Díaz-Solares, M.,2016.Potencialidad antimicrobianaycaracterización depropóleosdeMelipona beecheiiprove- nientesdedosfincasagroenergéticas.PastosForrajes39,149–156.

Huang,W.-Y.,Cai,Y.-Z.,Zhang,Y.,2010.Naturalphenoliccompoundsfrommedicinal herbsanddietaryplants:potentialuseforcancerprevention.Nutr.Cancer62, 1–20.

Hurrell,R.,Egli,I.,2010.Ironbioavailabilityanddietaryreferencevalues.Am.J.Clin.

Nutr.91,1461S–1467S.

Ibrahim,N.,Zakaria,A.J.,Ismail,Z.,Mohd,K.,2016.Antibacterialandphenoliccon- tentofpropolisproducedbytwoMalaysianstinglessbees,Heterotrigonaitama andGeniotrigonathoracica.Int.J.Pharmacogn.Phytochem.Res.8,156–161.

Kaya,E.,Özbi˙lge,H.,2014.DeterminationoftheeffectoffluconazoleagainstCandida albicansandCandidaglabratabyusingmicrobrothkineticassay.Turk.J.Med.Sci.

42,325–328.

Keskin,D.,Ceyhan-Guvensen,N.,Uygun,M.,Uygun,D.A.,2017.Comparisonofthe antimicrobialandantioxidantactivityoffourdifferentregionsofAnatolia.Eur.

J.Biotechnol.Biosci.5,20–24.

Lee,K.W.,Kim,Y.J.,Kim,D.-O.,Lee,H.J.,Lee,C.Y.,2003.Majorphenolicsinapple andtheircontributiontothetotalantioxidantcapacity.J.Agric.FoodChem.51, 6516–6520.

Liben,T.,Atlabachew,M.,Abebe,A.,2018.Totalphenolic,flavonoidsandsome selectedmetalcontentinhoneyandpropolissamplesfromSouthWolozone, Amhararegion,Ethiopia.CogentFoodAgric.4,1475925.

Manrique,J.A.,Santana,W.,2008.Flavonoids,antibacterialandantioxidantactivi- tiesofpropolisofstinglessbees,Meliponaquadrifasciata,Meliponacompressipes, Tetragoniscaangustula,andNannotrigonasp.fromBrazilandVenezuela.Zootec.

Trop.26,157–166.

Maureira,N.,Viera,P.,Fernandez,A.,Urrejola,M.,Bravo,C.,Mardones,F.,Vines, E.D.,Haidar,Z.S.,Maureira,N.,Viera,P.,Fernandez,A.,Urrejola,M.,Bravo,C., Mardones,F.,Vines,E.D.,Haidar,Z.S.,2017.SusceptibilidaddecepasdeCandida oralaextractoetanólicodelpropóleochilenodeOlmué.Int.J.Odontostomatol.

11,295–303.

Oliveira,P.C.,Shinobu,M.C.,Longhini,R.,Franco,S.,Svidzinski,T.,2006.Antifungal activityofpropolisextractagainstyeastsisolatedfromonychomycosislesions.

Mem.Inst.OswaldoCruz101,493–497.

(6)

Pasupuleti,V.R.,Sammugam,L.,Ramesh,N.,Gan,S.H.,2017.Honey,propolis,and royaljelly:acomprehensivereviewoftheirbiologicalactionsandhealthbene- fits.Oxid.Med.Cell.Longev.,http://dx.doi.org/10.1155/2017/1259510.

Pazin,W.M.,Mônaco,L.,da,M.,Soares,A.E.E.,Miguel,F.G.,Berretta,A.A.,Ito,A.S., 2017.Antioxidantactivitiesofthreestinglessbeepropolisandgreenpropolis types.J.Apic.Res.56,40–49.

Popova,M.,Bankova,V.,Butovska,D.,Petkov,V.,Nikolova-Damyanova,B.,Sabatini, A.G.,Marcazzan,G.L.,Bogdanov,S.,2004.Validatedmethodsforthequantifica- tionofbiologicallyactiveconstituentsofpoplar-typepropolis.Phytochem.Anal.

15,235–240.

Popova,M.,Silici,S.,Kaftanoglu,O.,Bankova,V.,2005.Antibacterialactivityof Turkishpropolisanditsqualitativeandquantitativechemicalcomposition.Phy- tomed.Int.J.Phytother.Phytopharm.12,221–228.

Rodrigues,C.F.,Silva,S.,Henriques,M.,2014.Candidaglabrata:areviewofitsfea- turesandresistance.Eur.J.Clin.Microbiol.33,673–688.

Sforcin,J.M.,2016.Biologicalpropertiesandtherapeuticapplicationsofpropolis.

Phytother.Res.30,894–905.

Shehu,A.,Ismail,S.,Rohin,M.A.K.,Harun,A.,Aziz,A.A.,Haque,M.,2016.Antifun- galpropertiesofMalaysianTualanghoneyandstinglessbeepropolisagainst CandidaalbicansandCryptococcusneoformans.J.Appl.Pharm.Sci.6,44–50.

Silici,S.,Koc¸,N.A.,Ayangil,D.,ankaya,S.,2005.Antifungalactivitiesofpropolis collectedbydifferentracesofhoneybeesagainstyeastsisolatedfrompatients withsuperficialmycoses.J.Pharmacol.Sci.99,39–44.

Srivastava,V.,Singla,R.K.,Dubey,A.K.,2018.Emergingvirulence,drugresistance andfutureanti-fungaldrugsforCandidapathogens.Curr.Top.Med.Chem.18, 759–778.

Tabart,J.,Kevers,C.,Pincemail,J.,Defraigne,J.O.,Dommes,J.,2009.Comparative antioxidantcapacitiesofphenoliccompoundsmeasuredbyvarioustests.Food Chem.113,1226–1233.

Turner,S.A.,Butler,G.,2014.TheCandidapathogenicspeciescomplex.ColdSpring Harb.Perspect.Med.4,http://dx.doi.org/10.1101/cshperspect.a019778.

Zhang,J.,Shen,X.,Wang,K.,Cao,X.,Zhang,C.,Zheng,H.,Hu,F.,2016.Antioxi- dantactivitiesandmolecularmechanismsoftheethanolextractsofBaccharis propolisandEucalyptuspropolisinRAW64.7cells.Pharm.Biol.54,2220–2235.

Referências

Documentos relacionados

This study evaluated the influence of the ethanol extract of green propolis on the adhesion and biofilm of Candida albicans ATCC 443-805-2, Candida tropicalis ATCC 1036-09-2 and

Es así como el estado, se esfuerza por mantener un política monetaria y financiera estable, garantizaría, -ciertamente con algunas diferencias entre los distintos países

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Numa fase seguinte, são analisadas e projectadas soluções para problemas como o seguimento do caminho, quer a velocidade constante, quer variável; e o seguimento de um

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Results of a Swedish study with 1.007 men and women with MS, although showing lower scores in the physical and social domains of the Medical Outcomes Study Short Form, General

Ao perceber as delimitações entre os ambientes femininos e masculinos, entendemos que consequentemente a formação educacional ainda é direcionada para atender essas