• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
6
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Metanolic

extract

of

Malpighia

emarginata

bagasse:

phenolic

compounds

and

inhibitory

potential

on

digestive

enzymes

Tamara

R.

Marques

,

Aline

A.

Caetano,

Anderson

A.

Simão,

Flávia

Cíntia

de

O.

Castro,

Vinicius

de

Oliveira

Ramos,

Angelita

D.

Corrêa

LaboratóriodeBioquímica,DepartamentodeQuímica,UniversidadeFederaldeLavras,Lavras,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16May2015 Accepted18August2015 Availableonline29November2015

Keywords: Malpighiaemarginata

␣-Amylase

␣-Glucosidase Lipase Trypsin Inhibitor

a

b

s

t

r

a

c

t

Addingvaluetofruitresiduesisofgreatinterest,sincetheycanbepresentedasaviablesolution insearchofnewdrugsforthetreatmentofobesityandrelateddiseases,duetobioactivesubstances, especiallyphenoliccompounds.Thus,theobjectiveofthisstudywastopreparethemethanolextractof acerolabagasseflour,inordertoevaluateitspotentialasasourceofinhibitorsoftheenzymes␣-amylase, ␣-glucosidase,lipaseandtrypsin,anddeterminethecontentofphenoliccompoundsbyhighperformance liquidchromatography.Enzymaticinhibitionassayswereconductedinthepresenceorabsenceof sim-ulatedgastricfluid.Inthemethanolextractofacerolabagasseflour,thefollowingphenoliccompounds wereidentified:gallicacid,syringicandp-coumaricacid,catechin,epigallocatechingallate,epicatechin andquercetin;epicatechinwasthemajorcompound.Intheabsenceofgastricfluid,simulatedenzymes hadavariableinhibitionoftheacerolabagasseflourextract,exceptforlipase,whichwasnotinhibited. Inthepresenceofsimulatedgastricfluid,therewasaninhibitionof170.08IEU(InhibitedEnzymeUnit in␮molmin−1g−1)for-amylaseand69.29IEUfor-glucosidase,indicatingthatthisextractshows potentialasanadjuvantinthetreatmentofobesityandotherdyslipidemia.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Obesityisadiseaseresultingfromtheexcessiveaccumulation ofbodyfat,andbringsmultipleoutcomesforhealth,suchasthe prevalenceandprogressionofcardiovasculardiseases(especially heartdiseasesandstroke),whichwerethemajorcausesofdeath in2012;Sometypesofcancer(endometrium,breastandcolon); skeletalmuscledisturbs(speciallyosteoarthritis–ahighly inca-pacitatingdegenerativedisease);hypertensionandtype2diabetes mellitus(WanderleyandFerreira,2010;WHO,2015).

Between1980and2014,theworld’sobesityprevalency dou-bled.DatafromtheWorldHealthOrganizationreportthat,in2014, morethan1.9billionadultswereoverweightand,amongthem, morethan600millionwereobese(WHO,2015).

One way to fight this epidemic disease is drug treatment. Medicinetofightweightgain,whichhastheobjectivetorestrict energy absorption and cause weight loss, is widely available (Boniglia et al., 2008). However,these drugs cause side effects andareprohibitedbyAnvisasince2011(Abeso, 2014).Another

∗ Correspondingauthor.

E-mail:angelita@dqi.ufla.br(T.R.Marques).

alternativebroadlyemployedistheuseofplantextracts.Overthe lastyears,therewasasubstantialincreaseinitsuse,bythefact thatthepopulationbelievesitsintakeisharmless,withalowcost, andmayinhibitdigestiveenzymes,leadingtobeneficialchangesin metabolism(Simãoetal.,2012).Howevernotallnaturalproducts arebeneficialandfurtherstudiesarenecessarytoevaluatetheir effectsontheorganism.

Enzymes like ␣-amylase and ␣-glycosidase, responsible for processingdietarycarbohydrates,actonstarchbreakdown, result-inginmonosaccharideabsorptionbyenterocytes.Therefore,their inhibitionoffersapromisingstrategyforthepreventionofobesity, aswellastype2diabetesassociatedtohyperglycemia,by inhibi-tingstarchbreakdownandglucoseabsorptioninthesmallintestine (Kwonetal.,2008;Balasubramaniametal.,2013).

Lipase,involvedinfatmetabolism,isalsoanimportanttarget forinhibitors,sinceitsinhibitionlimitstriacylglycerolabsorption, leadingtoadecreaseincaloricyieldandweightloss.Ontheother hand,trypsininhibition,involvedinproteindigestion,hasamalefic effect,onceitimpairsthecompleteaminoacidabsorptioninfood, essentialfortheorganism.

Research has been carried out for evaluating the effects of naturalproductsonthetreatmentofobesityandassociated comor-bidities, reinforcing theneed for the search of new sources of

http://dx.doi.org/10.1016/j.bjp.2015.08.015

(2)

amylase, glycosidase and lipase inhibitors (Souza et al., 2011; Pereira et al., 2011a; Simão et al., 2012). Therefore, digestive inhibitorswhoassistinreducingfatandcarbohydrateabsorption inthesmallintestinemaybeusefulhelpersinthetreatmentof obesity.

Naturalproductshavebeengainingspaceandimportancein thepharmaceuticalindustry,sincetheyhavebioactivesubstances capableofinspiringnewphytomedicinesandphytotherapic prod-ucts. Phenolic compounds are among those substances. These compoundspresentchemicalstructureswithhydroxylsand aro-maticrings,whichcanbesimplestructuresorpolymers,originated from plant secondary metabolism and largely found in fruits (AngeloandJorge,2007).Manystudiesreportthebenefitsof phe-noliccompoundsasanadjunctinthetreatmentofobesity(Klaus etal.,2005;Henetal.,2006;Alterioetal.,2007;Santiago-Mora etal.,2011;Vogeletal.,2015;Zhangetal.,2015).

Alterioetal. (2007)andKlaus etal. (2005)reportthat phe-nolic compoundsact in theprevention of obesitydue totheir thermogeniceffects,abilitytooxidizebodyfatandbydecreasing intestinalabsorptionoffatsandcarbohydratescausedbythe inhi-bition of digestive enzymes, resulting in weight loss. Phenolic compounds,suchastannins,havetheabilityofcombiningwith digestiveenzymes,proteinsandotherpolymers(suchas carbo-hydrates),formingstable complexes, impairingabsorption and, therefore,makingthempossibleinhibitorsofsomeofthese diges-tiveenzymes(Wonetal.,2007;Gholamhoseinianetal.,2010).

In this context, the useof agro industrial residues of fruits ispromising fortheextractionofactive principlesthatmaybe employedasanalternativetothetreatmentofobesityand corre-lateddiseases.Bydiscardingtheseresidues,secondarymetabolites ofgreataggregatedvaluewithpossibleapplicationsin pharma-ceutical and food industries, are also eliminated. For example, theacerolabagasseoriginatedinjuiceprocessingis,accordingto

Marquesetal.(2013),richin phenoliccompounds,withrecord contentsof10.82g100g−1 drymatter;however,thesephenolic

compoundswerenotyetidentified.

Given the above,the objective of thepresent study wasto preparethemethanolextractofacerolabagasseflour(ABF), eval-uateitspotentialasasourceof␣-amylase,␣-glycosidase,lipase andtrypsininhibitors,anddeterminethephenoliccompoundsby highperformanceliquidchromatography(HPLC),aimingtouseit asanauxiliaryinthetreatmentofobesityandcorrelateddiseases, aggregatingvaluetothisresidue.

Materialandmethods

Preparationofacerolabagasseflour

AcerolaMalpighiaemarginataDC.,Malpighiaceae(BRS238 Fru-tacor)bagassewasobtainedfromplantsgrowninthemunicipality ofPerdões,MG,Brazil(21◦0527′′S;450527′′W,848maltitude);

thelocalclimateaccordingtotheKöppensystemisclassifiedas Cwa:mildandrainysummerswithmoderatetemperatures,annual averagetemperaturebelow21◦C,averageannualprecipitationof

1529.7mm,andrelativehumidityof76%(Emater,2002).Acerola fruitswereusedforpulpextraction,andtheresidualbagassewas provided in threebatches by a fruitpulp plantfirm located in Perdões,MG,Brazil.

Acerolabagasse(4kg)wasfrozenat−18◦Candlyophilizedin

glasscontainersprotectedfromlight for7 daystoobtain450g drybagasse.Afterlyophilization,acerolabagassewashomogenized usingmortarandpestle,waspassedinsievesandmostflour parti-cleswereretainedonsievessized40mesh(0.425mm)to80mesh (0.180mm),thus,classifiedasfineandthenplacedinahermetically sealedflask,protectedfromlightinarefrigeratorat4◦C.

Obtentionoftheextract

Toobtainthemethanolextractofacerolabagasseflour(ABF),1g ofacerolabagasselyophilizedpowderwastransferredtoa250ml erlenmeyerandthenadded50mlof50%methanolsolutioninthree repetitions.Afterwards,itcoveredwithagroundglassjointand putonahotplateat80◦C.Afterboilingfor15min,theextractwas

filteredinfilterpaperandcollectedtoa250mlbecker.Theresidue wasonceagainputonanerlenmeyerandthisprocessrepeatedfor twomoretimes.Afterthethirdfiltration,thebeckerwastakento thehotplatetoevaporatethemethanoluntilthevolumereaches 16ml(AOAC,2012),andthensubmittedtoenzymaticinhibition analysis.

Forthechromatographyprocess,thebeckerwastakentothehot platetoevaporatethemethanol,posteriorlyfrozenandlyophilized (FreeZone®2.5literFreezeDrySustems).Lyophilyzedextract(1g)

wassolubilizedin16mlultrapurewaterobtainedfromaMilli-Q system(EMDMillipore,Billerica,MA,USA).

Identificationandquantificationofphenoliccompounds

HPLCwasperformedusingaShimadzuUHPLCchromatograph (ShimadzuCorporation,Kyoto,Japan)equippedwithtwoLC-20AT high-pressurepumps,anSPD-M20AUV–visdetector,aCTO-20AC oven,aCBM-20Ainterface,andanautomaticinjectorwithan SIL-20Aautosampler.SeparationswereperformedusingaShim-pack VP-ODS-C18 (250mm×4.6mm)column, connected toa

Shim-pack Column Holder (10mm×4.6mm)pre-column (Shimadzu,

Japan).

Themobilephaseconsistedofthefollowingsolutions:2%acetic acidinwater(A)andmethanol:water:aceticacid(70:28:2,v/v/v) (B).Analyseswereperformedforatotaltimeof65minat40◦C,flux

of1mlmin−1,wavelengthof280nm,andinjectionvolumeof20l

inagradient-typesystem(100%solventAfrom0.01to5min;70% solventAfrom5to25min;60%solventAfrom25to43min;55% solventAfrom43to50min;and0%solventAfor10min)untilthe endoftherun.SolventAwasincreasedto100%,seekingto main-taina balancedcolumn.Aceticacidandmethanol(HPLCgrade; Sigma–Aldrich,USA)wereusedinthepreparationofthemobile phase.

Addition of standards to the extracts was also used as an identificationparameter.Thephenolicstandardsusedwere gal-lic acid, catechin, epigallocatechin gallate, epicatechin, syringic acid,p-coumaric acid,ferulicacid,salicylicacid,resveratroland quercetinallobtainedfromSigma–Aldrich(St.Louis,MO,USA).The stockstandardsolutionswerepreparedinmethanol(HPLCgrade; Sigma–Aldrich,USA).

TheABFextractandthestandardswerefilteredthrougha

0.45-␮mnylonmembrane(EMDMillipore,USA)anddirectlyinjected intothechromatographicsystem,inthreereplicates.The pheno-liccompoundsintheextractwereidentifiedbycomparisonwith retention times of standards. Quantification wasperformed by theconstructionofanalyticalcurvesobtainedbylinearregression usingOrigin6.1computersoftware(OriginLab,Northampton,MA, USA)andconsideringthecoefficientofdetermination(R2)equalto 0.99.

Enzymeobtention

(3)

O

HO

HO

HO

HO HO

HO HO

OH

OH 500 000

400 000

300 000

200 000

Intensity (mV)

Time (min)

100 000

–100 000

–200 000 0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

1 2

3 4

5

6 7

OH OH

OH

OH

OH OH

OH OH

OH OH

OH OH

OH OH

OH OH OH OH

OH

H3C

CH3

OH OH

OH

O

O

O O

O

O

O

O

O O

O

1

2

5

6

7

3

4

Fig.1.Chromatogramofacerolabagasseflourextract,withpeakidentification:(1)Gallicacid(time=6.541min);(2)catechin(time=10.419min);(3)epigallocatechingallate (time=11.987min);(4)epicatechin(time=13.139min);(5)syringicacid(time=14.988min);(6)p-coumaricacid(time=19.892min)and(7)quercetin(time=51.185min).

Activityof˛-amylase,˛-glucosidase,lipaseandtrypsin

The␣-amylaseactivitywasdeterminedusingthemethodology proposedbyNoeltingandBernfeld(1948).Thus,theextractand␣ -amylaseenzymewerepre-incubatedfor20min,inawaterbathat 37◦C.Thesubstratewasthe1%starchpreparedinTris0.05moll−1,

pH7.0bufferwith38mmoll−1NaCland0.1mmoll−1CaCl2.After

additionof100␮lofthesubstrate,themixturewasincubatedfor fourperiodsoftime.Thereactionwasinterruptedadding200␮lof 3.5dinitrosalicylicacidandtheproductreadinspectrophotometer at540nm.

The␣-glucosidaseactivitywasdeterminedaccordingtoKwon etal.(2008),using5mmoll−1p-nitrophenyl--d-glucopyranoside

ina0.1moll−1pH7.0citrate–phosphatebufferassubstrate.Inthe

assay,extractand␣-glucosidaseenzymewereincubatedinawater bath,at37◦C,forfourperiodsoftime,afteradditionofthe

sub-strate.Thereactionwasinterruptedadding1.000␮lof0.05moll−1

NaOHandtheproductwasreadinaspectrophotometerat410nm. Thelipase activitywasdetermined accordingtoSouzaetal. (2011), using 8mmoll−1 p-nitrophenylpalmitate in Tris–HCl

0.05mmoll−1,pH8.0buffercontaining0.5%Triton-X100as

sub-strate.Intheassay,extractandlipaseenzymewasincubatedina waterbath,at37◦C,forfourperiodsoftime,afteradditionofthe

substrate.Thereactionwasstopped,transferringthetubestoan icebathandaddingTris–HCl0.05mmoll−1 pH8.0buffer.Thep

-nitrophenol,ofyellowcoloration, aproductof thelipase action onp-nitrophenylpalmitate,wasread in aspectrophotometer at 410nm.

Thetrypsinactivitywasdeterminedaccordingtothe method-ologyproposedbyErlangeretal.(1961).Thus,extractandtrypsin enzymewereincubatedinawaterbath,at37◦C,forfourperiods

oftime,afteradditionofp-benzoyl-dl-arginine-p-nitroanilide

sub-strate(BApNA),preparedinTris0.05moll−1,pH8.2.Thereaction

wasinterruptedadding200␮lof30%aceticacidandtheproduct

readinaspectrophotometerat410nm.

Foreachassayofenzymaticactivity,thevolumeofextractwas differentand its dilution rangedso that theenzyme inhibition rangedfrom50to80%,accordingtothemethodology.

Theinhibitionoftheenzymeswereobtainedfromthe deter-minationoftheslopesofthestraightlines(absorbance×time)of

thecontrolenzyme(withoutextract)andenzymes+inhibitor(with extract)activityassays.Theslopeofthestraightlineisduetothe speedofproductformationperminuteofreactionandthepresence oftheinhibitorcausesadecreaseinthatinclination.Fromthat incli-nation,theabsorbancevalueswereconvertedintomicromolesof productthroughastandardglucosecurvefortheamylaseandof

p-nitrophenolforglycosidaseandlipase,while,forthetrypsin,the ofBApNAmolarextinctioncoefficientdeterminedbyErlangeretal. (1961)wasused.

Preparationofsimulatedgastricfluid

Withtheobjectiveofsimulatingthedigestionprocessinthe stomachinvitro,enzymaticactivityassaysinthepresenceofa sim-ulatedgastricfluidwerealsocarriedout.Forsuch,theextractwas incubatedwiththesimulatedgastricfluidpreparedaccordingto

TheUnitedStatesandPharmacopeia,(2005),for1hinawaterbath at37◦C.Subsequently,wasneutralizedwithsodiumbicarbonate

salttopH7.2andonlythenrealizedtheactivityassays.

Resultsanddiscussion

Each100gABFyielded48goflyophilizedextract(48%yield). The following phenolic compounds were identified in the ABF extract,inmgl−1:gallicacid(3.32±0.23),catechin(11.33±0.33),

epigallocatechin gallate (9.13±0.89), epicatechin (91.86±1.49),

syringic acid (37.16±0.12), p-coumaric acid (2.41±0.13) and

quercetin(0.29±0.02)(Fig.1);gallicacidisahydrolyzabletannin

monomer,andepigallocatechingallate,catechinandepicatechin arecondensedtanninmonomers.Itwaspossibletoobservethat epicatechinhadthehighestcontent,followedbysyringicacid.The compoundsepicatechin,ferulicacid,salicylicacidandresveratrol werenotidentifiedintheABFextract.

LinandLin-Shiau(2006),Alterioetal.(2007),Choetal.(2010)

andRainsetal.(2011)reportedthatphenoliccompoundssuchas caffeicandchlorogenicacid,catechin,epigallocatechingallateand quercetinhavethermogeniceffect,abilitytooxidizefats,control appetite,regulatelevelsofhormonesrelatedtoobesityandinhibit digestiveenzymesinvolvedintheabsorptionofcarbohydratesand lipids.Thus,thisstudyshowsthattheacerolabagasseextracthas bioactivesubstancesandcanbeexploitedbythepharmaceutical industryinsearchofdrugstocontrolobesityandrelateddiseases. Theresultsforenzymatic inhibitionof ABFbeforethe expo-sure togastric fluids are shown in Table 1. The ABFmethanol extract inhibited theactivity of ␣-amylase, presenting an inhi-bition potential of 238.96␮molmin−1g−1 dry matter DM.

Thispotential exceeds theone foundby Pereira et al.(2011b), who analyzed the white bean crude extract and detected an inhibition of 54.1␮molmin−1g−1. Simão et al. (2012),

study-ingaqueousextractsofmedicinalplants,observedaninhibition of2907.13␮molmin−1g−1 DMforTournefortiapaniculataCham.

(4)

Table1

Inhibitionofdigestiveenzymesbyacerolabagassepowderbeforeandafterthe exposuretosimulatedgastricfluid.

Enzyme Inhibition(IEUb)a

Beforeexposure Afterexposure

␣-Amylase 238.96±1.64 170.08±1.06

␣-Glycosidase 78.51±1.78 69.29±0.28

Lipase ndc ndc

Trypsin 227.52±3.59 84.73±5.41

Datafromthreerepetitions,withmean±standarddeviation.

aTheABFextractmeasuredforeachoftheenzymeswasdilutedtoprovidean

inhibitionbetween50%and80%,inordertoensureresultreliability.

b IEU=InhibitedEnzymeUnitinmolmin−1g−1drymatterDM. c nd=inhibitionnotdetected.

relatedwiththedigestionofcarbohydratesand,consequently,with theelevationinglycemiclevelsafterameal.Highglycemiclevels leadtoserioushealthproblemsinthepopulation,suchastype2 diabetes.Theintakefoodrichin␣-amylaseposesasan interest-ingstrategyinthepreventionandtreatmentofhyperglycemia,by slowingpostprandialglucoselevelsinbloodaftertheingestionof carbohydrates(Vadiveletal.,2011).

Theinhibitionof␣-glucosidasebytheABFextractwasabout 78.51␮molmin−1g−1DM.TheinhibitorypotentialofABPfound

inthispapersurpasses theonesverifiedbySimão etal.(2012)

who,studyingaqueousextractsofmedicinalplantslikeAloevera

(L.) Burm.(Aloe), Simaba ferruginea St. Hil.(calunga), Baccharis trimera(Less.)DC (carqueja),Garcinia cambogiaDesr.(garcinia),

T.paniculataCham.(marmelinho),foundinhibitionsof0.58 and 35.46␮molmin−1g−1 DM, as well as those from Pereira et al. (2011a),who analyzedcommercialsamplesofHoodia gordonni, usedasanauxiliaryinthetreatmentofobesity,andfound inhi-bitionsof10.40e16.70␮molmin−1g−1DM.

Theinhibitionof␣-glucosidaseextendsgastricemptying,leads

tosatietyandweightloss,effectswhichcanbeusefulinthe treat-mentofobesity(Chenetal.,2008).

Therefore, theinhibition of ␣-amylase and ␣-glycosidaseby naturalproductscanprovideanalternativeforthetreatmentof obesityinsubstitutiontosyntheticdrugsnowavailableonthe mar-ket,besidescontrollingglucoselevelsinbloodintype2diabetes patients(McDougalletal.,2005a).

The ABF extract was not able to inhibit lipase, an enzyme involvedinlipidmetabolism,neitherbeforenoraftertheexposure tosimulatedgastricfluid. However,for trypsin,aninhibition of 227.52␮molmin−1g−1DMwasobserved.Whentrypsininhibitors

arepresentinthediet,thesemayleadtoareductioningrowthrate inanimals,followedbyadecreaseinproteindigestibility,leadingto weightlossandendogenousproteincatabolism(McDougalletal., 2005a).Therefore,thetrypsininhibitorisconsideredan antinutri-tionalfactor.

ThepassageoftheABFextractthroughthegastrointestinal cav-itymayleadtostructuralmodificationsontheinhibitorsbecause ofthepHofthegastricacid.Consideringtheexpressiveinhibition of␣-amylase,␣-glycosidaseandtrypsininthepresenceoftheABF extract,thisextractwassubmittedtoagastricfluidassay(Table1). Inthepresenceof simulatedgastricfluid, theABFmethanol extractstillmaintained71%ofitsinhibitoryactivityover␣-amylase and88%ofinhibitoryactivityover␣-glycosidase.Therefore,the extractdidnotshowaconsiderableinhibitoryactivityoverthese twoenzymesaftertheyweresubmittedtosimulatedgastricfluid. TheABFextractdecreasedtheinhibitionoftrypsinby63%in thepresenceofsimulatedgastricfluid.Thisreductionintrypsin inhibitionisconsideredpositivesince,wheninhibitionoccurs,it isconsideredantinutritional,impairingproteindigestion,which isthemainsourceofessentialaminoacids.However,aresidual inhibitoryactivityof37%wasstillobserved.Itisnotedthatthe

Table2

Contentofphenoliccompoundsinthemethanolextractofacerolabagasseflour, usedineachenzymaticassay.

Phenoliccompound(␮g) Enzymaticassays

␣-Amylasea -Glycosidaseb Lipasec Trypsinc

Gallicacid 0.02 0.06 0.17 0.66 Catechin 0.07 0.19 0.57 2.26 Epigallocatechin-gallate 0.05 0.15 0.46 1.83 Epicatechin 0.54 1.53 4.60 18.4 Siringicacid 0.22 0.62 1.86 7.44

p-Cumaricacid 0.01 0.04 0.12 0.48 Quercetin 1.71×10−3 4.83

×10−3 0.01 0.06

Phenoliccompounds 0.91 2.59 7.79 31.13

aExtractdilution1:7.5. bExtractdilution1:2. c Crudeextract.

resistanceoftheinhibitortopassthroughthesimulatedgastric fluidisastrongindicativethattheseresultswillrepeatininvivo

assays.

Inthisstudy,theinhibitionofdigestiveenzymescanprobablybe explainedbythepresenceofphenoliccompoundsinthemethanol ABFextract,whoselevelsweredifferentforeachenzymaticassay assessed(Table2).␣-Amylasewastheone thathad the small-estcontentofphenoliccompounds,whichledtoaninhibitionof 0.91␮g.Ontheotherhand,thecontentofphenoliccompoundswas higher(31.13␮g)forthetrypsinassay,thatis,34timessuperior tothatfoundfor␣-amylase.Therefore,thissuggeststhatsmaller contentsofphenoliccompoundsmaynotleadtotrypsininhibition, whichwouldbebeneficial,sinceitcouldreducetheabsorptionof carbohydratesandallowproteindigestion.

Gallicacidisconsideredahydrolyzabletannin,whenfoundin theformofgallicacidesters,whilecatechin,epicatechingallateand epicatechin,whenfoundintheformofflavonoids,areconsidered condensed tannins. These compounds have strong interactions with metal ions and macromolecules such as polysaccharides, besidestheability toformsoluble complexeswithseveral pro-teins,asdigestivesenzymes(Wonetal.,2007;Gholamhoseinian etal.,2010).Thisabilitythattanninsexhibittointeractwith pro-teinsmakesthis classofsubstances powerfuldigestiveenzyme inhibitors.

McDougalletal.(2005b)reportthatredfruitextractsinphenolic compoundsinhibittwomainenzymesinvolvedinstarch diges-tion,␣-amylaseand␣-glycosidase,invitro.Inasimilarway,recent studieswithredfruitsreportedinhibitionof ␣-amylase and␣ -glycosidase,andmentionedthattanninswerethemosteffective compoundsininhibitingtheseenzymes(Boathetal.,2012).Kam etal.(2013),studyingtheeffectsofextractsfromdifferentparts ofpomegranate(pulp,peels,seedsandflower)overthedigestive enzymes␣-amylaseand␣-glycosidase,showedthatthemethanol extractfromthepomegranateflower,wherethephenolic com-pounds gallic acidandellagic acidarefound, exhibitsa potent inhibitoreffectontheseenzymes.

Klausetal.(2005)reportedthatratsfedepigallocatechingallate, purifiedfromgreentea,hadanobesitydecreaseinducedbythe diet,duetoareductioninenergyabsorptionandanincreasein lipidoxidation.Ontheotherhand,Bryansetal.(2007)reported thatblackteaisefficientinreducingpostprandialbloodglucose levelsandrelatedthisfacttothepresenceofphenoliccompounds suchasepigallocatechin,epigallocatechingallate,epicatechinand epicatechingallate.

Flavonoids like quercetin comprise a heterogeneous class of phenolic compounds present in plants, which can also act in the organism, inhibiting digestive enzymes. Wenzel (2013)

(5)

carbohydratedigestionandcontrollingpostprandialglucoselevels inblood,thusconfirmingtheresultobtainedbyTaderaetal.(2006), whoreportedtheinhibitoryactivityofquercetininthepresenceof

␣-amylase.

LinandLin-Shiau(2006),reportthatflavonoidshavetheability toactonthesympatheticnervoussystemthroughthemodulation ofnoradrenaline,thusincreasingthermogenesisandfatoxidation. Italsopreventstheincreaseinthesizeandnumberofadipocytes, thereforepreventingthedepositionoffatinthebodyand regulat-ingbodyweight.

Phenolicextractsoflentilscontainingp-hydroxybenzoicacid, syringicacid,trans-p-coumaricacid,epicatechingallate,quercetin andkaempferolwereshowntobegoodinhibitorsoflipaseand␣ -glycosidase,contributingtocontrolglucoselevelsinblood,aswell asobesity(Zhangetal.,2015).

Most phenols previously mentioned were foundin the ABF extract,which couldhaveledtoa complexationwithdigestive enzymesand,probably,contributedtoitsinhibition.Theinhibition ofdigestiveenzymesisapromisingalternativeforthetreatment ofobesityandtype2diabetes,especiallybythefacttheyactin thesmallintestine,withoutactinginthecentralnervoussystem, whereprescribedanorexigenicdrugsusuallyact.

Conclusion

The ABF methanol extract that contains the phenolic com-pounds gallic acid, catechin, epicatechin gallate, epicatechin, siringic acid, p-cumaricacidand quercetin, wasable toinhibit

in vitro digestive enzymes ␣-amylase and ␣-glucosidase. This shows that the ABF extract may represent a good source of inhibitors,andcanbeusedasanauxiliaryinthetreatmentof obe-sity,associatedcomorbiditiesandinthecontroloftype2diabetes.

Authors’contributions

TRM contributed in running the laboratory work, analysis of thedata and draftedthe paper.AAC contributed in running thelaboratorywork.AASparticipatedofenzymeactivityassays. FCOCcontributedtochromatographicanalysis.VORparticipatedof enzymeactivityassays.ADCdesignedthestudy,supervisedthe lab-oratoryworkandcontributedtocriticalreadingofthemanuscript. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorswouldliketothankFundac¸ãodeAmparoàPesquisa doEstadodeMinasGerais,CAPESandCNPqforthegrantsprovided.

References

Abeso, 2014. Associac¸ão Brasileira para o Estudo da Obesidade e da Sín-dromeMetabólica,http://www.abeso.org.br/lenoticia/1120/abeso+defende+o+ tratamento+completo+da+obesidade+com+acesso+a+medicamentos(accessed March2015).

Alterio,A.A.,Fava,D.A.F.,Navarro,F.,2007.Interactionofthedailyingestionofgreen tea(Camellasinensis)inthecellularmetabolismandtheadiposecellpromoting emagrecimento.Rev.Bras.Obes.Nut.Emag.1,27–37.

Angelo,P.M.,Jorge,N.,2007.Compostosfenólicosemalimentos–Umabreverevisão. Rev.Inst.AdolfoLutz66,1–9.

AssociationofOfficialAnalyticalChemistry,2012.OfficialMethodsofAnalysis, Gaithersburg,19thed,3000p.

Balasubramaniam,V.,Mustar,S.,Khalid,N.M.,Rashed,A.A.,Noh,M.F.M.,Wilcox, M.D., Peter, I.C.,Brownlee, I.A.,Pearson,J.P.,2013. Inhibitory activitiesof threeMalaysianedibleseaweedsonlipaseanda-amylase.J.Appl.Phycol.25, 1405–1412.

Boath,A.S.,Grussu,D.,Stewant,D.,McDougall,G.,2012.Berrypolyphenolsinhibit digestiveenzymes:asourceofpotentialhealthbenefits?FoodDig.3,1–7.

Boniglia,C.,Carratù,B.,DiStefano,S.,Giammarioli,S.,Mosca,M.,Sanzini,E.,2008.

Lectins,trypsinand␣-amylaseinhibitorsindietarysupplementscontaining Phaseolusvulgaris.Eur.FoodRes.Technol.227,689–693.

Bryans,J.A.,Judd,P.A.,Ellis,P.R.,2007.Theeffectofconsuminginstantblackteaon postprandialplasmaglucoseandinsulinconcentrationsinhealthyhumanos.J. Am.Coll.Nutr.26,471–477.

Chen,X.,Xu,G.,Li,X.,Li,Z.,Ying,H.,2008.Purificationofan␣-amylaseinhibitorin apolyethyleneglycol/fructose-1,6-bisphosphatetrisodiumsaltaqueous two-phasesystem.ProcessBiochem.43,765–768.

Cho,A.S.,Jeon,S.M.,Kim,M.J.,Yeo,J.,Seo,K.L.,Choi,M.S.,Lee,M.K.,2010.Chlorogenic acidexhibitsanti-obesitypropertyandimproveslipidmetabolisminhigh-fat diet-induced-obesemice.FoodChem.Toxicol.48,937–943.

Emater,2002.Áreadeprotec¸ãoambientaldoMunicípiodePerdões.Empresade AssistênciaTécnicaeExtensãoRural,UnidadedeConsultoriaeProjetos,Belo Horizonte,MinasGerais,Brasil.

Erlanger,B.F.,Kukowsky,N.,Cohen,W.,1961.Thepreparationandpropertiesoftwo newchromogenicsubstratesoftrypsin.Arch.Biochem.Biophys.95,271–278.

Gholamhoseinian,A.,Shahouzehi,B.,Sharifi-far,F.,2010.Inhibitoryeffectofsome plantextractsonpancreaticlipase.Int.J.Pharm.6,18–24.

Hen,Q.,Lv,Y.,Yao,K.,2006.Effectsofteapolyphenolsontheactivitiesof␣-amylase, pepsin,trypsinandlipase.FoodChem.101,1178–1182.

Kam,A.,Li,K.M.,Razmovshi-Naumovshi,V.,Nammi,S.,Shi,J.,Chan,K.,Li,G.Q.,2013.

Acomparativestudyontheinhibitoryeffectsofdifferentpartsandchemical constituentsofpomegranateon␣-amylaseand␣-glucosidase.Phytother.Res. 27,1614–1620.

Klaus,S.,Pultz,S.,Thone-Reineke,C.,Wolfram,S.,2005.Epigallocatechingallate attenuatesdiet-inducedobesityinmicebydecreasingenergyabsorptionand increasingfatoxidation.Int.J.Obes.29,615–623.

Kwon,Y.I.,Apostolidis,E.,Shetty,K.,2008.Inhibitorypotentialofwineandtea against␣-amylaseand␣-glucosidaseformanagementofhyperglycemialinked totype2diabetes.J.FoodBiochem.32,15–31.

Lin,J.K.,Lin-Shiau,S.Y.,2006.Mechanismsofhypolipidemicandanti-obesityeffects ofteapolyphenols.Mol.Nutr.FoodRes.50,211–217.

Marques, T.R.,Corrêa, A.D., Lino, J.B., dos, R., Abreu, C.M.P., de Simão,A.A., 2013.Chemicalcomponentsandfunctionalpropertiesofacerola(Malpighia emarginataDC.)residueflour.FoodSci.Technol.33,526–531.

McDougall,G.J.,Shpiro,F.,Dobson,P.,Smith,P.,Blake,A.,Stewart,D.,2005a.Different polyphenoliccomponentsofsoftfruitsinhibit␣-amylaseand␣-glucosidase.J. Agric.FoodChem.53,2760–2766.

McDougall,G.J.,Fiffe,S.,Dobson,P.,Stewart,D.,2005b.Anthocyaninsfromredwine –theirstabilityundersimulatedgastrointestinaldigestion.Phytochemistry66, 2540–2548.

Noelting,G.,Bernfeld,P.,1948.Surlesenzymesamylolytiques–III.La␤-amylase: dosaged’activitéetcontrôledel’absenced’␣-amylase.Helv.Chim.Acta31, 286–290.

Pereira,C.A.,Pereira,L.L.S.,Corrêa,A.D.,Chagas,P.M.B.,Souza,S.P.,Santos,C.D., 2011a.InhibitionofdigestiveenzymesbycommercialpowderextractsofHoodia gordonii.Rev.Bras.Biocienc.9,265–269.

Pereira,L.L.S.,Santos,C.D.,Sátiro,L.C.,Marcussi,S.,Pereira,C.A.,Souza,S.P.,2011b.

Inhibitoryactivityandstabilityofthewhitebeanflourextractondigestive enzymesinthepresenceofsimulatedgastricfluid.Rev.Bras.Farm.92,367–372.

Rains,T.M.,Agarwal,S.,Maki,K.C.,2011.Antiobesityeffectsofgreenteacatechins: amechanisticreview.J.Nutr.Biochem.22,1–7.

Santiago-Mora,R.,Casado-Díaz,A.,Castro,M.D.,Quesada-Gómez,J.M.,2011. Oleu-ropeinenhancesosteoblastogenesisandinhibitsadipogenesis:theeffecton differentiationinstemcellsderivedfrombonemarrow.Osteoporos.Int.22, 675–684.

Simão,A.A.,Corrêa,A.D.,Chagas,P.M.B.,2012.Inhibitionofdigestiveenzymesby medicinalplantaqueousextractsusedtoaidthetreatmentofobesity.J.Med. PlantsRes.6,5826–5830.

Souza,S.P.,Pereira,L.L.S.,Souza,A.A.,Santos,C.D.,2011.Inhibitionofpancreatic lipasebyextractsofBaccharistrimera(Less.)DC.Asteraceae:evaluationof antin-utrientsandeffectonglycosidases.Rev.Bras.Farm.21,450–455.

Tadera,K.,Minami,Y.,Takamatsu,K.,Matsuoka,T.,2006.Inhibitionofa-glucosidase anda-amylasebyflavonoids.J.Nutr.Sci.Vitaminol.52,149–153.

(6)

Vadivel,V.,Nandety,A.,BIesalski,H.K.,2011.Antioxidant,freeradical scaveng-ingandtypeIIdiabetes-relatedenzymeinhibitionpropertiesoftraditionally processedJequiritybean(Abruspecatorius L.).Int.J.FoodSci. Technol.46, 2505–2512.

Vogel,P.,Machado,I.K.,Garavaglia,J.,Zani,V.T.,Souza,D.,DalBosco,S.M.,2015.

Polyphenolsbenefitsofoliveleaf(OleaeuropaeaL.)tohumanhealth.Nutr.Hosp. 31,1427–1433.

Wanderley,E.M.,Ferreira,V.A.,2010.Obesity:apluralperspective.Cienc.Saúde Coletiva15,185–194.

Wenzel,U.,2013.Flavonoidsasdrugsatthesmallintestinallevel.Curr. Opin. Pharmacol.13,864–868.

WHO,2015.ObesityandOverweight.WorldHealthOrganization,http://www.who. int/mediacentre/factsheets/fs311/en/(accessedMarch2015).

Won,S.,Kim,S.,Kim,Y.,2007.LicochalconeA:alipaseinhibitorfromtherootsof Glycyrrhizauralensis.FoodRes.Int.40,1046–1050.

Zhang,B.,Deng,Z.,Ramdath,D.D.,Tang,Y.,Chen,P.X.,Liu,R.,Liu,Q.,Tsão,R.,2015.

Imagem

Fig. 1. Chromatogram of acerola bagasse flour extract, with peak identification: (1) Gallic acid (time = 6.541 min); (2) catechin (time = 10.419 min); (3) epigallocatechin gallate (time = 11.987 min); (4) epicatechin (time = 13.139 min); (5) syringic acid

Referências

Documentos relacionados

We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a

Não obstante, os valores das ordenações médias levam-nos a inferir que os enfermeiros e os profissionais que trabalham em Cuidados de Saúde Primários são os que possuem mais

Para as Despesas da Relação, recebem as multas AFONSO TRIGO e o porteiro da Chancelaria, e FERNÃO DA BRAGA está encarregue de as "pôr em receita". Dos dois titulares

Por meio deles foi possível discutir, à luz de uma bibliografia referente ao NOF e à História Ambiental, o processo de ocupação e exploração regional de 1861 a

The concentration of two alkaloids (theobromine and 7-methylxanthine) and six phenolic compounds (caffeic acid, p -coumaric acid, gallic acid, protocatechuic acid, catechin

All cultivars showed the same phenolic composition but with different levels of gallic acid, catechin, epigallocatechin gallate, syringic acid, o -coumaric acid, resveratrol,

The HPLC chromatograms of phenolic compounds identified in the BRS Xiquexique cultivar and the standards of epicatechin, gallic acid, chlorogenic acid, and ferulic acid

100 µL of complete medium containing different amounts of extract (P1-E), fractions (P1-A and P1-Aq), phenolic compounds (ellagic acid, gallic acid and valoneic acid dilactone) and