• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número1"

Copied!
6
0
0

Texto

(1)

w w w.jo u r n als . e l s e vie r . c o m / r e v i s t a - b r a s i l e i r a - d e - f a r m a c o g n o s i a

Original

Article

Screening

of

ferulic

acid

related

compounds

as

inhibitors

of

xanthine

oxidase

and

cyclooxygenase-2

with

anti-inflammatory

activity

Shivraj

Hariram

Nile,

Eun

Young

Ko,

Doo

Hwan

Kim,

Young-Soo

Keum

∗ DepartmentofBioresourcesandFoodScience,CollegeofLifeandEnvironmentalSciences,KonkukUniversity,Seoul,SouthKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6May2015 Accepted23August2015 Availableonline29November2015

Keywords: Ferulicacid Gallicacid Xanthineoxidase Cyclooxygenase SAR

Gout

a

b

s

t

r

a

c

t

Theferulicandgallicacidrelatedcompoundsfromnaturaloriginwerestudiedagainstxanthineoxidase andcyclooxygenase-2alongwiththeiranti-inflammatoryactivity.Thecompoundsgallicacid,ferulic acid,caffeicacidandp-coumaricacidrevealedpromisinganti-inflammatoryactivity(30–40%TNF-␣

and60–75%IL-6inhibitoryactivityat10␮M).Bioavailabilityofcompoundswerecheckedbyinvitro cytotoxicityusingCCK-8celllinesandconfirmedtobenontoxic,butfoundtoxicathigherconcentration (50␮M).Gallic,ferulic,caffeicacidwasdemonstratedpotentialdualinhibitiontowardxanthineoxidase andcyclooxygenase-2ascalculatedbyIC50:68,70.2,and65␮g/ml(xanthineoxidase)and68.5,65.2,

and62.5␮g/ml(cyclooxygenase-2),respectively.Thestructureactivityrelationshipandinsilicodrug relevantproperties(HBD,HBA,PSA,cLogP,ionizationpotential,molecularweight,EHOMOandELUMO)

furtherconfirmedthatthecompoundswerepotentialcandidatesforfuturedrugdiscoverystudy,which wasexpectedforfurtherrationaldrugdesignagainstxanthineoxidaseandcyclooxygenase.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Goutyarthritisisawellknowndiseasewithanabruptattack causing extreme pain in and around the joints due to activi-tiesoccurredbyxanthineoxidase(Mohapatraetal.,2015).Gout isnearlyalwaysassociatedwithchronichyperuricemia,a long-lastingabnormallyhighconcentrationofuricacid(hyperuricemia) intheblood.Thehigherlevelsofuricacidcanreachapointwhere uricacidcrystals(monosodiumurate)areputdifferentlyandthis hyperuricemiaresultsinthedepositionofcrystalsofsodiumurate intissues,especiallyinkidneysandjoints(Bardin,2004;Choiand Curhan,2005).Thisprocessgeneratesoxygenmetabolites,which damagetissue,resultinginthereleaseoflysosomalenzymesthat induceaninflammatoryresponse.Thiswillleadtolocaldecrease ofpHwhichfurthercausesmoredepositionofuratecrystals(Nuki andSimkin,2006).Thediagnosisofgoutisbasedonthepresence ofmonosodiumuratecrystalsinthesynovialfluid(Martinonand Glimcher,2006).Thisdepositionwillexacerbateleadingto recur-rentepisodesofacutearthritis,theclassicmanifestationofgout. Meanwhile,controllingtheuricacidlevelinthebloodisstillthe maintargetparticularlyinthemanagementofthechronicattacks (Mandell,2002; Dinceretal.,2002).Xanthineoxidase(XO)has

∗ Correspondingauthor.

E-mail:rational@konkuk.ac.kr(Y.-S.Keum).

amajorroleintheuricacidproductionasXOisresponsiblefor catalyzing theoxidation ofhypoxanthinetoform xanthineand finally touric acid. Thus, this enzyme coordinates thereaction andproduces uric acidfromitsprecursors(Nileet al.,2013;Li etal.,2013).Similarly,certainenzymessuchas cyclooxygenase-2(COX-2)contributesitsroleinthegoutyinflammation,thoughit heightenedexpressionsinthepresenceoftheaccumulatedMSU crystals,whichinturnenhancestheproductionofinflammatory prostaglandinsleadingtotheincreasedproductionofIL-1␤.Thus, COX-2playsamajorroleinarousingtheinflammatoryresponses andthustakingpartintheadvancementoftheacute inflamma-tioninthegoutyarthritispatients(Pouliotetal.,1998;Mohapatra etal.,2015).Therearecertainmeasurestakeninordertotreatthe diseasebyusingnon-steroidalanti-inflammatorydrugs(NSAID), colchicineorglucocorticoids.NSAIDaretheclassofdrugswhich causesCOX-2inhibitionwhereascolchicineisanantimycotic alka-loidthatapartfromdisturbingthemicrotubulepolymerization,it alsoinhibitstheinflammationbypreventingtheIL-1␤processing whichwasstimulatedbytheMSUcrystals(Martinonetal.,2006; RicciottiandFitzGerald,2011).Examplesofsuchdrugsare allo-purinol,probenecidandsulfinpyrazone(Mandell,2002;Aggarwal etal.,2011).Modernmedicinesfromnaturalproductshavelittle toofferforalleviationofgout,oxidativeandinflammatory activ-ity.Thereisanurgentneedtodiscovercompoundswithxanthine oxidaseinhibitoryactivitiesbutdevoidoftheundesirableeffectsof allopurinol.Onepotentialsourceofsuchcompoundsismedicinal http://dx.doi.org/10.1016/j.bjp.2015.08.013

(2)

materialsofplantoriginwhichisusedtotreatconditionssimilar togoutyarthritis(NileandPark,2014a,b).Phenolicsandflavonoids areconsideredimportantcomponentsinthehumandietbecause of their beneficial effects on humanhealth. The phenolics and flavonoidsarenaturallyoccurringcompoundsthatareconstantly distributedinvariousfoods,fruitjuicesandbeveragesfromplant originanddisplaymanybioactiveandtherapeuticproperties,such asantioxidant,anticancer,antiviral,anti-inflammatory,and car-diacprotectiveeffects(Proestosetal.,2005;NileandPark,2014c). Mostofthetherapeuticpropertiesofphenolicsandflavonoidshave beendemonstratedtohavepotentantioxidant,anti-inflammatory andenzymeinhibitionproperties.Severalphenolicsandflavonoids havebeen describedas inhibitorsofthe xanthineoxidase(XO) enzyme,similartoallopurinolinthetreatmentofgout(Bandgar etal.,2009; Nileand Park,2013), forthis reason,researchinto ferulicacid seemspromising. Thus, the aimof this studyis to investigatethepotencyofnaturallyoccurringferulicacidrelated compoundsasxanthineoxidaseandcyclooxygenase-2inhibitors alongwiththepropertieslikeanti-inflammatoryactivity, struc-tureactivityrelationship(SAR)andinsilicodrugrelevantproperties werestudied.

Materialsandmethods

Chemicals

Xanthine oxidase, xanthine, allopurinol, myricetin, and iso-quercetinwere purchased fromSigma Chemical(Seoul,Korea). Ferulicacid(2),gallicacid(6),andtheirestersweresuppliedby Hi-MediaLaboratories,Mumbai,India.Caffeicacid(3),sinapicacid (4),p-coumaric acid(1)procuredfromSigma–Aldrich,Mumbai, India.Cyclooxygenasefluorescentinhibitorscreeningassaykitwas obtainedfromCaymanChemicalCompany(AnnArbor,MI,USA). Bovinemilkxanthineoxidaseprocuredfrom(grade1,ammonium sulfatesuspension)Sigma–Aldrich,Mumbai,India.

CO2H R1

HO R2

1 R1=R2=H

2 R1=OCH3; R2=H

3 R1=OH; R2=H

4 R1=R2=OCH3

CO2CH3

CO2R H3CO

HO 5

HO

HO OH

6R=H

7 R=CH3

8 R=(CH2)2CH3

9 R=(CH2)11CH3

10 R=(CH2)17CH3

Anti-inflammatoryandcytotoxicityassay

Pro-inflammatorycytokine production by lipopolysaccharide (LPS) in THP-1 cells was measured according to the method

describedbyBandgaretal.(2009).Duringassay,THP-1cellswere culturedwithpenicillinandstreptomycin(100U/ml)and inocu-latedwith10%fetalbovineserum(FBS,JRH)inRPMI1640culture medium (GibcoBRL, Pasley,UK). Cells weredifferentiated with phorbol myristateacetate (PMA, Sigma). Following cellplating, thetestcompounds(10␮M) in0.5%DMSOwaspouredtoeach wellandtheplatewereincubatedfor30minat37◦C.Finally,LPS

(Escherichiacoli0127:B8,SigmaChemicalCo.,St.Louis,MO)was added,atafinalconcentrationof1␮g/mlineachwell.Plateswere furtherincubated at37◦C for24hin 5%CO

2.Afterincubation, supernatantswereharvested,andassayedforTNF-␣andIL-6by ELISAasdescribedbythemanufacturer(BDBiosciences,India).The cellsweresimultaneouslyevaluatedforcytotoxicityusingCCK-8 fromDojindoLaboratories.Percentinhibitionofcytokinerelease comparedtothecontrolwascalculated.Inthisthecytotoxicitywas checkedatlower,optimumandhigherconcentration(10,25and 50␮M),50%inhibitoryconcentration(IC50)valueswerecalculated byanonlinearregressionmethod(BandgarandGawande,2010; NileandKhobragade,2011).

InsilicopharmacologicalpropertyandSARstudy

The pharmacological properties of the compounds, such as molecularweight,cLogPandquantumchemicaldescriptorssuch asEHOMO(Energyofhighestoccupiedmolecularorbital)andELUMO (energyoflowestunoccupiedmolecularorbital)ofthesynthesized compoundswerecalculatedusing aBioMedCaChe 6.1(FujiSuit Ltd),acomputeraidedmoleculardesignmodelingtoolforwindows 98/20000/XP operating system.Other parameters suchas HBA (hydrogenbondacceptor),HBD(hydrogenbonddonor),molecular PSA(polarsurfacearea),drugscoreanddruglikenessofthe com-poundswerealsostudiedusingonlineOsirispropertyexplorerfor drugbioavailabilityofchemicalcompounds.Sincecompoundsare consideredfororaldelivery,theywerealsoassessedfortoxicity usinginsilicoADMEpredictionmethods(BandgarandGawande, 2010;NileandKhobragade,2011).

XOinhibitoryactivity

Xanthineoxidase(XO)activitywasassayed spectrophotomet-rically by measuring the uric acid formation at 290nm using a UV-visible spectrophotometer at 25◦C. The reaction mixture

contained50mMpotassiumphosphatebuffer(pH7.6),75␮M xan-thineand0.08unitsofXO.InhibitionofXOactivityofindividual isolatedphenolicsfrommaize(1.5ml,2mM),wasmeasuredby fol-lowingthedecreaseintheuricacidformationat293nMat25◦C.

The enzymewaspre incubatedfor 5min,withtest compound, dissolvedinDMSO(1%,v/v),andthereactionwasstartedbythe additionof xanthine.Finalconcentrationof DMSO(1%,v/v) did notinterferewiththeenzymeactivity.TheXOkineticstudywas carriedoutusingscreeningoftenferulicacidrelatedcompounds

(10,25,50and100␮g/ml)comparingwithallopurinol(10,25,50

and100␮g/ml)aspositivecontrol.Alltheexperimentswere

per-formedintriplicatesandIC50valueswereexpressedasmeansof threeexperiments(Nileetal.,2013;NileandPark,2014a).

COX-2inhibitoryactivity

(3)

Table1

Anti-inflammatoryactivityagainstTNF-␣andIL-6.

Samples %Inhibitionat10␮M

TNF-␣ IL-6 Toxicity

10␮M 25␮M 50␮M

p-Coumaricacid 30 60 0 1.3 3.2

Ferulicacid 40 72 0 1.5 4

Caffeicacid 35 68 0 1.6 3.5

Sinapicacid 23 56 0 2.1 4.5

Alkylferulates 20 40 0 2.4 5

Gallicacid 48 75 0 1.6 3.5

Methylgallate 16 30 0.4 3 8

Propylgallate 18 35 0 2 5

Laurylgallate 20 25 0.5 4 8

Stearylgallate 15 20 0.4 2 7

Dexamethasone 60 92 0 0 3

595nm.TheCOX-2assayconsistedofa200-␮lreactionmixture containing150␮lassaybuffer,10␮lheme,10␮lCOX-2,10␮l fluo-rometricsubstrate,and10␮loftenferulicacidrelatedcompounds (25,50,100␮g/ml)Thereactionswereinitiatedbyquicklyadding 10␮lAA,thenincubatingfor5minat37◦Ctemperature.Dup-697

wasusedasapositivecontrol.Alltheexperimentswereperformed intriplicatesand IC50 valueswereexpressedasmeansof three

experiments(Lietal.,2013;Mohapatraetal.,2015).

Statisticalanalysis

Alldataareexpressedasmean±SDoftriplicateexperiments.

Resultsanddiscussion

Anti-inflammatoryandcytotoxicityassay

Alltenferulicacidrelatedcompoundswereevaluatedfor anti-inflammatoryactivitybyTNF-␣andIL-6inhibitionassays.Notall ofthe compoundsshowed a promising TNF-␣ inhibitory activ-ity except gallic acid, ferulic acid, caffeic acid and p-coumaric acidupto30–40%at10␮Mconcentrations,alsoapromisingIL-6 inhibitoryactivitywasshownbysamecompoundsthatisby gal-licacid,ferulicacid,caffeicacidandp-coumaricacidupto60–75% inhibitionat10␮Mconcentration.Ascomparedtothestandard dexamethasone,theactivityresultsarerevealedtobe compara-ble assummarized in Table1. Mostof thecompounds didnot showsignificantcytotoxicityat10␮Mconcentrationexceptlauryl gallate,methylgallateandstearylgallateatverynegligiblelevel butathigherconcentrationsmanyofthecompoundsrevealedcell toxicity.Theresultspresentedforferulicacidrelatedcompounds revealed excellent anti-inflammatory activities as compared to dexamethasone,a knownanti-inflammatory agent.It is known that duringinflammation and associated processes, there is an increasedproductionofsuperoxideions.Itmaybepossiblethat theinhibitionofsuperoxidegenerationinperitonealmacrophages isrelatedtotheanti-inflammatoryactivityofferulicacidrelated compounds(Nileand Khobragade,2011;Nile andPark,2014d). Pro-inflammatorycytokinessuchasTNF-␣,andIL-6areproduced andplaycriticalrolesintheinflammationprocesses.Amongthese pro-inflammatorycytokines,TNF-␣hasbeenhighlightedrecently as a main mediator in the inflammatory diseases mechanism (Maxiaadetal.,2011).Highlevelsofpro-inflammatorycytokines, includingTNF,have beendetectedin psoriaticskinlesionsand jointsofpatientswiththeinflammatorydisease(Mease,2002). TNF-␣mayhaveasignificantroleinpathogenesisofseveral inflam-matorydiseases,suchaspsoriaticarthritis, juvenilerheumatoid arthritis,andCrohn’sdisease.DecreaseintheTNF-␣andanIL-6

levelbythesecompoundssuggeststhatitmaybeusefulina vari-etyofinflammatory conditions(Ellerinet al.,2003;Kueketal., 2007).

InsilicopharmacologicalpropertyandSARstudy

Toqualifythecompound asa drugcandidate,it isanalyzed bytheparameterssetbyLipinski’sruleoffiveusingOsiris prop-ertyexplorer.ThecLogPistheimportantphysiochemicalproperty indicating thelipophilicity and the ability ofmolecule tocross thevariousbiologicalmembranes.AccordingtoLipinski’sruleof fivethecLogPvaluebelow5isfeasibleforacompoundtobea futuredrug.Thealltenferulicacidrelatedcompoundsshoweda marginallipophilicitywithintherangeof4.0–5.0.Themolecular weightpropertyofthecompoundisrelatedtoitsinvivo adminis-tration.Alltheferulicacidrelatedcompoundshavethemolecular weightwithintheacceptablerange, thatis,400–500.The com-pounds showedtheHBA below10 and HBDbelow 5,which is alsowithinthelimitsetbyLipinski’srule.Thepolarsurfacearea (PSA)>140A2is thoughttohavelow oralbioavailability,which isalsorevealedwithintherangeforthesecompounds(Table2). Interestinglythecompoundsalsopresentedabetterdruglikeness values.Overall,thecompoundsferulicacid,gallicacid,caffeicacid andsinapicacidshowedagooddrugscore,calculatedby combin-ingallparameters.Drugtoxicityisafactorofgreatimportancefor apotentialcommercialdrug,sinceasignificantnumberofdrugs aredisapprovedinclinicaltrialsbasedontheirhightoxicityprofile (Bandgaretal.,2009;BandgarandGawande,2010).Thetoxicityof thecompoundsiscalculatedintermsofmutagenicity,tumorigenic, reproductivelyeffectiveandirritant.Allthecompoundswere con-firmedasnon-mutagenicandthereforewerebiologicallysafefor intake.

XOinhibitionbyferulicacidrelatedcompounds

(4)

Table2

Insilicopharmacologicalparametersforbioavailabilityofferulicacidrelatedcompounds.

Sample Molecularformula Molecular weight (g/mol)

Meltingpoint (◦C)

EHOMO ELUMO HBD HBA Mol.PSA cLogP Solubility Drug likeness

Drug score

p-Coumaricacid C9H8O3 164 212 −4.28 −0.65 0 4 56.20 4.45 −4.20 0.53 0.32 Ferulicacid C10H10O4 194 170 −5.52 −0.61 0 5 56.20 4.12 −4.50 0.52 0.40

Caffeicacid C9H8O4 180 224 −4.25 −0.58 0 4 56.20 4.60 −4.20 0.41 0.38

Sinapicacid C11H12O5 224 204 −5.34 −0.70 0 4 65.5 5.40 −5.34 −0.22 0.35 Alkylferulates C40H70O4 614 96 −9.55 −0.85 0 6 85.5 6.86 −8.50 0.85 0.28

Gallicacid C7H6O5 170 260 −4.10 −0.60 0 4 55.40 4.11 −4.10 0.55 0.38

Methylgallate C8H8O5 184 202 −4.61 −0.56 0 4 55.20 4.20 −4.22 −0.32 0.30 Propylgallate C10H12O5 212 150 −5.45 −0.55 0 5 60.5 5.10 −4.40 −0.23 0.25 Laurylgallate C19H30O5 338 98 −6.28 −0.68 0 5 72.5 6.85 −5.30 −0.42 0.22 Stearylgallate C25H42O5 423 105 −6.85 −0.75 0 6 75.5 6.20 −6.10 −0.65 0.20

InhibitionofCOX-2byferulicacidrelatedcompounds

Five ferulic acid related compounds demonstrated COX-2-inhibitingactivity(Fig.2), among whichgallic acid, ferulicacid andcaffeicacidshowedaninhibitor>50%at100␮g/ml.The mech-anism of anti-inflammatory action is assumed to be mediated throughtheinhibitionofCOX-1andCOX-2.Theseenzymes cat-alyzethebiosynthesisofprostaglandinH2 fromthearachidonic

acidsubstrate.TheinhibitionofCOX-1resultsinsomeundesirable side-effects,whereasCOX-2inhibitionprovidestherapeuticeffects inpain,inflammation,cancer,glaucoma,Alzheimer’sand Parkin-sondisease(BlobaumandMarnett,2007).Therefore,weintended toexaminetheCOX-1andCOX-2inhibitoryactivityofferulicacid relatedcompoundsdemonstratedonpurifiedenzymesasa mecha-nismofitstopicalanti-inflammatoryaction.Alsoitwasfoundthat manyphenolic compoundssuchaschlorogenicacid, gallicacid,

Concentration (μg/ml)

XO inhibitors

Inhibition r

atio (%)

IC

50

(

μ

g/mL)

20 0 20 40 60 80

0 20 30

10 40 50 60 70 80 100 120

A

B

40

p-Coumar ic acid

Fer ulic acid

Caff eic acid

Sinapic acid Alkyl f

erulates Gallic acid

Meth yl gallate

Prop yl gallate

Laur yl gallate

Stear

yl gallateAllopur inol

60 80 100

p-Coumaric acid

Ferulic acid

Caffeic acid

Alkyl ferulates

Gallic acid

Methyl gallate

Allopurinol

(5)

Concentration (μg/ml)

COX-2 inhibitors

Inhibition r

atio (%)

IC

50

(

μ

g/mL)

20 0

10 20 30 50

40

0 20 30

10 40 50 60 70 60 70

A

B

40

p-Coumar ic acid

Fer ulic acid

Caff eic acid

Sinapic acid Alkyl f

erulates Gallic acid

Meth yl gallate

Prop yl gallate

Laur yl gallate

Stear

yl gallate DUP-697

60 80 100

Ferulic acid

Caffeic acid

Gallic acid

DUP-697

Fig.2.(A)Inhibitionratio(%)and(B)thecalculatedIC50offerulicandgallicacidrelatedcompoundsforinhibitionofCOX-2.Thefivecompoundsdemonstrated COX-2-inhibitingactivityamongwhichferulicacid,caffeicacidandgallicacidshowedaninhibition>50%at100␮g/ml.DUP-697isapositivecontrol.

rosmarinicacid,catechin,hesperidin,hesperetin,lutenolin, narin-genin,naringinhavebeendemonstratedpossessingtheinhibitory effectforCOX-2expression(Rasoetal.,2001;Shenetal.,2008). Thustheresultindicatesthattheferulicacidrelatedcompounds mayreducetheinflammatoryactivitybyvirtue ofinhibition of COX-2enzymewhichprovidespro-inflammatoryactivity.

Theresultindicatesthattheferulicacidrelatedcompoundsmay reducetheinflammatoryactivitybyvirtueofinhibitionofxanthine oxidaseandCOX-2enzymewhichprovidepro-inflammatory activ-ity.Thesecompoundsmightbeactsasgood sourceofxanthine oxidaseandCOX-2inhibitoryagents,butfurtherinvivoandclinical studyshouldberequiredfortheircharacterizationasadrugagainst variousdiseasesanddisordersrelatedtoactivityofxanthine oxi-daseandCOX-2enzymes.Furthermoretheindividualtheferulic acidrelatedcompoundscanbesubjectedtooptimizationsoasto designand developalead anti-inflammatoryandantigoutdrug withanimprovedpotency.Fordevelopmentofrationaldrug devel-opmentagainstXOandcyclooxygenase-2itisimportanttocheck thestructure–activityrelationshipsandotherfactorsofrelatedto ferulicacidcompoundssuchasbindingaffinity,kineticparameters andchangesatactivesiteofthesestudiedenzymeswerediscussed, whichisexpectedforfurtherdrugdevelopmentanddesign.

Authors’contributions

SHNperformedthelaboratoryworkincludinginvitroxanthine oxidaseandcyclooxygenase-2activity,alsoinsilicostudyanddata analysis.VBassistedinanti-inflammatoryassays.DHKprovided idea andproject planwithsubsequent editing and checkingof manuscriptdataandSHNcontributedtocriticalreadingand writ-ingofthemanuscript.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

(6)

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest. Acknowledgement

ThisstudywassupportedbyKU-Researchprofessor program-2015,KonkukUniversity,Seoul,SouthKorea.

References

Aggarwal,B.B.,Prasad,S.,Reuter,S.,Kannappan,R.,Yadev,V.R.,Park,B.,Sung,B., 2011.Identificationofnovelanti-inflammatoryagentsfromayurvedicmedicine forpreventionofchronicdiseases:“reversepharmacology”and“bedsideto bench”approach.Curr.DrugTargets12,1595–1653.

Bandgar,B.P.,Gawande,S.S.,Bodade,R.G.,Gawande,N.M.,Khobragade,C.N.,2009. Synthesisandbiologicalevaluationofanovelseriesofpyrazolechalconesasan anti-inflammatory,antioxidantandantimicrobialagents.Bioorg.Med.Chem. 17,8168–8173.

Bandgar,B.P.,Gawande,S.S.,2010.Synthesisandbiologicalscreeningofa combina-toriallibraryof␤-chlorovinylchalconesasanticancer,anti-inflammatoryand antimicrobialagents.Bioorg.Med.Chem.18,2060–2065.

Bardin,T.,2004.Currentmanagementofgoutinpatientsunresponsiveorallergic toallopurinol.JointBoneSpine71,481–485.

Blobaum,A.L.,Marnett,L.J.,2007.Structuralandfunctionalbasisofcyclooxygenase inhibition.J.Med.Chem.50,1425–1441.

Choi,H.K.,Curhan,G.,2005.Gout:epidemiologyandlifestylechoices.Curr.Opin. Rheumatol.17,341–345.

Dincer,H.E.,Dincer,A.P.,Levinson,D.J.,2002.Asymptomatichyperuricemia:totreat ornottotreat.CleveClin.J.Med.69,594–600.

Ellerin,T.,Rubin,R.H.,Weinblatt,M.E.,2003.Infectionsandanti-tumornecrosis factor␣therapy.ArthritisRheumatol.48,3013–3022.

Hoorn,D.E.C.V.,Nijiveldt,R.J.,Leeuwen,P.A.M.V.,Hofman,Z.,M’Rabet,L.,Bont, D.B.A.D.,Norren,K.V.,2002.Accuratepredictionofxanthineoxidaseinhibition basedonthestructureofflavonoids.Eur.J.Pharmacol.451,111–118. Kuek,A.,Hazleman,B.L.,Östör,A.J.K.,2007.Immune-mediatedinflammatory

dis-eases(IMIDs)andbiologictherapy:amedicalrevolution.Postgrad.Med.J.83, 251–260.

Li,Y.,Frenz,C.M.,Li,Z.,Chen,M.,Wang,Y.,Li,F.,Luo,C.,Sun,J.,Bohlin,L.,Li,Z., Yang,H.,Wang,C.,2013.Virtualandinvitrobioassayscreeningof phytochem-icalinhibitorsfromflavonoidsandisoflavonesagainstxanthineoxidaseand cyclooxygenase-2forgouttreatment.Chem.Biol.DrugDes.81,537–544. Mandell,B.F.,2002.Hyperuricemiaandgout:areignofcomplacency.CleveClin.J.

Med.69,583–592.

Martinon,F.,Glimcher,L.H.,2006.Gout:newinsightsintoanolddisease.J.Clin. Invest.116,2073–2075.

Martinon,F.,Pétrilli,V.,Mayor,A.,Tardivel,A.,Tschopp,J.,2006.Gout-associated uricacidcrystalsactivatetheNALP3inflammasome.Nature440,237–241. Maxiaad,A.,Sannaad,C.,Frauad,M.A.,Pirasbd,A.,Karchulicd,M.S.,Kasture,V.,2011.

Anti-inflammatoryactivityofPistacialentiscusessentialoil:involvementofIL-6 andTNF-␣.Nat.Prod.Commun.6,1543–1544.

Mease,P.J.,2002.Tumournecrosisfactor(TNF)inpsoriaticarthritis: pathophysio-logyandtreatmentwithTNFinhibitors.Ann.Rheum.Dis.61,298–304. Mohapatra,S.,Kabiraj,P.,Agarwal,T.,Asthana,S.,Annamalai,N.,Arsad,H.,

Sid-diqui,M.H.,Khursheed,A.,2015.Targetingjatrophaderivedphytochemicalsto inhibitthexanthineoxidase&cyclooxygenase-2:insilicoanalysistowardsgout treatment.Int.J.Pharm.Pharm.Sci.7,360–363.

Nile,S.H.,Kumar,B.,Park,S.W.,2013.Invitroevaluationofselectedbenzimidazole derivativesasanantioxidantandxanthineoxidaseinhibitors.Chem.Biol.Drug. Des.82,290–295.

Nile,S.H., Park,S.W.,2014a.Antioxidant ␣-glucosidase andxanthine oxidase inhibitoryactivityofbioactivecompoundsfrommaize(ZeamaysL.).Chem.Biol. Drug.Des.83,119–125.

Nile,S.H.,Park,S.W.,2014b.Edibleberries:bioactivecomponentsandtheireffect onhumanhealth.Nutrition30,134–144.

Nile,S.H.,Park,S.W.,2014c.HPTLCanalysis,antioxidantandantigoutactivityof Indianplants.Iran.J.Pharm.Res.12,531–539.

Nile,S.H.,Park,S.W.,2014d.HPTLCanalysis,antioxidant,anti-inflammatoryand antiproliferativeactivitiesofArisaematortuosumtuberextract.Pharm.Biol.52, 221–227.

Nile,S.H.,Park,S.W.,2013. Totalphenolics, antioxidantand xanthineoxidase inhibitoryactivityofthreecoloredonions(AlliumcepaL.).Front.LifeSci.7, 224–228.

Nile,S.H.,Khobragade,C.N.,2011.Invitroanti-inflammatoryandxanthineoxidase inhibitoryactivityofTephrosiapurpureashootextract.Nat.Prod.Commun.6, 1437–1440.

Nuki,G.,Simkin,P.A.,2006.Aconcisehistoryofgoutandhyperuricemiaandtheir treatment.ArthritisRes.Ther.8,1–6.

Pouliot,M.,James,M.J.,McColl,S.R.,Naccache,P.H.,Cleland,L.G.,1998.Monosodium uratemicrocrystalsinducecyclooxygenase-2inhumanmonocytes.Blood91, 1769–1776.

Proestos,C.,Boziaris,I.S.,Nychas,J.E.,2005.Analysisofflavonoidsandphenolic acidsinGreekaromaticplants:investigationoftheirantioxidantcapacityand antimicrobialactivity.FoodChem.93,1998–2004.

Raso, G.M., Meli, R., DiCarlo, G., Pacilio, M., DiCarlo, R., 2001. Inhibition of induciblenitricoxidesynthaseandcyclooxygenase-2expressionbyflavonoids inmacrophageJ774A.LifeSci.68,921–931.

Ricciotti,E.,FitzGerald,G.A.,2011.Prostaglandinsandinflammation.Arterioscler. Thromb.Vasc.Biol.31,986–1000.

Imagem

Fig. 1. (A) Inhibition ratio (%) and (B) the calculated IC 50 of ferulic and gallic acid related compounds for inhibition of XO
Fig. 2. (A) Inhibition ratio (%) and (B) the calculated IC 50 of ferulic and gallic acid related compounds for inhibition of COX-2

Referências

Documentos relacionados

Por meio deles foi possível discutir, à luz de uma bibliografia referente ao NOF e à História Ambiental, o processo de ocupação e exploração regional de 1861 a

La educació matemátic refleja tambié Ia posició que Ias mat 10s profesionales de Iamisma tienen en Ia sociedad. Si se haceunaeducació especulativa o contemplativa,

Para as Despesas da Relação, recebem as multas AFONSO TRIGO e o porteiro da Chancelaria, e FERNÃO DA BRAGA está encarregue de as "pôr em receita". Dos dois titulares

La subsunción del afecto a la racionalidad programadora pauta tensiones del binarismo romántico bajo intenciones democráticas, que perduran más allá de sugestivas renovaciones

O texto está dividido em três seções: a primeira faz uma breve discussão da literatura sobre as relações entre Psicologia e Assistência Estudantil; na segunda, o

We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a

The HPLC chromatograms of phenolic compounds identified in the BRS Xiquexique cultivar and the standards of epicatechin, gallic acid, chlorogenic acid, and ferulic acid

em 1839, sendo também conhecido como o primeiro investigador a estudar materiais com estrutura tipo perovsquite. No entanto, Sasaki et al. tal como Buttner e Maslen afirmaram