• Nenhum resultado encontrado

Efficacy of new natural agents from Anacardiaceae extracts on dentin collagen crosslinking

N/A
N/A
Protected

Academic year: 2018

Share "Efficacy of new natural agents from Anacardiaceae extracts on dentin collagen crosslinking"

Copied!
7
0
0

Texto

(1)

Available

online

at

www.sciencedirect.com

ScienceDirect

j ou rn a l h o m epa ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Efficacy

of

new

natural

biomodification

agents

from

Anacardiaceae

extracts

on

dentin

collagen

cross-linking

M.A.

Moreira

a

,

N.O.

Souza

b

,

R.S.

Sousa

b

,

D.Q.

Freitas

b

,

M.V.

Lemos

b

,

D.M.

De

Paula

b

,

F.J.N.

Maia

c

,

D.

Lomonaco

c

,

S.E.

Mazzetto

c

,

V.P.

Feitosa

b,d,

aDentalSchool,FederalUniversityofCeara,CampusofSobral,Sobral,Brazil bDentalSchool,PPGO-UFC,FederalUniversityofCeara,Fortaleza,Brazil

cDepartmentofOrganicandInorganicChemistry,FederalUniversityofCeara,Fortaleza,Brazil dPauloPicanc¸oSchoolofDentistry,Fortaleza,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28March2017

Receivedinrevisedform7June2017 Accepted8July2017

Keywords:

Dentin Collagen Biomaterials Restorativedentistry Biomechanics

a

b

s

t

r

a

c

t

Objectives.Severalpolyphenolsfromrenewablesourcesweresurveyedfordentin biomodi-fication.However,phenolsfromcashewnutshellliquid(CNSL,Anacardiumoccidentale)and fromAroeira(Myracrodruonurundeuva)extracthaveneverbeenevaluated.Thepresent inves-tigationaimedtocomparethedentincollagencrosslinking(biomodification)effectiveness ofpolyphenolsfromAroeirastembarkextract,proanthocyanidins(PACs)fromgrape-seed extract(Vitisvinifera),cardolandcardanolfromCNSLafterclinicallyrelevanttreatmentfor oneminute.

Methods.Three-pointbendingtestwasusedtoobtaintheelasticmodulusoffully dem-ineralizeddentinbeamsbeforeandafterbiomodification,whilstcolorchangeandmass variationwereevaluatedafterfourweekswaterbiodegradation.Coloraspectwasassessed byopticalimagesafterbiodegradationwhereascollagencross-linkingwasinvestigatedby micro-Ramanspectroscopy.Statisticalanalysiswasperformedwithrepeated-measurestwo wayANOVAandTukey’stest(p<0.05).

Results. The increase in elastic modulus after biomodification was in the order car-dol>cardanol>aroeira=PACswithcardolsolutionachievingmean338.2% increase.The massincreaseafterbiomodificationfollowedthesameorderaforementioned.Nevertheless, afterfourweeksaging,morehydrophobicagent(cardanol)inducedthehighestresistance againstwaterbiodegradation.Aroeiraandcardolattainedintermediateoutcomeswhereas PACsprovidedthelowerresistance.Tannin-basedagents(AroeiraandPACs)stainedthe specimens indarkbrowncolor. Nocolor alterationwasobservedwithcardol and car-danoltreatments.Allfouragentsachievedcrosslinkinginmicro-Ramanafteroneminute application.

Significance.Inconclusion,majorcomponentsofCNSLyieldoverallbestdentin biomodifi-cationoutcomeswhenappliedforoneminutewithoutstainingthedentincollagen.

©2017TheAcademyofDentalMaterials.PublishedbyElsevierLtd.Allrightsreserved.

Correspondingauthorat:LabPPGO-UFC,DentalSchool,FederalUniversityofCeará,RuaMonsenhorFurtadoS/N,Fortaleza,CE60430350, Brazil.

E-mailaddresses:victorpfeitosa@hotmail.com,victor.feitosa@facpp.edu.br(V.P.Feitosa).

http://dx.doi.org/10.1016/j.dental.2017.07.003

(2)

1.

Introduction

Majordrawbacksindentinbondarerelatedtoenzymaticand hydrolyticdegradationofhybridlayerandresin-sparse colla-genmatrix[1].Itishypothesizedthatthequalityandlongevity ofthedentinadhesionmaybeimprovedbyincreasingthe dentin collagen mechanical properties [2]. In this regard, dentinbiomodificationimprovesthestiffnessoftheadhesive interfaceandprotectsthecollagenfibrilsfrombiodegradation bypromotingcollagencrosslinking[3].

A variety of crosslinking (biomodification) agents have provedtoeffectivelyincreasemechanicalpropertiesofdentin organic matrix [4]. Nevertheless, condensed tannins, also knownasproanthocyanidins(PACs),fromgrapeseedextract (Vitisvinifera)areagroupofplant-derivedpolyphenolswith highlight and high crosslink potential to collagen thereby providingbiostability[3,5–7].Thepositiveinfluenceofthese substancesonbondstrength[8]anddentinpropertiessuch asultimatetensile strength[4], resistanceto demineraliza-tion/biodegradation [9,10] and elastic modulus [11,12] was describedinseveralinvestigations.Duetothedarkcolorof PACssolution,themainshortcomingforitsclinicalusestillis therisktostaintoothsubstrates[13].

Further plant extracts from Anacardiaceae such as

Anacardiumoccidentale (cashew) andMyracrodruonurundeuva

(Aroeira) [14] have potential significant capabilities for application indentin biomodification.Cardol and cardanol are long carbon-chain phenols (Fig. 1) obtained from the

industrial extractionofcashew nutshell liquid (CNSL)[15]

during productionofnuts. They haveantioxidant capacity

[16,17],enzymeinhibitorypotential[18,19]andtwo hydrox-ylsinp-position(inthecaseofcardol)similartothoseofPACs (Fig.1).ExtractsofAroeirashowedanti-inflammatory prop-erties[20,21]andantimicrobialactivity[22].Moreover,major polyphenols of Aroeira are characterized by hydrolysable tannins [23] with high chemical interaction with proteins producingtannin-proteincomplexesrelativelyinsolubleand resistanttodegradation[24].

Although several plant-derived polyphenols were tested fordentincollagencrosslinking[25,26],cardol/cardanolfrom cashewnutshellliquidandAroeiraextracthaveneverbeen evaluated. Therefore, the aim ofthe present study was to determinetheeffectsofcardol,cardanolandAroeiraextract ascrosslinkersonmechanicalpropertiesanddegradationof demineralizeddentinincomparisontoPACswithinclinically relevantapplicationtime.Thehypothesistestedwasthat car-dol,cardanol,PACsandAroeiraprovidesimilarincreaseon elasticmodulusandmassvariationofdemineralizeddentin beams.

2.

Materials

and

methods

2.1. Preparationofbiomodificationsolutions

Cardolandcardanolwereobtainedfromindustrialcashewnut shellliquid(CNSL)suppliedbyAmendoasdoBrasilLTDA (For-taleza,Brazil)separatedemployingamethodologydescribed

Fig.1–Chemicalstructuresofbiomodificationagentssurveyed.(a)Mainpolyphenolfromaroeiraextract.(b)Major structureofproanthocyanidinsfromgrapeseedextract.(c)ChemicalstructureandNMRgraphofpurifiedcardanol.(d) ChemicalstructureofcardolwithitsrespectiveNMRgraph.*Descriptionofnuclearmagneticresonancegraphsand outcomesofgaschromatography/massspectroscopyanalyses:cardanol—Lightbrownoil,1HNMR(CDCl

3,ı):1,03(t);1,06;

1,08;1,36;1,45;1,50;1,71;2,19(t,2H);2,65;2,94;2,95;5,13(m)5,21(m);5,53(m);6,63(m,1H);6,65(m,1H);6,73(d,2H);7,13 (t,1H)ppm.GC/MS(EI):m/z=302.Cardol—Darkbrownoil,1HNMR(acetone-d6,ı):0,80(t);1,26(m);1,51(m);2,05(m);2,39

(3)

byLomonacoetal.[27].Theproductswerealsocharacterized bygaschromatography/mass spectrometry and 1H nuclear

magneticresonance (NMR) toensure their purity[27]. The CNSLcomponentsweredilutedinEtOH/H2O(1:1volumeratio)

at2wt% concentration. Aroeira extractwas obtained from commercial mastic stem bark (M&A Natural Products, For-taleza,Brazil) of M. urundeuva species through infusion in EtOH/H2O(1:1volumeratio)with15%bark(15gbarkin100mL

hydroethanolicsolution).After5minagitation in25◦C,the

mixturewasfilteredtwicetoobtain thesolutionofAroeira polyphenols with approximately 2% concentration, as the totalamountofpolyphenolsinAroeirastembarkis approx-imately 13% [23]. Proanthocyanidins (PACs) solution was preparedafterdissolving6.5%grapeseedextract(V.vinifera, MeganaturalGold,Madera,CA,USA)inEtOH/H2O(1:1volume

ratio)with5minagitationat25◦Candfinaldoublefiltering.

ThesolutionswerebufferedtopH7.2.Ethanol/watersolution wasemployedtostandardizethedissolutionofagents,once cardanolhasverylowsolubilityinonlydistilledwater. Chem-icalstructuresofmajorpolyphenolfromAroeira,monomeric unitofproanthocyanidinsfromgrape-seedextract,and struc-turesofcardolandcardanolaredepictedinFig.1.

2.2. Structuralcharacterizationofcardanolandcardol

NMR spectra were recorded on Avance DRX-500 (500MHz for 1H, Bruker, Bremen, Germany) using CDCl

3 as solvent

for cardanol, and acetone-d6 for cardol. The gas chro-matography/massspectrometryanalyseswereperformedon GC/MS QP-2010 Ultra (Shimadzu, Tokyo, Japan), equipped witha(5%-phenyl)-methylpolysiloxane(DB-5) capillary col-umn(30m×0.25mm),usinghelium(He)ascarriergasand

aflowrateof1mL/mininasplitlessmode.

2.3. Samplepreparation

Twentyfiveextractedcaries-free humanthirdmolarswere used in this study after approval by the Research Ethics CommitteeofFederalUniversityofCeará(protocol1482602). Teethwerecutwithslow-speedwater-cooleddiamondsaw (Isomet 4000; Buehler, Lake Bluff, USA). One 0.5mm-thick disk from middle coronal dentin was obtained from each tooth [12]. Disks were then sectioned into dentin beams (1.7mm×0.5mm×6mm).Atotalof75beamswereobtained

andwerecompletelydemineralizedin10%H3PO4solutionfor

5hat20◦C[12].Demineralizationwasconfirmedwithdigital

radiography.

2.4. Dentinbiomodification

Demineralized dentin beams (n=15/group) were randomly dividedinfivegroupsandtreatedwithdistilledwater(control) oroneofthefourbiomodificationsolutionstested(PACsfrom grapeseedextract,cardol,cardanolandAroeirabarkextract). Beforethetreatment,theinitialdryweightandinitialflexural modulus(three-pointbendingtest)wereassessedas previ-ouslydescribed[12].Forbiomodification,thedemineralized beamswereindividuallyimmersedin1mLofeachsolution for1min,tosimulateaclinicallyrelevanttime.Afterwards, beamswerevigorouslyrinsedwithdistilledwaterfor30sto

removeunboundcrosslinkers.Theflexuralmoduluswas re-assessed immediately afterimmersion,and treatedbeams were individually storedin 1mL artificial salivacontaining 5mMHEPES,2.5mMCaCl2,0.05mMZnCl2and120mMNaCl

(pH7.4)at37◦Cforfourweekstoundertakecollagen

degrada-tion[28].

2.5. Elasticmodulus

Specimens were testedon three-pointbending set-up ina universaltestingmachine(Instron4484;InstronInc.,Canton, USA), witha 5Nload cell at0.5mm/mincrosshead speed. Load–displacement curves were converted to stress–strain curves.Widthandthicknessofthespecimensweremeasured andtheapparentelasticmoduluswascalculatedat3%strain aspreviouslydescribed[12].DatawereexpressedinMPa,and thepercentagevariationinelasticmoduluswascalculatedas theratioofthefinalvalue(afterbiomodification)totheinitial values(baseline).

2.6. Masschange

Demineralizeddentinbeamswereweighed before(M1)and

after(M2)dentinbiomodificationwithananalyticalbalance

(0.01mgprecision,AUX-220,Shimadzu,Tokyo,Japan).Further massassessmentwassurveyedafter4weeksdegradationin artificialsaliva(M3).Ineachperiod,specimenswereinitially

driedinavacuumdesiccatorcontainingsilicagelbeadsfor 72hatroomtemperature.Massvariation(Wmc%)was

deter-mined as the percentage ofgain or lossin mass foreach specimenaspreviouslydescribed[12]basedonthefollowing formulaforbiomodification:

Wmc(%)= [(M2×100)/M1]−100,

where M1 is the demineralized dentin beam mass before

dentin biomodification and M2 is the massof biomodified

dentinmatrix. Moreover,to assess the biodegradation per-centagemassvariation,thefollowingformulawasused:

Wde(%)= [(M3−M1)×100]/M1,

where M1 is the demineralized dentin beam mass before

dentinbiomodificationandM3isthemassofdentinmatrix

after four weeksartificial salivaimmersion. Afterthe final weighing,pictures ofeachspecimenwereobtainedusinga professional camera(Canon, Tokyo,Japan)withMacro lens (100mm,Canon)inordertoobservethefinalcolorandaspect ofbiomodifieddemineralizeddentinbeams.

2.7. Micro-Ramanspectroscopy

Vibrationalanalysisofthe demineralizeddentinspecimens beforeandafterbiomodificationtreatmentasaforementioned was assessed using the Micro-Raman spectrophotometer (Xplora,HoribaJobinYvon,Paris,France)calibratedinternally inzerousingthesiliconstandardsampleprovidedbythe man-ufacturer.TheconfigurationoftheequipmentwereHeNelaser with 3.2mW power, 633nmlaser wavelength, 10s acquisi-tiontime,5accumulations,1.5␮mspatialresolution,2.5cm−1

(4)

Table1–Mean(SD)ofelasticmodulus(MPa)ofdemineralizeddentinspecimens.

Initialmodulus(MPa) Modulusaftertreatment(MPa) Elasticmodulusvariation(%)

Control(H2O) 2.76(0.8)a 2.62(0.6)a -5.0(2.3)D

Grapeseedextract 2.45(0.7)a 3.83(0.9)b 56.3(5.0)C

Cardol 2,23(0.5)a 9.78(2.1)d 338.2(45.1)A

Cardanol 2.91(1.1)a 6.11(1.4)c 109.9(16.0)B

Aroeirabarkextract 2.92(0.9)a 4.66(1.2)b 59.5(7.9)C

Differentcapitallettersdepictsignificantdifferenceinpercentagevariation(p<0.05)whilstdifferenttinylettersindicatestatisticaldifference onelasticmodulus(p<0.05).

UK)and60×70␮mfieldarea.Forobservationofdentin

col-lagencross-linking,the rangewas700–1800cm−1 tosurvey peaks/shouldersat1117cm−1 and1235cm−1accordingtoa previousinvestigation[29].Ramananalyseswereperformed intriplicatepergroup.

2.8. Statisticalanalysis

Analysisofelasticmodulusdatawascarriedoutviaone-way repeated-measuresANOVA(biomodificationagent),followed by Tukey’s post hoc test (p<0.05), after passing normality (p=0.657)andequalvariance(p=0.335)tests.Thedataof per-centagemodulusvariationresults,percentagemasschange after biomodification, and percentage mass variation after 4weeksdegradation were separately analyzed byone-way ANOVAandTukey’stest(˛=5%).

3.

Results

NMR analysis demonstrated 99.8% purityand detection of solelycardanol (Fig. 1c) andcardol (Fig.1d) structures sep-arately.Means ofelastic modulusand standard deviations are presented in Table 1. The statistical analysis depicted significantdifferencesbetweenbiomodificationgroupswhen compared to control group (p<0.05). Modulus was signifi-cantlyincreasedbybiomodificationregardlesstheagentused. Thehigherresultswereobservedwhenusingcardol(mean 338.2%increase)followedbycardanol(mean109.9%increase). ThetreatmentswithAroeira(mean59.5%increase)and proan-thocyanidinsfromgrape-seedextract(mean56.3%increase) werestatisticallysimilarandachievedhighermodulusthan control(distilledwater),butlowerthanCNSLreagents.

MasschangeoutcomesareshowninTable2.Cardol pro-vided the highestincrease ofweightafter biomodification, followed by cardanol. Aroeira (mean 8.6%) and PAC(mean 9.1%) induced similar mass increase (p=0.739). After four weekswaterdegradation,controldemonstratedmean39.5% massdecrease which wasstatistically similar (p=0.892) to PAC (mean 38.6% decrease). Cardol and Aroeira presented

Table2–Mean(SD)ofmassvariation(%)ofdentin specimens.

Massvariation(%) Afterbiomodification 4weeks degradation

Control(distilledwater) +0.8(0.3)d −39.5(6.9)C Grapeseedextract +9.1(3.0)c −38.6(4.3)C

Cardol +22.9(5.8)a −21.5(2.9)B

Cardanol +15.1(2.2)b −5.0(2.3)A

Aroeirabarkextract +8.6(1.8)c −19.8(7.6)B

Differentlettersindicatestatisticallysignificantdifference(p<0.05) withineachcolumn.

lowermassreduction(mean21.5%and19.8%respectively)in comparisontocontrolandPAC(p<0.05). Cardanolafforded thehighestresistanceagainstbiodegradationwithmean5% massdecrease.

Representativepicturesofspecimensafterbiodegradation arepresentedinFig.2.Darkcolorwasobservedinspecimens treatedwithPACandAroeirawhilstthosetreatedwith car-dolandcardanoldidnotdemonstratesignsofpigmentation. Controlspecimensdepictedaspectofhighlydegraded dem-ineralizeddentin.Ramanspectra(Fig.3)showed,forallfour biomodificationagents,emergenceofashoulderat approxi-mately1117cm−1andincreaseofapeakat1235cm−1which

representscollagencrosslinking.

4.

Discussion

Thepresentstudydeterminedtheeffectivenessofthreenew plant-derivedcompoundsasbiomodifiersinfully demineral-izeddentin.Itwasobserveddifferencesinspecimens’elastic moduli among experimentalsolutions, and biodegradation rateswerestrikinglydistinct.Therefore,thetestedhypothesis needstoberejected.

Crosslinkingofdentinmayaffordstabilization, biodegra-dationresistanceandstrengtheningtocollagenmatrix[26]. Morestableandresistantcollagennetworkishighly signifi-cantforitsfunctionasascaffoldsubstratefordentaladhesive infiltration [30]. The use of biomodification agents is

(5)

Fig.3–Vibrationalspectraofmicro-Ramananalysisfromsamespecimensbeforeandafter1minbiomodification treatment.Allreagentsinducedemergenceofshoulderat∼1117cm−1(blackarrow)andincreaseofAmideIIIpeakat

1235cm−1(dottedline)whichdemonstratescollagencrosslinkingaccordingtoLiuetal.[29].(A)Spectraoftreated(black)

anduntreated(grey)specimenssubjectedtotreatmentwithproanthocyanidinsofgrapeseedextract.(B)Spectraoftreated (black)anduntreated(grey)specimenssubmittedtotreatmentwithAroeiraextract.(C)Spectraoftreated(black)and untreated(grey)specimenswhichundergonetreatmentwith2wt%cardolsolution.(D)Spectraoftreated(black)and untreated(grey)specimenssubjectedtotreatmentwith2wt%cardanolsolution.

posed to improve mechanical properties of the dentin, to increaseresin–dentinbondstrength,toreducebiodegradation ratesofdemineralizedcollagenand,consequently,toextend thelongevityofadhesiverestorations[2,4,31].However,one limitationofthe present investigation andresearch design comprises the usageof0.5mm-thick demineralized dentin specimens,whilstthephosphoricaciddemineralized thick-nessofdentinin the clinicalscenario representsonlyfew micrometers[10].Indeed,thecross-linkingpotentialoftested biomodificationagentsmightbeimprovedinathinnerzone forinteraction.

Tannins are naturaland biocompatible polyphenols [14]

withoutstandingpotentialasbiomodificationagents[26]due totheirhighmolecularweightandtendencytoformcomplex aggregateswithproteins.Inthisstudy,twomaincategories oftanninsweretested:thehydrolysabletannins,whichare presentinAroeirabarkextracts(M.urundeuva)[23]and con-densed tannins or proanthocyanidins (PACs), the principal polyphenolsofgrape-seedextract[26].Furthermore,wetested cardolandcardanolfromCNSL.Toourknowledge,thisisthe firststudytosurveycardanolandcardolfordentininteraction (anddentalresearch).

Biomodificationagentswithlowermolecularweight(such ascardolandcardanol)mayattaingreaterandfaster pene-trationindentincollagenmatrix[32],whichmayexplainthe highestincreaseinmassandinelasticmodulusafter1min applicationofcardolandcardanolsolutions(Tables2and1

(6)

and grape-seedextract areunlikely toinduce formationof hydrophobicinteractions.

Apartfromtheincreaseinelasticmodulus,the biodegrada-tionresistanceisrelatednotonlytotheformationofcollagen crosslinks,butalsowiththehydrophilicityofthe biomodifica-tionagent[7].Cardolandcardanolarerelativelyhydrophobic incomparisonwithtannins,buttheformerisslightlymore hydrophilic than the latterdue tothe additionalhydroxyl. Morehydrophobicfeatureofcardanoljeopardizesthedentin diffusionandincreaseofmassaftertreatment.However, col-lagenfibrilsconnectedwithcardanolmoleculesmighttendto becomemorehydrophobic,avoidingthewaterseepage dur-ing 4-week storageand consequently diminishing collagen degradation(Table2).

AlthoughPACspresentmultiplefreephenolfunctionalities (Fig.1b),theoligomericstructureswhichhavehigh biomod-ification potency [33], also have higher molecular weight, whatcouldjustifytheirslowerdiffusionincollagenmatrix, thereby explaining the reduced effectiveness in increasing elasticmodulusanddegradationresistancewhenappliedfor 1min.MostinvestigationsdepictedtheefficacyofPACsfrom grape-seedextractwhentheywereappliedfor1horlonger periods[4,11,12]. However,theefficacy ofPACsinclinically relevantapplicationtimehasalsobeendemonstratedinthin (fewmicrometers)demineralizeddentinlayer[10].

Hydrolysable tannins were related tosome interactions withproteins[23].However,noneofthebiomodification stud-ieshavetestedtheireffectsonthedentincollagenmatrix[26]. Aroeirabarkextracthasrepresentativehydrolysabletannins withmanygalloylgroups(Fig.1a)whichareabletointeract through hydrogen bondswiththe side chainsofhydroxyl, carboxyl-amineor amidegroups ofthecollagen molecules

[5]andcapableofinducingmorecovalentandnon-covalent bonds[3,26]. The formation ofthese hydrogen bondsmay occurlately afterpartialhydrolysisofthepolyphenols dur-ingwaterstorage.Therefore,althoughthepositiveeffecton elasticmoduluswassimilar(Table1)betweenbothtannins (PACs and Aroeira), the degradation resistance after using hydrolysabletannins(Aroeirabarkextract)solutionwas aug-mentedincomparisonwithPACs(Table2),likelyduetolater formationofcollagencrosslinks.

One of the benefits of using biomodification agents to crosslink dentinal collagen is that during formation of crosslinker-protein bonds, they may remove proteoglycans fromdentinmatrix,replacewaterboundtofibrillarcollagen andreducehydrophilicity[7]whatmayalsoaffordhigher dif-fusionofresinmonomersinto thefully expandedcollagen network[32].Hence,theyare abletoreducebiodegradation rates[26,31].Indeed,suchmechanismofimprovingadhesive penetrationandincreasinglongevityofadhesiveinterfaces needstobeverifiedforthesenewbiomodificationagents sur-veyedinthisstudy.

DentinspecimenstreatedwithPACsandAroeirapresented brownishcolor (Fig.2).This colorchange outcome may be attributedtotheiroxidativeproperties,darkcolorofsolutions and content of polymeric high-molecular weight polyphe-nols[13,14,26].Althoughpurecardolandcardanolare dark oils,their solutionsare transparent andtreated specimens didnotdepictnoteworthycoloralteration(Fig.2).Thismay be explained by their lower molecular weight and lesser

capacitytoformpolymericstructures.Infact,thecolor sta-bilityofdentinafterbiomodificationwithcardanolandcardol mightbeconsideredanotheradvantagefortheirclinicaluse andadrawbackwhenusingPACsandAroeirasolutions.

Cardolandcardanolcorrespondtomorethan95%ofthe compositionoftechnicalcashewnutshellliquidproducedin theindustries[27].Suchliquidisaproductofdiscard (byprod-uct) resultedfromtheboiling ofnutsand itwasestimated thatonemilliontonsareproducedyearlyworldwide[34].This liquidcannotbereleasedintheenvironment[27]duetoits veryslownaturalbiodegradation.Therefore,dental applica-tionofcardolandcardanolmayrepresentasortof“recycling” processtherebyprovidingusefulutilizationinrestorative den-tistrywithsustainability.

Cardol and cardanol are non-cytotoxic [15] compounds in low concentrations possessing antioxidant effects [16]

and,similar toPACs[13], theypresent inhibitionofmatrix metalloproteinase-2 and matrix metalloproteinase-9 [18]. Bothcardolandcardanoldemonstratedremarkablepotential asdentinbiomodificationagentsinthepresentinvestigation asalsodemonstratedbymicro-Ramanspectroscopy(Fig.3), attaining thehighestincreaseinstiffnessofdemineralized dentin and resistance to degradation without specimens’ staining.

Furthermore,unlikepolyphenolsfromAroeiraandPACs, bothreagentsaresinglemolecules(Fig.1)pronetochemical synthesisofdentalmonomerswhichwouldaffordthe design-ingofcollagen-bindingandcollagen-crosslinkingmonomers withsubstantialperspectivefordentinbond.Indeed,further studiesareneededtounderstandlong-termbenefitsofthese

Anacardiaceae derived crosslinkers aswell astheir biocom-patibility with odontoblast-like cells. In conclusion, cardol demonstrated the highest potential to increase the elastic modulusofdemineralizeddentinwhilstcardanoltreatment attainedthelowestdegradation.Bothreagentsfromcashew nutshellliquidachievedoverallbestoutcomeswithout stain-ingdentinspecimens.

Acknowledgment

This research was supported by CNPq-Brazil (grant 457931/2014-0). The authors have no financial interest in anyoftheproductsusedinthisstudy.

r

e

f

e

r

e

n

c

e

s

[1] HashimotoM.Areview—micromorphologicalevidenceof degradationinresin–dentinbondsandpotential

preventionalsolutions.JBiomedMaterResBApplBiomater 2010;92(1):268–80.

[2] FangM,LiuR,XiaoY,LiF,WangD,HouR,etal.

Biomodificationtodentinbyanaturalcrosslinkerimproved theresin-dentinbonds.JDent2012;40(6):458–66.

[3] VidalCMP,AguiarTR,PhansalkarR,McAlpineJB,Napolitano JG,ChenSN,etal.Galloylmoietiesenhancethedentin biomodificationpotentialofplant-derivedcatechins.Acta Biomater2014;10(7):3288–94.

(7)

forpotentialpreventiveandreparativetherapies.Acta Biomater2011;7(4):1735–41.

[5] HanB,JaurequiJ,TangBW,NimniME.Proanthocyanidin:a naturalcrosslinkingreagentforstabilizingcollagen matrices.JBiomedMaterResA2003;65(1):118–24.

[6] Bedran-RussoAK,VidalCM,DosSantosPH,CastellanCS. Long-termeffectofcarbodiimideondentinmatrixand resin-dentinbonds.JBiomedMaterResBApplBiomater 2010;94(1):250–5.

[7] LemeAA,VidalCMP,HassanLS,Bedran-RussoAK.Potential roleofsurfacewettabilityonthelong-termstabilityof dentinbondsaftersurfacebiomodification.JBiomech 2015;48(10):2067–71.

[8] Al-AmmarA,DrummondJL,Bedran-RussoAK.Theuseof collagencrosslinkingagentstoenhancedentinbond strength.JBiomedMaterResBApplBiomater 2009;91(1):419–24.

[9] PavanS,XieQ,HaraAT,Bedran-RussoAK.Biomimetic approachforrootcariespreventionusinga

proanthocyanidin-richagent.CariesRes2011;45(5):443–7.

[10] LiuY,ChenM,YaoX,XuC,ZhangY,WangY.Enhancement indentincollagen’sbiologicalstabilityafter

proanthocyanidinstreatmentinclinicallyrelevanttime periods.DentMater2013;29(4):485–92.

[11] CastellanCS,PereiraPNR,GrandeRHM,Bedran-RussoAK. Mechanicalcaracterizationofproanthocyanidin–dentin matrixinteraction.DentMater2010;26(10):968–73.

[12] AguiarTR,VidalCMP,PhansalkarRS,TodorovaI,Napolitano JG,McAlpineJB,etal.Dentinbiomodificationpotential dependsonpolyphenolsource.JDentRes2014;93(4):417–22.

[13] ScheffelDLS,HeblingJ,ScheffelRH,AgeeK,TurcoG, Souza-CostaCA,etal.Inactivationofmatrix-boundmatrix metalloproteinasesbycrosslinkingagentsinacid-etched dentin.OperDent2014;39(2):152–8.

[14] MachadoAC,DezanJuniorE,Gomes-FilhoJE,CintraLTA, RuviéreDB,ZoccalR,etal.Evaluationoftissuereactionto Aroeira(Myracrodruonurundeuva)extracts:ahistologicand edemogenicstudy.JApplOralSci2012;20(4):414–8.

[15] ChandregowdaV,KushA,ReddyGC.Synthesisof

benzamidederivativesofanacardicacidandtheircytotoxic activity.EurJMedChem2009;44(6):2711–9.

[16] TrevisanMTS,PfundsteinB,HaubnerR,WürteleG, SpiegelhalderB,BartschH,etal.Characterizationofalkyl phenolsincashew(Anacardiumoccidentale)productsand assayoftheirantioxidantcapacity.FoodChemToxicol 2006;44(2):188–97.

[17] KuboI,MasuokaN,HaTJ,TsujimotoK.Antioxidantactivity ofanacardicacids.FoodChem2006;99(3):555–62.

[18] OmanakuttanA,NambiarJ,HarrisRM,BoseC,Pandurangan N,VargheseRK,etal.Anacardicacidinhibitsthecatalytic activityofmatrixmetalloproteinase-2andmatrix metalloproteinase-9.MolPharmacol2012;82(4):614–22.

[19] MasuokaN,NiheiK,MaetaA,YamagiwaY,KuboI. Inhibitoryeffectsofcardolsandrelatedcompoundson superoxideaniongenerationbyxanthineoxidase.Food Chem2015;166:270–4.

[20] SouzaSMC,AquinoLCM,MilachJrAC,BandeiraMA,Nobre ME,VianaGSB.Antiinflamatoryanantiulcerpropertiesof

tanninsfromMyracrodruonurundevaAllemão

(Anacardiaceae)inrodents.PhytotherRes2007;21(3):220–5.

[21] VianaGS,BandeiraMA,MatosFJA.Analgesicand antiinflamatoryeffectsofchalconesisolatedfrom MyracrodruonurundevaAllemão.Phytomedicine 2003;10(2–3):189–95.

[22] FariasDF,SouzaTM,VianaMP,SoaresBM,CunhaAP, VasconcelosIM,etal.Antibacterial,antioxidantand anticholinesteraseactivitiesofplantseedextractsfrom Braziliansemiaridregion.BiomedResInt2013;2013,article ID510736.

[23] CalouI,BandeiraMA,Aguiar-GalvãoW,CerqueiraG, SiqueiraR,NevesKR,etal.Neuroprotectivepropertiesofa standardizedextractfromMyracrodruonurundeuvaFr.All. (AroeiradoSertao),asevaluatedbyaParkinson´ısdisease modelinrats.ParkinsonsDis2013;2014,articleID519615.

[24] SchofieldP,MbuguaDM,PellAN.Analysisofcondensed tannins:areview.AnimFeedSciTechnol2001;91(1–2):21–40.

[25] CastellanCS,Bedran-RussoAK,KarolS,PereiraPN. Long-termstabilityofdentinmatrixfollowingtreatment withvariousnaturalcollagencross-linkers.JMechBehav BiomedMater2011;4(7):1343–50.

[26] Bedran-RussoAK,PauliGF,ChenSN,McAlpineJ,Castellan CS,PhansalkarRS,etal.Dentinbiomodification:strategies, renewableresourcesandclinicalapplications.DentMater 2014;30(1):62–76.

[27] LomonacoD,MaiaFJN,MazzettoSE.Thermalevaluationof cashewnutshellliquidasnewbioadditivesforpoly(methyl methacrylate).JThermAnalCalorim2013;111:619–26.

[28] Tezvergil-MutluayA,Seseogullari-DirihanR,FeitosaVP,Tay FR,WatsonTF,PashleyDH,etal.Zoledronateand

ion-releasingresinsimpairdentincollagendegradation.J DentRes2014;93(10):999–1004.

[29] LiuY,BaiX,LiS,LiuY,KeightleyA,WangY.Molecular weightandgalloylationaffectgrapeseedextract constituents’abilitytocross-linkdentincollagenin clinicallyrelevanttime.DentMater2015;31(7):814–21.

[30] Bedran-RussoAK,YooKJ,EmaKC,PashleyDH.Mechanical propertiesoftannic–acidtreateddentinmatrix.JDentRes 2009;88(9):807–11.

[31] TjäderhaneL,NascimentoFD,BreschiL,MazzoniA, TersariolILS,GeraldeliS,etal.Optimizingdentinbond durability:controlofcollagendegradationbymatrix metalloproteinasesandcysteinecathepsins.DentMater 2013;29(1):116–35.

[32] EpasingheDJ,YiuCKY,BurrowMF,TsoiJKH,TayFR.Effectof flavonoidsonthemechanicalpropertiesofdemineralized dentine.JDent2014;42(9):1178–84.

[33] NamJW,PhansalkarRS,LankinDC,BissonJ,McAlpineJB, LemeAA,etal.SubtlechemicalshiftsexplaintheNMR fingerprintsofoligomericproanthocyanidinswithhigh dentinbiomodificationpotency.JOrgChem

2015;80(15):7495–507.

Imagem

Fig. 1 – Chemical structures of biomodification agents surveyed. (a) Main polyphenol from aroeira extract
Fig. 2 – Color aspect of demineralized dentin specimens after four weeks biodegradation in artificial saliva
Fig. 3 – Vibrational spectra of micro-Raman analysis from same specimens before and after 1 min biomodification treatment

Referências

Documentos relacionados

Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly

N a segunda parte do livro, a autora analisa os primeiros anos da década de 1960, período em que parecia realizar-se, finalmente, o sonho do Brasil moderno, isto é, o Brasil urbano

e) Intensificar, junto à comunidade, campanhas educativas de conscientização ambiental; f) Incentivar a participação e a colaboração das famílias dos alunos na execução

A ideia era, inicialmente, elaborar um panorama dos processos de etnogênese quilombola na Bahia, fundamentado nos relatórios de identificação e delimitação

Assentar-se-ão peitoris e soleiras em granito regional em todos os vãos. Todas as cantarias serão em granito serrado, com pelo menos 13 cm de espessura.. O trabalho dos arquitectos

136 Figura 63 - Effect of the pH conditions at cathodic and anodic reservoirs during the ESR for removing petroleum from soil by applying different currents see Table 12.. 137 Figura

From 96 anterior mandibular human extracted incisor teeth, 192 dentin blocks of buccal and lingual surface were obtained and randomly divided into 6 groups: Cont- control group,

Bovine roots were endodontically treated and divided randomly into four groups (n=12): Group C - conventional cementation (control); Group SA - sonic vibration (Smart Sonic