• Nenhum resultado encontrado

O QUE TEM SIDO PESQUISADO EM TRANSMATEMÁTICA NO HCTE

N/A
N/A
Protected

Academic year: 2021

Share "O QUE TEM SIDO PESQUISADO EM TRANSMATEMÁTICA NO HCTE"

Copied!
7
0
0

Texto

(1)

O QUE TEM SIDO PESQUISADO EM TRANSMATEMÁTICA NO HCTE

Tiago S. dos Reis Doutorando HCTE/UFRJ Professor IFRJ - Volta Redonda tiago.reis@ifrj.edu.br

RESUMO: O doutoramento deste autor tem como tema a transmatemática, matemática que permite a divisão por zero. Neste texto fazemos uma síntese de alguns tópicos que têm sido pesquisados até o presente momento. A transmatemática teve início com a proposta dos números transreais por parte de James Anderson. O transreais são uma extensão dos números reais na qual a divisão por zero é permitida. Neste texto, comentamos nossa proposta de fundamentação dos transreais a partir dos reais. Fundamentação esta que demonstra a consistência dos números transreais e sua aritmética. Comentamos a extensão do cálculo real a um cálculo transreal, a concepção dos números transcomplexos e o uso da aritmética transreal no estudo de lógicas não-clássicas.

PALAVRAS-CHAVE: Transmatemática; Números Transreais; Números Transcomplexos; Transcálculo.

1. Introdução

O conjunto dos números transreais consiste em ℝ𝑇 = 𝑥

𝑦; 𝑥, 𝑦 ∈ ℝ e 𝑦 ≥ 0 , onde 𝑥

𝑦 =

𝑤

𝑧 se, e só se, 𝑥 = 𝛼𝑤 e 𝑦 = 𝛼𝑧 para algum 𝛼 ∈ ℝ positivo. Desta forma, os números transreais são formados pelos números reais adicionados de −1

0, 1 0 e

0

0. Este novo conjunto numérico, que permite a divisão por zero, foi proposto pelo cientista da computação James Anderson. Anderson define −∞ =−1

0 , ∞ = 1

0 e Φ = 0

0 e os chama, respectivamente, de menos infinito, infinito e nullity (ANDERSON, 2005). Não nos alongaremos na apresentação dos transreais, pois uma introdução a estes novos números já foi feita em (GOMIDE, 2012) e (REIS et al, 2013). A seguir, fazemos um breve resumo de alguns tópicos pesquisados durante o doutoramento deste autor, no HCTE, sobre a transmatemática - matemática que permite a divisão por zero.

(2)

2. Algumas pesquisas em transmatemática

2.1 Fundamentação dos números transreais

Em (REIS e GOMIDE, 2014) propomos uma construção do conjunto dos números transreais a partir dos números reais. James Anderson introduziu os transreais de forma intuitiva e axiomática. Anderson et al (2007) apresentam uma lista de trinta e dois axiomas que estabelecem a aritmética e a ordem dos números transreais. Do ponto de vista formalista, não há problema na apresentação de James Anderson, uma vez que seus axiomas não apresentaram inconsistências e os próprios autores de (Anderson et al, 2007) afirmam ter uma máquina de prova que estabelece a consistência dos axiomas da aritmética transreal. Entretanto, do ponto de vista construtivista, paira uma dúvida. Os números transreais "existem" de fato? Existe algum modelo sobre os números reais que contemple a aritmética transreal? Algum significado pode ser dado à divisão por zero? Observe que, com seus axiomas, Anderson estabelece um sistema que contém a divisão por zero, entretanto ele não dá uma definição, nem um sentido, a esta operação. Em (REIS e GOMIDE, 2014) fazemos uma construção do conjunto dos números transreais a partir dos números reais. Desta forma, os números transreais e sua aritmética e ordem ficam estabelecidos, não apenas de forma axiomática, mas de forma construtiva. Assim, a consistência dos transreais fica fundamentada na consistência dos reais. E, além disso, esta construção dá um significado, ainda que analítico, não necessariamente contextual, à divisão por zero. A seguir fazemos um breve resumo do exposto no texto citado. No conjunto 𝑇 = 𝑥, 𝑦 ; 𝑥, 𝑦 ∈ ℝ, 𝑦 ≥ 0 definimos a seguinte relação: 𝑥, 𝑦 ~(𝑤, 𝑧) se, e só se, existe 𝛼 ∈ ℝ+ tal que 𝑥 = 𝛼𝑤 e 𝑦 = 𝛼𝑧. E mostramos que ~ é uma relação de equivalência, isto é, ~ satisfaz as propriedades, para todos 𝑥, 𝑦 , 𝑤, 𝑧 , 𝑢, 𝑣 ∈ 𝑇: (reflexiva) 𝑥, 𝑦 ~(𝑥, 𝑦), (simétrica) 𝑥, 𝑦 ~(𝑤, 𝑧) ⇒ 𝑤, 𝑧 ~(𝑥, 𝑦) e (transitiva) 𝑥, 𝑦 ~(𝑤, 𝑧) e 𝑤, 𝑧 ~ 𝑢, 𝑣 ⇒ 𝑥, 𝑦 ~(𝑢, 𝑣). Em seguida, denotando por [𝑥, 𝑦] a classe de equivalência do par (𝑥, 𝑦) , mostramos que o conjunto quociente de 𝑇 com respeito a ~, 𝑇/~, isto é, o conjunto de todas as classes de equivalência, é formado pelas classes do tipo [𝑡, 1] onde 𝑡 ∈ ℝ e, apenas, mais três classes: −1,0 , [1,0] e [1,0] . Isto é, 𝑇/~ = 𝑡, 1 ; 𝑡 ∈ ℝ ∪ { −1,0 , 1,0 , [1,0]} . Continuando, definimos em 𝑇/~ as

(3)

operações aritméticas, (adição) 𝑥, 𝑦 + 𝑤, 𝑧 = 2𝑥, 𝑦 , se 𝑥, 𝑦 = 𝑤, 𝑧 𝑥𝑧 + 𝑤𝑦, 𝑦𝑧 , se 𝑥, 𝑦 ≠ 𝑤, 𝑧 , (multiplicação) 𝑥, 𝑦 × 𝑤, 𝑧 = [𝑥𝑤, 𝑦𝑧] , (simétrico) − 𝑥, 𝑦 = [−𝑥, 𝑦] , (recíproco) 𝑥, 𝑦 −1 = 𝑦, 𝑥 , se 𝑥 ≥ 0

−𝑦, −𝑥 , se 𝑥 < 0 , (subtração) 𝑥, 𝑦 − 𝑤, 𝑧 = 𝑥, 𝑦 + (− 𝑤, 𝑧 ) e (divisão) 𝑥, 𝑦 ÷ 𝑤, 𝑧 = 𝑥, 𝑦 × 𝑤, 𝑧 −1 e mostramos que estas operações estão bem definidas. Definimos a relação de ordem: 𝑥, 𝑦 < 𝑤, 𝑧 se, e só se, 𝑥, 𝑦 = [−1,0] e 𝑤, 𝑧 = [1,0] ou, se, 𝑥𝑧 < 𝑤𝑦 . Então, demonstramos que o conjunto { 𝑡, 1 ; 𝑡 ∈ ℝ} é um corpo ordenado completo, logo uma cópia do conjunto dos números reais. Desta forma, passamos a denotar { 𝑡, 1 ; 𝑡 ∈ ℝ} por ℝ e 𝑡, 1 simplesmente por 𝑡 . Além disso, denotamos −∞ = −1,0 , ∞ = 1,0 e Φ = 0,0 . Finalmente, todos os axiomas de James Anderson são demonstrados como teoremas da construção acima descrita.

2.2 Cálculo transreal

Em (ANDERSON e REIS, 2014) nós comentamos as vantagens da utilização dos números transreais na aritmética IEEE e estendemos a teoria dos limites e continuidade às funções transreais.

O padrão IEEE 754 da aritmética do ponto flutuante é amplamente utilizado na computação. Ele é baseado nos números reais e é feito total, isto é, permite qualquer operação aritmética, adicionando um infinito positivo, um infinito negativo, um zero negativo, e muitos estados de Not-a-Number (NaN) (ANDERSON, 2014). Nós ilustramos a função tangente transreal e estendemos os limites reais a limites transreais. A partir desta sólida fundamentação, afirmamos que existem três erros de categoria no padrão IEEE 754. Em primeiro lugar, a alegação de que os infinitos IEEE são os limites da aritmética real confunde processos de limite com aritmética. Em segundo lugar, a defesa do zero negativo da IEEE confunde o limite de uma função com o valor de uma função. E por último, a definição dos NaNs da IEEE confunde indefinido com não-ordenado.

Em seguida, nós estendemos a teoria dos limites e continuidade às funções transreais. Iniciamos propondo uma topologia para o conjunto dos números transreais. Definimos que um subconjunto de ℝ𝑇 é aberto em ℝ𝑇 se, e só se, é interseção finita de uniões de conjuntos dos tipos 𝑎, 𝑏 , −∞, 𝑏 , (𝑎, ∞] e {Φ}, onde 𝑎, 𝑏 ∈ ℝ, e mostramos que, de fato, estes subconjuntos formam uma topologia em

(4)

ℝ𝑇. Sabendo que ℝ𝑇 é um espaço topológico, mostramos que ℝ𝑇 é um espaço de Hausdorff, separável, desconexo e compacto. Além disso, a topologia de ℝ𝑇 concorda com a topologia de ℝ . Mostramos que os limites de sequências na topologia transreal concordam com os limites na topologia real. Por exemplo, lim𝑛→∞𝑥𝑛 = ∞ no sentido transreal se, e só se, lim𝑛 →∞𝑥𝑛 = ∞ no sentido usual, com a diferença de que, em ℝ𝑇, ∞ é um número definido e não apenas um símbolo de divergência. Em seguida, demonstramos, numa versão transreal, alguns teoremas sobre sequências. Como, por exemplo: toda sequência monótona de números transreais é convergente; toda sequência de números transreais possui uma subsequência convergente e o Teorema do Sanduíche. Finalmente, mostramos que limite e continuidade transreais de uma função concordam com limite e continuidade usuais.

Desta forma, propomos vantagens teóricas e práticas da transmatemática. Em particular, argumentamos que a implementação do cálculo transreal na aritmética do trans-ponto-flutuante estenderia a cobertura, precisão e confiabilidade de quase todos os programas de computador que exploram o cálculo.

Em (REIS e ANDERSON, 2014a) nós damos continuidade ao cálculo transreal iniciado no texto citado no parágrafo anterior. Nós estendemos a derivada real à derivada transreal. Isto continua a demonstrar que o cálculo transreal contém o cálculo real e opera em singularidades onde o cálculo real falha. Por isso os programas de computador que dependem de derivadas computacionais - como aqueles usados em aplicações científicas, de engenharia e financeiras - são estendidos para operar em singularidades. Isto faz o software, que calcula derivadas, mais eficiente e mais confiável. Também estendemos as integrais do domínio real ao domínio transreal.

Iniciamos definindo a derivada no sentido transreal em um ponto real pela derivada usual neste ponto, isto é, se 𝑥 ∈ ℝ então 𝑓𝑇 𝑥 = 𝑓′(𝑥), a derivada nos

pontos infinitos por 𝑓𝑇 −∞ = lim𝑥→−∞𝑓′(𝑥) e 𝑓′𝑇 ∞ = lim𝑥→∞𝑓′(𝑥) e a derivada

em nullity por 𝑓′𝑇(Φ) = Φ. Com essa definição, vale, por exemplo, que a derivada

da função exponencial1 é a própria função exponencial em 𝑇, assim como já sabemos ser em ℝ. Lembramos que a derivada usual em ℝ é definida como uma

1

(5)

taxa de variação - como o limite de uma variação relativa - isto é, 𝑓 𝑥 =

lim𝑦 →𝑥𝑓 𝑦 −𝑓(𝑥)

𝑦−𝑥 . Observe que, a princípio, a definição dada acima de 𝑓

ℝ𝑇 ∞ não segue o mesmo caminho. Entretanto, nós mostramos que a definição 𝑓𝑇 ∞ = lim𝑥→∞𝑓′(𝑥) pode ser vista como uma taxa de variação, no seguinte

sentido: 𝑓: ℝ𝑇 → ℝ𝑇 é derivável em ∞ se, e só se, existe lim𝑥→∞ 𝑦 →∞ 𝑓 𝑦 −𝑓(𝑥) 𝑦 −𝑥 . E neste caso 𝑓𝑇 ∞ = lim𝑥→∞ 𝑦→∞ 𝑓 𝑦 −𝑓(𝑥)

𝑦 −𝑥 , onde, por definição, lim𝑥→∞𝑦 →∞

𝑓 𝑦 −𝑓(𝑥)

𝑦−𝑥 = 𝐿 ∈ ℝ

𝑇 se, e

só se, dada uma vizinhança 𝑉 de 𝐿, existe uma vizinhança 𝑈 de 𝑥0 tal que 𝑓 𝑥, 𝑦 ∈ 𝑉 sempre que 𝑥 ≠ 𝑦 e 𝑥, 𝑦 ∈ 𝑈 ∖ {𝑥0} . Em seguida, definimos uma integral no sentido transreal e mostramos que esta integral transreal concorda com a integral usual. Isto é, demonstramos que: Sendo 𝑎, 𝑏 ∈ ℝ e 𝑓: 𝑎, 𝑏 → ℝ uma função limitada, segue que 𝑓 é Riemann integrável se, e só se 𝑓 é integrável no sentido transreal; e neste caso 𝑓 𝑥 𝑑𝑥𝑎𝑏 =

ℝ𝑇 𝑓 𝑥 𝑑𝑥

𝑏

𝑎 . Além disso, mostramos que uma integral imprópria é absolutamente convergente, isto é, a integral |𝑓 𝑥 | 𝑑𝑥−∞ é convergente se, e só se, 𝑓 𝑥 𝑑𝑥−∞ =

ℝ𝑇 existe. E neste caso, 𝑓 𝑥 𝑑𝑥

=

ℝ𝑇 𝑓 𝑥 𝑑𝑥

. Ainda,

como exemplo de integrais transreais, mostramos que 𝑓 𝑥 𝑑𝑥 −∞ −∞ = ℝ𝑇 𝑓 𝑥 𝑑𝑥 = ℝ𝑇 𝑓 𝑥 𝑑𝑥 Φ 𝑎 = 𝑓 𝑥 𝑑𝑥 𝑏 Φ = ℝ𝑇 ℝ𝑇 Φ para todos 𝑎, 𝑏 ∈ ℝ𝑇 e qualquer função 𝑓. 2.3 Números transcomplexos

Estabelecemos o conjunto dos números transcomplexos e sua aritmética. Uma construção geométrica dos transcomplexos foi dada em (ANDERSON, 2011). Em (REIS e ANDERSON, 2014b), simplificamos o plano transcomplexo e construímos o conjunto dos números transcomplexos a partir dos números complexos. Assim, os números transcomplexos e sua aritmética surgem como consequências desta construção e não por um desenvolvimento axiomático ou geométrico. Isto simplifica a aritmética transcomplexa, em comparação ao tratamento anterior, mas mantém a totalidade de modo que cada operação aritmética pode ser aplicada a quaisquer números transcomplexos que o resultado é um número transcomplexo. Em particular, a divisão por zero é permitida. Nossa construção estabelece a

(6)

consistência das aritméticas transcomplexa e transreal e estabelece as relações de inclusão esperadas entre os conjuntos dos transcomplexos, complexos, transreais e reais. Nós mostramos como representar números transcomplexos em coordenadas polares e ilustramos diversas formas de se efetuar as operações aritméticas entre os transcomplexos. Discutimos, ainda, algumas das vantagens que as transaritméticas têm sobre suas homólogas parciais.

2.4 Lógica transreal

Em (ANDERSON e GOMIDE, 2014) os autores propõem a utilização dos números transreais na modelagem de uma lógica paraconsistente. Lógicas paraconsistentes são lógicas não-clássicas que permitem a existência de sentenças contraditórios. Os autores introduzem o princípio metalógico de monotonia que é uma maneira de se fazer lógica paraconsistente. Ainda, propõem uma semântica que contém os valores clássicos de verdade e falsidade, valores fuzzy de graus de veracidade, um valor de dialetheia - que é o valor de contradição, de uma proposição tanto falsa quanto verdadeira - e um valor gap - que é o valor de uma proposição que carece de informação de verdade. Prosseguindo, os autores definem os conectivos lógicos em termos de funções transreais bem definidas e mostram como o conjunto de todos os mundos possíveis pode ser representado em um espaço transreal.

REFERÊNCIAS

ANDERSON, J. A. D. W. Perspex machine II: Visualisation. Vision Geometry XIII Proceedings of the SPIE, v. 5675, p. 100-111, 2005.

ANDERSON, J. A. D. W. Perspex machine IX: Transreal analysis. Vision Geometry XV Proceedings of the SPIE, v. 6499, p. 1-12, 2007.

ANDERSON, J. A. D. W. Trans-floating-point arithmetic removes nine quadrillion redundancies from 64-bit IEEE 754 floating-point arithmetic. In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATIONS, 2014. San Francisco. Anais... International Association of Engineers. No prelo.

ANDERSON, J. A. D. W. Evolutionary and revolutionary effects of transcomputation. In: 2° IMA Conference on Mathematics in Defence, 2011. Institute of Mathematics and its Applications, 2011.

(7)

ANDERSON, J. A. D. W.; VÖLKER, N.; ADAMS A. A. Perspex Machine VIII: Axioms of transreal arithmetic. Vision Geometry XV Proceedings of the SPIE. v. 6499, p. 649903.1-649903.12, 2007.

ANDERSON, J. A. D. W.; GOMIDE, W. Transreal arithmetic as a consistent basis for paraconsistent logics. In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATIONS, 2014. San Francisco. Anais... International Association of Engineers. No prelo.

ANDERSON, J. A. D. W.; REIS, T. S. dos. Transreal limits expose category errors in IEEE 754 floating-point arithmetic and in mathematics. In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATIONS, 2014. San Francisco. Anais... International Association of Engineers. No prelo.

GOMIDE, W. Uma breve apresentação dos números transreais e uma sugestão de aplicação em filosofia: o espaço lógico de Wittgenstein. In: SCIENTIARUM HISTORIA: V CONGRESSO DE HISTÓRIA DAS CIÊNCIAS DA TÉCNICAS E EPISTEMOLOGIA, 2012. Rio de Janeiro. Anais... Universidade Federal do Rio de Janeiro, 2012.

REIS, T. S. dos; ANDERSON, J. A. D. W. Transdifferential and transintegral calculus. In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATIONS, 2014a. San Francisco. Anais... International Association of Engineers. No prelo.

REIS, T. S. dos; ANDERSON, J. A. D. W. Construction of the transcomplex numbers from the complex numbers. In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATIONS, 2014b. San Francisco. Anais... International Association of Engineers. No prelo.

REIS, T. S. dos; GOMIDE, W. Construction of the transreal numbers. Disponível em: <http://figshare.com/articles/Construction_of_the_transreal_number/1025732>.

Acesso em: 28 de jul. 2014.

REIS, T. S. dos; GOMIDE, W; KUBRUSLY, R. Números transreais: mais uma etapa na história dos números. In: SCIENTIARUM HISTORIA: VI CONGRESSO DE HISTÓRIA DAS CIÊNCIAS DA TÉCNICAS E EPISTEMOLOGIA, 2013. Rio de Janeiro. Anais... Universidade Federal do Rio de Janeiro, 2013.

Referências

Documentos relacionados

Sendo assim, o presente estudo visa quantificar a atividade das proteases alcalinas totais do trato digestório do neon gobi Elacatinus figaro em diferentes idades e dietas que compõem

Para isso, será importante que cada estudante estipule um cronograma de atividades com suas enfermeiras supervisoras a fim de vivenciarem, ao longo do período de estágio, a

O enfermeiro, como integrante da equipe multidisciplinar em saúde, possui respaldo ético legal e técnico cientifico para atuar junto ao paciente portador de feridas, da avaliação

Logo, para determinar o quão forte um graha está para conferir seus resultados, não só a dignidade como também a sua bāladi avasthā pode ser considerada. No

[r]

São eles, Alexandrino Garcia (futuro empreendedor do Grupo Algar – nome dado em sua homenagem) com sete anos, Palmira com cinco anos, Georgina com três e José Maria com três meses.

à sua atuação como lobista junto ao Partido dos Trabalhadores. PABLO KIPERSMIT também não soube informar o porquê dos pagamentos, uma v e z que nunca contratou serviços

The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent